Hindawi Publishing Corporation

The Scientific World Journal

Volume 2013, Article ID 283919, 10 pages
http://dx.doi.org/10.1155/2013/283919

Research Article

From Nonlinear Optimization to Convex Optimization
through Firefly Algorithm and Indirect Approach with

Applications to CAD/CAM

Akemi Gélvez' and Andrés Iglesias™?

! Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos, University of Cantabria,

Avenida de los Castros s/n, 39005 Santander, Spain

2 Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan

Correspondence should be addressed to Andrés Iglesias; iglesias@unican.es

Received 16 August 2013; Accepted 29 September 2013

Academic Editors: Z. Cui and X. Yang

Copyright © 2013 A. Galvez and A. Iglesias. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves
typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute
these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional
optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization
is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are
not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired
metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined
by using De Boor’s method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original
nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our
method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the

proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.

1. Introduction

Fitting spline curves to data points is a problem that appears
very frequently in many scientific and engineering fields.
Typical examples span from regression analysis in statistics
[1, 2] to contour reconstruction in medical imaging [3].
They also encompass the computation of outlines in image
processing [4], shape manipulation in geometric modeling
and processing [5-7], and data approximation methods in
numerical analysis [8, 9], to mention just a few examples.
In this paper, our main motivation comes from the fields
of computer-aided design and manufacturing (CAD/CAM)
where spline curves are intensively used in many problems
[10-14]. One of them is to fit data points obtained from
metrology in CAD/CAM, a field consisting of the application
of measurement technology to the quality control assessment

of designed or manufactured products in many manufactur-
ing industries (automotive, aerospace, ship building, shoes,
etc.).

In spite of its wide range of applications, the use of spline
curves is still challenging because they typically depend on
many different continuous variables (data parameters, knots,
and spline coeflicients) in a highly nonlinear way [15-20].
These sets of variables are also interrelated, meaning that
changes in the values of a particular set of parameters affect
the behavior of the others, and hence they cannot be manip-
ulated independently [21-24]. For instance, the choice of
knots depends on the curve parameterization, which in turn
depends on the underlying structure of data points. Similarly,
the computation of the spline coefficients depends on both
the parameterization and the knots, and so on. From a
mathematical standpoint, this implies that the fitting problem
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cannot be partitioned into independent subproblems for the
different sets of variables. As a consequence, it is not possible
in general to compute all these parameters analytically [19,
25]. Instead, the typical formulation in the field is to treat
this problem as a continuous nonlinear optimization problem
(26, 27]. The bottom point is that traditional optimization
techniques have also failed to provide satisfactory answer to
this optimization problem. Among the alternatives suggested
to solve this limitation, those based on artificial intelligence
techniques captured the interest of the scientific community
some years ago. The main line of research focused on the
neural networks [28-30] and their extension, the functional
networks [31-34]. However, the solutions reported were
partial and applicable only to some particular problems.
Consequently, there is a need for more efficient approaches
to tackle this issue.

During the last few years, scientists and engineers have
turned their attention to bioinspired computation, a field
where the interplay between nature and computers has
allowed us to model the living phenomena by using math-
ematics and computer science [35-37]. Simultaneously, the
study of life has led to improved schemes to solve many
problems in mathematics and computer science, including
optimization problems [38-40]. Due to their good behavior
for complex optimization problems involving ambiguous and
noisy data, there has recently been an increasing interest in
applying bioinspired optimization techniques to the spline
fitting problem. However, there are still few works reported
in the literature. Recent schemes in this area are described
for particle swarm optimization [41-43], genetic algorithms
[27, 44, 45], artificial immune systems [46, 47], estimation of
distribution algorithms [48], and hybrid approaches [49-51].

