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Abstract: Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles
in plants’ sugar transport, growth, and development, and possess an important potential to
enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance.
However, the evolutionary dynamics of this important gene family in Gramineae crops are still not
well-documented and functional differentiation of rice STP genes remain unclear. To address this gap,
we conducted a comparative genomic study of STP genes in seven representative Gramineae crops,
which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb),
Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP
genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV
showed an observable number expansion compared to Clade II. Our results of identified duplication
events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication
(WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some
Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion
mechanisms of the STP gene family among the tested species were different. Further selective force
studies revealed that the STP gene family in Gramineae crops was under purifying selective forces
and different clades and orthologous groups with different selective forces. Furthermore, expression
analysis showed that rice STP genes play important roles not only in flower organs development but
also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection,
and wounding. The current study highlighted the expansion and evolutionary patterns of the STP
gene family in Gramineae genomes and provided some important messages for the future functional
analysis of Gramineae crop STP genes.

Keywords: sugar transporter proteins (STPs); gramineae crops; comparative analysis; evolutionary
patterns; abiotic stress; wounding; Oryza sativa (rice); gene duplication

1. Introduction

Sugar (e.g., monosaccharides, sucrose, polyols, and oligosaccharides) is important for a broad
range of plant growth, development, and stress responses as energy sources, carbohydrate substrates,
signal molecules, and the main elements for cellular compounds [1–4]. A variety of transporters
have been evolved by plants for the transport of sugar from source (leaves) to sink tissues (e.g., roots,
seeds, and flowers) [4–7], including sugars that will eventually be exported transporters (SWEETs),
sucrose transporters (SUTs), and monosaccharide transporters (MSTs) [8,9]. These transporters are

Cells 2019, 8, 560; doi:10.3390/cells8060560 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0002-6066-0508
http://dx.doi.org/10.3390/cells8060560
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/8/6/560?type=check_update&version=2


Cells 2019, 8, 560 2 of 14

responsible for the loading and unloading of various polysaccharides and monosaccharides. These also
contribute to carbon partitioning, signal transduction, crop yield, stress responses, and environmental
adaption [7,10,11].

Sugar transporter proteins (STPs), which include one family of MSTs superfamily, are integral
membrane proteins possessing 12 transmembrane domains and are regarded as H+/sugar symporters
located on plasma membranes [3,4,12]. So far, STPs have been identified and well characterized in
numerous plants, including Arabidopsis [13], Oryza sativa [4,14], Vitis vinifera [15], Solanum lycopersicum [16],
Manihot esculenta [11], and Brassica oleracea var. capitata L. [5]. Most reported STPs exhibit a broad
spectrum of absorption characteristics of substrates including glucose, pentose, xylose, ribose, galactose,
fructose, and mannose [13,17,18]. For example, AtSIP1, AtSIP2, AtSIP3, AtSIP4, AtSIP6, and AtSIP11
transport of mannose, glucose, xylose, and galactose have different affinities [12,19]. Likewise, OsSTP4
and OsSTP6 are able to transport glucose, fructose, mannose, and galactose [20,21]. However, a few STPs
show substrate specificity in sugar transport. For example, AtSTP9 and AtSTP14 specifically transport
glucose and galactose, separately [22,23]. In addition, cumulative previous reports have demonstrated
that STP genes have different expression patterns in diverse tissues/organs or under diverse stresses
and they significantly impact plant development and stress tolerance [11,18]. For instance, AtSTP1
has relatively high expression level in germinating seeds, guard cells, and young seedlings [24].
AtSTP2, AtSTP6, AtSTP9, and AtSTP11 show a pollen-specific expression pattern [13], whereas
AtSTP4 displays the highest expression level in roots [25]. Similarly, OsSTP13 is also highly expressed
in roots and responds to hormone treatments [4]. OsSTP27 has the highest expression level in
shoots and displays significant up-regulation under three sugar treatments (e.g., sucrose, glucose,
and fructose) [24]. OsSTP3 can be detected in leaf blades and leaf sheaths and showed a high level
in calli and roots [14]. Additionally, several STP genes (OsSTP4, OsSTP11, OsSTP19, and OsSTP28)
reportedly responded to salt, osmotic, and drought stresses [4]. Furthermore, some STP genes are
associated with various environmental stresses, such as wounding [25,26], pathogen attack [27],
and nematode infection [28]. These findings stressed that STPs are of great significance in plants’ sugar
transport, growth, development, and stress tolerances.

Many Gramineae crops (e.g., maize, rice, barley, millet, and sorghum) have high economic values,
high-quality plant genomes, and well-characterized phylogeny [29]. In addition, Gramineae is an
exceptional model system for the study of short-term evolutionary dynamics of one gene family
and its consequences [30]. However, evolutionary dynamics of the STP gene family are poorly
documented in the important Gramineae crops to date. Thus, a systematic comparative genetic analysis
of the STP gene family in seven representative Gramineae crops, including Brachypodium distachyon,
Hordeum vulgare, Setaria italica, Sorghum bicolor, Zea mays, Oryza rufipogon, and Oryza sativa ssp. japonica,
was conducted including the phylogenetic relationship, chromosomal location, gene structure, protein
motifs, orthologous groups, duplication events, and selective forces. Additionally, a comprehensive
gene expression analysis (in the flower organ development process, under various abiotic stresses,
under blast infection, and under wounding) was performed in rice to characterize the functional
differentiation of the STP gene family. This study explored the expansion and evolutionary patterns of
the STP gene family in seven representative Gramineae crops and provided preliminary insights into
the STP genes’ functions.