Specially remarkable is the fact that some bioinspired
methods have proved to be able to solve difficult opti-
mization problems unsolvable with traditional optimization
techniques. Being this our case, we turned our attention to
a powerful bioinspired metaheuristic called firefly algorithm,
recently introduced by Professor Xin-She Yang to solve diffi-
cult continuous optimization problems. The firelfy algorithm
is inspired in the flashing behavior of the fireflies and their
social interaction in the natural environment (see Section 3
for details).

In this paper, we present a new bioinspired scheme for
computing all parameters of a spline curve approximating
a given set of data points. Our proposal is based on two
fundamental techniques: the indirect approach and the firefly
algorithm, which are combined in our method to perform the
optimization of the knots and the data parameters, respec-
tively. The indirect approach tries to overcome the fact that
computing the knots requires a previous parameterization
which, at its turn, requires a previous knot vector, leading
in practice to a never-ending vicious circle. In the indirect
approach, the knots are not initially the subject of optimiza-
tion but precomputed with a coarse approximation scheme,
which will be further improved at a later stage. This precom-
puted knot vector plays the role of an initial seed for the
data parameterization step. An obvious risk of this indirect
approach is that the whole method relies on this optimization
stage. In this way, data parameterization becomes the most
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critical step, since it carries out the most significant part of
the optimization effort. Consequently, we need a powerful,
reliable optimization method for this task. As it will be shown
later on, the firefly algorithm is a good choice for this step. It
is applied in the second step to perform optimization on data
parameterization; then, the knot vector is refined by using De
Boor’s method, thus yielding a better approximation of the
optimal knot vector. These two combined methods convert
the original nonlinear continuous optimization problem into
a convex optimization problem, which is solved by applying
singular value decomposition. This scheme is applied to some
illustrative real-world examples from the CAD/CAM field,
including the side profile curve of a car body, the outline
curves of a paint spray gun, and a 3D CAD/CAM workpiece
from the automotive industry. Our experimental results show
that the proposed scheme can solve the original continuous
nonlinear optimization problem very efficiently.

The structure of this paper is as follows. Firstly, some
basic concepts about parametric spline curves are given in
Section 2. Then, Section 3 describes the firefly algorithm, the
bioinspired metaheuristic used in this paper. The core of the
paper is in Section 4, where our proposed method for spline
curve fitting is reported in detail. Section 5 describes the
experimental results of the application of our method to three
illustrative real-world problems from the CAD/CAM field.
The paper closes with the main conclusions and our plans for
future work.

2. Parametric Spline Curves

In this section we describe the basic concepts needed in this
paper about the parametric spline functions. The interested
reader is referred to [6, 7, 52, 53] for a more detailed
discussion about this subject. Note that in this paper vectors
are denoted in bold.

Let (1) = (gbl(r), ...,¢"(7)) be a parametric function
defined on a finite interval [«, B]. Consider now a strictly
increasing sequence of real numbers yy = o < p; < -y, <
Upe1 = P called knots. The function ®(r) is a parametric
polynomial spline of degree > 0 with knots {y}, if the
following two conditions are fulfilled for i = 0,...,v and
j=L...,m

(1) ¢/(t) is a polynomial spline of degree up to 7 on each
interval [g;, pi11 ]

(2) qu(r) and its derivatives up to order # — 1 are
continuous on [¢;, Y, ].

Different basis functions can be used for polynomial splines.
In this paper, we consider the B-spline basis functions of
degree v defined on [y;, 4;,,] according to the Cox-de-Boor
recursive formula [52]:

ll/i,v+1 (T) = q’:v (T) Il/i,v (T) + (P;rl,v (T) 1//i+1,1/ (T) >

i=0,...,0-v v>1,

where q):v(T) = (T N Mi)/(l[/ll‘“"l/ - ‘Mi)’ (Pl_,v(T) = (["Hv - T)/
(Wiyy — #;)> and y; (1) is the unit function with support on
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the interval [y;, 4;,,). The dimension of the vector space of
functions satisfying conditions (1) and (2) is v+#+1. The given
knot vector {y;}; yields v — # + 1 linearly independent basis
functions of degree #. The remaining 2# basis functions are
obtained by introducing the boundary knots p_, = p_,,,; =
o=y =g = aand pyy = fyy = = Uy =
With this choice of boundary knots all basis functions vanish
outside the interval domain [«, 8]. Every parametric spline
curve @(7) is represented by

(1) = ) &y, (1), )
i=-n

where {E;} are the spline coefficients of the curve and y; ., (7)
are the basis functions defined above. The kth derivative of
®(7) is a spline of degree # — k given by

Y & G)

i=—nt+k

k
@) =](n+1-i)
i=1

o) _ e (D)
with 87 = (2 - B

=0) _ =
BV =8,

)/(."‘i+17+1—j - n"‘i) forj > 0 and

1

3. The Firefly Algorithm

The firefly algorithm (FFA) is a bioinspired metaheuristic
algorithm introduced in 2008 by Yang to solve optimization
problems [54-58]. The algorithm is based on the flashing
behavior of the fireflies and their social interaction in the
natural environment. The key ingredients of the method are
the variation of light intensity and formulation of attrac-
tiveness. In general, the attractiveness of an individual is
assumed to be proportional to their brightness, which in
turn is associated with the encoded objective function. The
reader is kindly referred to [40] for a comprehensive review of
the firefly algorithm and other nature-inspired metaheuristic
approaches. See also [59] for a gentle introduction to meta-
heuristic applications in engineering optimization.

In the firefly algorithm, there are three particular ideal-
ized rules, which are based on some of the major flashing
characteristics of real fireflies [54] as follows

(1) All fireflies are unisex, so that one firefly will be
attracted to other fireflies regardless of their sex.

(2) The degree of attractiveness of a firefly is proportional
to its brightness, which decreases as the distance from
the other firefly increases due to the fact that the
air absorbs light. For any two flashing fireflies, the
less bright one will move towards the brighter one. If
there is not a brighter or more attractive firefly than a
particular one, it will then move randomly.

(3) The brightness or light intensity of a firefly is deter-
mined by the value of the objective function of a given
problem. For instance, for maximization problems,
the light intensity can simply be proportional to the
value of the objective function.

The distance between any two fireflies i and j, at positions
P, and P, respectively, can be defined as a Cartesian or
Euclidean distance as follows:

D

iy = [Pi= Byl = | X (o - £))

k=1

2
>

(4)

where pf is the kth component of the spatial coordinate P; of
the ith firefly and D is the number of dimensions. In the firefly
algorithm, as attractiveness function of a firefly j one should
select any monotonically decreasing function of the distance
to the chosen firefly, for example, the exponential function:

g>1, (5)

where rij s the distance defined as in (4), Eo is the initial
attractiveness at » = 0, and J is an absorption coeflicient at
the source which controls the decrease of the light intensity.

The movement of a firefly i which is attracted by a more
attractive (i.e., brighter) firefly j is governed by the following
evolution equation:

o o (- 1
P§t+1) _ Pz('t) + Boe T (p;t) - Pl@) +Q (0 - 5) , (6)

where the superscripts between brackets in this expression
are used to denote the corresponding generations. The first
term on the right-hand side is the current position of the
firefly at generation ¢, the second term is used for considering
the attractiveness of the firefly to light intensity seen by
adjacent fireflies, and the third term is used for the random
movement of a firefly in case there are not any brighter ones.
The coeflicient & is a randomization parameter determined
by the problem of interest, while & is a random number
generator uniformly distributed in the space [0, 1].

The method described in previous paragraphs corre-
sponds to the original version of the firefly algorithm,
as originally developed by its inventor. Since then, many
different modifications and improvements on the original
version have been developed, including the discrete FFA,
multiobjective FFA, chaotic FFA, parallel FFA, elitist FFA,
Lagrangian FFA, and many others, including its hybridization
with other techniques. The interested reader is referred to the
nice paper in [60] for a comprehensive, updated review and
taxonomic classification of the firefly algorithms and all its
variants and applications.

4. The Method

In this section our FFA-based method is fully explained.
The section begins with the description of the optimization
problem to be solved. Then, a general overview of the method
and its flowchart are given. Then, each step of the method
is discussed in detail. Finally, some details regarding the
implementation issues are also given.

4.1. 'The Optimization Problem. Let us suppose that we are
provided with a set of measured data points {®;},_, C



R" obtained by laser scanning, layout machine, or other
digitizing methods, as it typically happens in many scientific
and engineering problems. The goal consists of obtaining a
parametric spline curve ®(7) of degree # defined as above
approximating the {@®.},. Due to the conditions on the
boundary knots, we can take ®(7,) = @, and (D(Tp) =0, and
perform approximation on the remaining parameters; that is,

4

0, =@ () = ZEjo,nH(Tk) (k=2,....p-1). (7)

j=n
Equation (7) can be written in matrix notation as

0=V & (8)

where ® = (0,,...,0
({1//]‘,;7+1(Tk)}j=

basis functions, and (-)” represents the transpose of a vector
or matrix. The dimension of the search space D in (8) is
given by n(v + 1 — 1) + v + p — 2, which could be of several
thousands of variables for nontrivial shapes. Since the system
(8) is overdetermined, the matrix of basis functions is not
invertible and no direct solution can be obtained. Therefore,
we consider the least-squares approximation of (7), defined
as the minimization problem given by

T = = =T
P—l) , B = (B, 8), ¥ =

2 et k=—q,...,v) is the matrix of sampled spline

p-1 v
mir}yignize Zwk 0, - Z By (k) (9)
{EJ'}'J' k=2 j=n [2)

{mehe

where wj, are scalar weights and ¢, represents the Euclidean
norm (although any other norm might be used instead). Note
that the parameters and knots are related by nonlinear basis
functions, thus leading to a high-dimensional continuous
nonlinear optimization problem. Assuming that a suitable
data parameterization can be obtained, we have to solve a
nonlinear continuous optimization problem involving both
the spline coefficients and the knots as free variables of
the problem. Unfortunately, this approach makes the opti-
mization problem nonconvex, because ®(7) is a nonconvex
function of the knots [19, 26, 52]. To overcome this problem,
we follow the so-called indirect approach, in which the
knots are precomputed before the optimization process is
executed and then refined for better fitting. With this strategy,
the resulting problem is convex, so a global optimum can
eventually be found. In order to apply the previous strategy,
we need to obtain a suitable parameterization of data points,
which thus becomes the most critical step of this approach.
We solve this parameterization problem by applying the
firefly algorithm, as it will be explained in next paragraphs.

4.2. Overview of the Method. 'The main steps of our method
are summarized in Figure 1, showing the flowchart of our
approach. Our initial input is given by the set of data points
{® j} 1 and two parameters that are freely chosen by the user:
the length of knot vector (determined by variable v), and
the curve degree # (typical values for # are between 2 and
4, although any natural value can be used in our method).
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Input
Data points O;
Curve degree 7
Knot vector length v

¥

Knot vector Clamped
initialization uniform
v
Data Firefly
parameterization algorithm
S J (FFA)
v
Knot vector De Boor
refinement method
i J
Spline coefficient . L
determination singular value
= decomposition

v

Output

Final fitting spline
curve

FIGURE 1: Graphical flowchart of the proposed method.

The first step of our approach consists of computing an
initial knot vector. Then, we apply the firefly algorithm to
perform data parameterization (Step 2). A new (refined) knot
vector is computed based on the parameterization obtained in
the previous step. Then, the convex optimization problem is
solved by using singular value decomposition (Step 4). After
this step, the best fitting spline curve to the data points for the
given degree is finally obtained.

4.3. Main Steps of the Method. The proposed method consists
of four main steps, analyzed in the next paragraphs.

Step 1 (knot vector initialization). The first step of the method
computes an initial knot vector, which is required in order
to evaluate the fitness functions during the optimization
step for data parameterization. To this aim, we consider a
clamped knot vector (this condition is a result of our choice
of boundary knots) whereas the internal knots are uniformly
distributed on the interval («, §); that is, p; = a + ((f -
«)i/(v+1)),fori = 1,...,v. This choice of knots is not optimal
because it does not reflect the distribution of data points. This
limitation will be overcome in Step 3, where this initial knot
vector will be further refined.

Step 2 (data parameterization). In this step, the data points
parameterization is carried out. As mentioned above, this is
the most critical step of our method; the set of data parame-
ters along with the knot vector, computed in the previous step
and refined in the next one, allows us to convert the original



The Scientific World Journal

nonlinear nonconvex optimization problem (9) into a convex
optimization problem. This task is accomplished by applying
the firefly algorithm described in Section 3. To this purpose, a
collection of 1, particles (fireflies) is considered. Each firefly
corresponds to a vector of p — 2 real numbers on the interval
(«, B). The components of each firefly vector are always sorted
in an increasing order to reflect the ordered structure of the
data points. The fireflies are initialized by using a random
function of uniform distribution on the interval domain
(«, B). We have used a collection of n; = 100 fireflies for
the examples reported in this paper. We also checked our
results with larger populations by changing this parameter
from 100 to 1000 fireflies with step-size 100 and do not notice
significant variations in our results. However, a larger value
could be required for very massive sets of data points (> 10°
data points) exhibiting very complicated shapes.

Once the initial population of fireflies is generated, some
parameters of the firefly algorithm have to be determined
in order to apply them to our problem. Our choice of the
parameters for the FFA is mostly empirical: we initially
rely on standard values reported in the existing literature
and then perform computer experiments to validate our
parameter tuning. In this paper, we consider the following set
of parameter values for the FFA method: 3, = 1,7 = 0.5,
and @ = 2. This set of parameter values has already been
used in a previous paper by the authors for a Bézier surface
parameterization problem with good results [61]. Our com-
puter experiments also confirmed their good performance
for the examples discussed in this paper and some others
not reported here to keep the paper at manageable size.
On the contrary, the number of iterations and the value of
parameter & required some improvement. We initially used a
fixed number of iterations in our experiments as the stopping
criterion, but this choice was found to be very inefficient
for this problem. The main reasons are that the method can
potentially be applied to sets of very different number of
data points, meaning that the dimension of the search space
can vary dramatically from one example to another, and that
the initial knot vector used in our method is not optimal
yet, making it difficult to determine in advance how many
iterations are needed to achieve convergence. We then turned
to a different termination condition, where the number of
iterations is determined manually for each specific example,
based on the observation of the convergence diagrams (as
those shown in Figures 3 and 5). Although it is a tedious and
time-consuming task, we found it to be more reliable in order
to ensure convergence is properly achieved. Regarding the
value for &, our initial choice & = 0.3 soon revealed to be too
drastic, as the fireflies went out of range in just a few iterations
(sometimes, even a single one was enough). We decreased its
value gradually and carried out a lot of computer simulations.
As a result, the best value was found at & = 0.01.

The last required component of the FFA is the fitness
function. It corresponds to the evaluation of the least-squares
function given by the operator to be minimized in (9); that is,

p-1
Q= Zwk
k=2

v

0, - Z Ei¥inn (t)

J==n

) (10)
&

where the weights w, are scalar numbers to express the degree
of confidence of data points (larger weights are assigned
to more reliable data). In this paper, we assume a constant
confidence value for all data, so we takew, = 1,k =2,...,p—
1. After the selection of those parameters and the fitness
function, the firefly algorithm is performed iteratively until
the termination criterion is reached. To remove the stochastic
effects of single executions, 20 independent executions have
been carried out for each simulation trial. Then, the firefly
with the best (i.e., minimum) fitness value is selected as
the best solution to the problem. As a result, the best
parameterization vector of data points is obtained.

Step 3 (knot vector refinement). Based on the parameter-
ization obtained in the previous step, the knot vector is
subsequently refined for better performance. To this purpose,
the placement of knots should reflect the distribution of
data parameters {7;};. In this paper, the internal knots are
computed by following a procedure firstly proposed by De
Boor in [52]. The corresponding algorithm is described in
Algorithm 1. It has been proved that this algorithm guar-
antees that every knot span contains at least one 7. At its
turn, this condition ensures that the matrix I = WTW¥ is
positive definite and well conditioned. Furthermore, T has a
semibandwidth less than 77 — 1 (see [52] for details). All these
properties imply that the system of equations related to the
convex problem can be solved by using efficient and reliable
numerical methods [62], as explained in the next paragraphs.

Step 4 (spline coeflicient determination). As we mentioned
above, in this paper, we follow an indirect approach to com-
pute the fitting spline curve to the data points. In this scheme,
data parameters and knots are computed at earlier stages of
the optimization process so that the approximation problem
(9) becomes a convex problem. In that case, premultiplying
by ¥ at both sides of (8), we get

T.

04]

=3, )

. T
where 2 = ¥ . @ = ({ZL; G)kll’iml(Tk)}i:—q,...,v) . Note that

r=v"¥isa symmetric square matrix and positive semidef-
inite, so system (11) always has a solution. It can be solved
numerically by Gaussian elimination, LU decomposition, or
the singular value decomposition (SVD) (see [62] for details).
In this paper, SVD has been used since it provides the best
numerical answer in the sense of least squares for those cases
in which the exact solution is not possible. To this aim, T is
decomposed as the matrix product T = U - W - V7, where
U is a column orthogonal matrix, W is a diagonal matrix
with positive or zero elements wy called the singular values,
and V is a square orthogonal matrix. Furthermore, its inverse
can readily be obtained as: rt=v. [diag(1/wy)] - Ul In
addition, the knot vector obtained by the procedure described
in Step 3 guarantees that I is positive, definite, and, therefore,
nonsingular, so the problem can be solved by using this
inverse matrix I,
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INPUT: T={r,....T,} /* Vector of data parameters from Step 2"/
v /* Number of internal knots */
OUTPUT: W=y, ) /™ Vector of internal knots */
ALGORITHM: {Initialization}
v {}
A p+l
v+1
{Main loop}
for j=1tov do
i —int(jA) /* int(k): returns the largest integer number < k */
o — jA-i
pj— Q-0 +0T
o — Append(u;)
end for

ALGORITHM I: De Boor’s knot vector refinement algorithm.

4.4. Implementation Issues. Regarding the implementation,
all computations in this paper have been performed on
a 2.6 GHz Intel Core i7 processor with 8 GB of RAM.
The source code has been implemented by the authors in
the native programming language of the popular scientific
program Matlab, version 2012a. In our opinion, Matlab is a
very suitable tool for this task: it is fast and provides reliable,
well-tested routines for efficient matrix manipulations. It
also contains a bulk of resources regarding the solving
of systems of equations. For instance, Matlab provides us
with the command mldivide to solve the equation A -
X = B for both squared and nonsquared systems (by using
Gaussian elimination with partial pivoting and least-squares
techniques, resp.). Depending on the general structure of
matrix A, this command applies specialized LAPACK and
BLAS routines to get the best possible solution to this
system. Also, Matlab provides us with a specialized command
svd for computing the SVD of a matrix. This command
carries out the matrix SVD decomposition automatically
so it can be used in a rather black box-like way. Besides,
Matlab provides excellent graphical options and optimized
code for input/output interaction and high performance
computations.

5. Experimental Results

Our method has been applied to several real-world examples
of CAD/CAM shapes for the automotive industry. In this
section we discuss three of them. The reported examples
reflect the variety of cases our method can be applied to: they
include both open and closed curves, as well as 2D and 3D
shapes comprised of a single curve and multiple curves. We
think we have provided enough examples to convince the
reader of the broad applicability of our approach.

5.1. Side Profile Curve of a Car Body. The first example
consists of the data fitting of a set of 695 data points from the
In (+y-axis) side profile section of a model of a notchback
three-box sedan car body. The data points were obtained

by a layout machine from the Spanish car maker provider
Candemat years ago. This example has been primarily chosen
because it includes areas of varying slope, ranging from the
strong slope at both ends (upwards on the left, downwards on
the right) to the soft slope in middle part, with a horizontal
area between pillars A and C and in the cargo box area and
a soft upward area in the car hood. In addition, it is a good
example of a truly parametric curve that cannot be faithfully
represented by simpler functions such as explicit functions
and the like. Consequently, it is a very good candidate to
check the performance of our approach.

The problem is also challenging because we are trying to
represent the whole shape with a single curve. It is worthwhile
mentioning here that the use of a single curve for a whole
object is not common at all in industrial environments,
where the shapes of final products such as a car body are
usually represented by a very large set (several hundreds
of thousands, even millions) of simpler curves. Therefore,
even though we are using data from a real-world shape, this
example must be understood as a purely academic example
rather than a genuine real-world problem in the automotive
industry. Yet, this example is very useful in this paper to
analyze the performance of our approach.

Figure 2 shows our simulation results for a spline curve
of degree 3. Top figure shows the original data
points, represented by red cross symbols along with the
reconstructed data points, displayed as empty circles in
blue. The picture is intended to show the correspondence
between the original and the reconstructed data points in
a graphical way. As the reader can see, our method yields
a very good matching between both sets of points. This
observation is confirmed by Figure 2 (bottom), representing
the same original data points along with the approximating
spline curve, displayed as a solid line in blue. Figure 3 shows
the evolution of the fitting error of the Q operator for 1000
iterations. Since the diagram shows a similar general behavior
for the 20 independent executions and larger number of
iterations no longer improves the fitting error, we conclude
that this number of iterations is enough for convergence. The
corresponding fitting error in this example is 1.1248 x 1072,
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FIGURE 2: Adjusting data points (red cross symbols in both pictures)
of a car body side profile with our method: (top) reconstructed data
points (blue empty circle symbols); (bottom) approximating spline
curve (blue solid line).
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FIGURE 3: Fitting error evolution of the Q operator for the car body
example for 1000 iterations.

This value gives only partial information because it does not
consider the number of sampled points. This means that
increasing the number of data points leads automatically to
larger fitting errors even though each data point might be
better fitted. To overcome this drawback, we also compute
the root-mean square error (RMSE), which gives a better
measure of the quality of the approximation. In this example
we obtain an RMSE fitting error of 4.2669 x 10~*. This value
confirms the good performance of the proposed method for
this problem. A close inspection of Figure 2 reveals, however,
that some parts can still be further improved: this fact is
visually noticeable in Figure 2, specially at the corners of the
front and rear fenders and their linkings to the lower car
body line, as well as at the lower parts of front and rear
bumpers. This effect is attributable to our indirect approach,
in which we do not compute the optimal knot vector but
an approximation. We are currently working towards an
improved approach to solve this limitation.

5.2. Outline Curves of a Paint Spray Gun. Figure 4 shows the
results of our method for spline curves of degree #7 = 3 when

e
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FIGURE 4: Adjusting data points (red cross symbols in both pictures)
of two outlines curves of a paint spray gun with our method:
(left) reconstructed data points (blue empty circle symbols); (right)
approximating spline curve (blue solid line).
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FIGURE 5: Fitting error evolution of the Q) operator for the outer
curve (in blue) and the inner curve (in red) of the paint spray gun
example for 2000 iterations.

applied to a paint spray gun model. Left and right pictures
of the figure have the same meaning as the top and bottom
pictures of the previous figure, respectively. The spray gun
model consists of two different curves for the outer and inner
boundary lines with 542 and 276 data points, respectively. We
applied our method to each curve independently. The fitting
errors of the ) operator for the outer and inner curves are
1.9493x107* and 7.9145x 1077, respectively. The RMSE fitting
errors are 8.3729 x 10~* and 4.7639 x 10™*, respectively. These
values are reached for 2000 iterations, well within the conver-
gence area as shown in Figure 5, which displays the evolution
of the fitting error evolution of the Q operator for 2000
iterations. Fitting errors for the outer and the inner curve in
that figure are displayed in blue and red, respectively. Once
again, the numerical errors and the visual appearance con-
firm the good performance of the method in these two cases
as well. This example also shows that our approach has a great



flexibility, being able to deal with both open and closed curves
such as the outer and inner curves of this model, respectively.
Note also that even though the data points of the outer
curve exhibit many changes of concavity, the method can
approximate them very accurately with a single spline curve.

5.3. 3D CAD/CAM Workpiece. Figure 6 illustrates the appli-
cation of our method to a complex CAD/CAM workpiece of
a car body. This example aims at showing the ability of our
method to perform well in a real industrial problem involving
several geometric shapes. The figure shows two different
views of a 3D automotive part comprised of 1610 curves
stored in an industrial IGES file obtained from Candemat.
As the reader can see, the shape consists of curves with
very different topologies, ranging from simple regular shapes
such as straight lines and conics to complicated irregular
shapes. We therefore applied two different strategies for this
example: simple regular shapes are reconstructed by using
basic primitives (lines, circles, etc.) for which only some
parameters have to be computed (e.g., using two data points
for straight lines and three non-aligned data points for the
center and radius of a circle), while the complicated shapes are
reconstructed with our approach. A total of 243 curves have
been reconstructed with our method in Figure 6 by using
quadratic and cubic spline curves. The maximum, minimum,
and average values of the RMSE fitting error are 3.1729x 107,
6.2547 x 107, and 3.5842 x 107°, respectively. These error
values confirm the good performance of our approach for
a 3D real-world automotive part comprised of several (both
open and closed) spline curves of different degrees.

6. Conclusions and Future Work

In this paper we introduce a new bioinspired method for
computing a spline curve that approximates a given set
of data points. This task involves many different variables
which are interrelated with each other in a nonlinear way,
leading to a continuous nonlinear optimization problem. Our
approach solves this problem by combining two different
procedures for the knots and the data parameters. For the
former, an indirect approach that precomputes the knots
instead of optimizing them is applied. This strategy leaves the
most significant part of the optimization effort to the data
parameterization. In our scheme, this task is addressed by
a powerful bioinspired metaheuristic technique well suited
for difficult continuous optimization problems, the firefly
algorithm. Then, the knot vector is refined by using De Boor’s
method, thus yielding a better approximation to the optimal
knot vector. The combination of the indirect approach and the
firefly algorithm converts the original nonlinear continuous
optimization problem into a convex optimization problem,
solved by SVD. The proposed method has been applied to
some illustrative real-world examples from the CAD/CAM
field involving 2D and 3D open and closed curves. Our exper-
imental results show that the proposed scheme can solve
the original continuous nonlinear optimization problem very
efficiently.

The Scientific World Journal

FIGURE 6: Two different views of a 3D CAD/CAM workpiece
comprised of 1610 curves (courtesy of Candemat).

Regarding the future work, this method can be improved
in several ways. As mentioned in Section5, the indirect
approach used in this paper implies that the knot vector is
generally very good but not optimal, opening the door for
further improvement. We think that a direct approach could
lead to better results for the knot vector and, hence, for the
overall method. Another interesting field of research is the
use of some powerful modifications of the firefly algorithm
which have been reported to return better results [63] or
extend the capabilities of the standard version for continuous
multiobjective optimization [64]. Also, the extension of this
approach to other recently described bioinspired methods,
such as the cuckoo search [65, 66] or the bat algorithm [67-
69], might lead to further improvement of our results. They
are all part of our plans for future work in the field.
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