2. Materials and Methods

2.1. Plant Materials

Rice cultivar ′9311′ (Oryza sativa ssp. indica) seedlings were grown in a Wuhan University
greenhouse with a 16/8-h light/dark photoperiod at 26 ◦C, with 60% relative humidity. In the
greenhouse, seeds after 2 days of germination in water at 37 ◦C were grown in containers with sponges
as supporting materials in the Yoshida solution for further growth [4].
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2.2. Plant Treatments

Rice seedlings of different ages grown in greenhouses were used for cold, high-temperature,
submergence, wound, and rice blast treatment. For heat and cold treatments, the temperatures for
12-day-old seedlings were changed to 40 ◦C and 4 ◦C, respectively, and then sampled (leaves) at 0, 1, 3,
6, and 12 h. As to submergence (Sub) treatment, 12-day-old seedlings were placed in water, with a
depth of 5 cm from leaf top to water surface, and sampled (leaves) at 0, 12, 24, 48, and 72 h. For wound
treatment, the daily photoperiodic cycle of 9-day-old seedlings was changed to a 24-h light condition.
Then, 12-day-old seedlings were cut off nearly one third of leaf from the top, and sampled (leaves) at
0, 1/4, 1/2, 1, 3, 6, 12, and 24 h. As to rice blast treatment, the daily photoperiodic cycle of 9-day-old
seedlings was changed to a 24-h dark condition. Next, 12-day-old seedlings were sprayed with 70 mL
spore suspension (about 10 5 conidia mL −1), and sampled (leaves) at 0, 1/4, 1/2, 1, 3, 6, 12, 24, and 48 h.
During the sampling time, ddH2O was sprayed to keep the humidity of the treated seedlings.

Fourteen tissue samples were collected from ′9311′ rice plants grown in an experimental field
with a nature environment during the summer in Wuhan city (29◦58′20”N, 113◦53′29”E) for tissue
specific expression analysis, including Pan10/20 (panicles harvested before heading at lengths of
10/20 cm), SC1/2 (seed coat, 3/15 days after flowering), An (anther, 1–3 days before flowering), SO
(stigma and ovary, 1–3 days before flowering), ImSe (immature endosperm, 15 days after flowering),
and Car1/3/5/7/10/15/20 (caryopses, 1/3/5/7/10/15/20 days after flowering) [31].

In this study, three biological replicates were produced for every treatment. Each replicate was
collected from over 12 seedlings and pooled together. All samples were triturated immediately with
liquid nitrogen, and stored at 80 ◦C for further use [4,31].

2.3. Identification and Phylogenetic Analysis of STP Genes

The protein and cDNA sequences of seven representative Gramineae crops, including B. distachyon
(v3.0), H. vulgare (IBSC_v2), S. italica (v2.0), S. bicolor (NCBIv3), Z. mays (B73_RefGen_v4), as well as
O. sativa ssp. japonica (MSU 7.0), were downloaded from Ensembl Plants release 41 (http://plants.ensembl.
org/index.html) and TIGR Database (http://rice.plantbiology.msu.edu), respectively. The HMM (Hidden
Markov Model) profile of the Sugar_tr (PF00083) was obtained from Pfam (http://pfam.xfam.org/).
All STP proteins were separately searched by HMMER 3.2.1 (with default parameters) and BLASTP
(E-value of e-5) methods [4]. The candidate STP protein sequences with the length <400 amino acids
were excluded for further analysis because the length of the complete Sugar_tr domain is greater
than 400. Subsequently, all remaining candidate sequences were checked for the highly conserved
Sugar_tr domain and the MFS_STP domain using SMART (http://smart.embl-heidelberg.de/), Pfam
(http://pfam.xfam.org/search/sequence), and Batch CD-Search (https://www.ncbi.nlm.nih.gov/Structure/

bwrpsb/bwrpsb.cgi) [4,32]. The STP genes information about chromosomal locations was extracted
from all tested species’ GFF3 files [4,32].

All identified STP proteins from these seven representative Gramineae crops were aligned by
ClustalW [32] and a phylogeny tree was generated in MEGA 6.0 using the neighbor-joining (NJ)
method with 1000 bootstrap replicates [4,32]. Names of putative STP genes were assigned based on
chromosomal order in each genome in accordance with the previous rice STPs study [4,14].

2.4. Gene Duplication Events, Orthologous Groups’ Analysis, Gene Structure, and Conserved Motifs

Various types of gene duplication events of the STP gene family were identified by the
’duplicate_gene_classifier’ script in MCScanX with an E-value of 1 × e-5 in BlastP search [32].
The synonymous (Ks)/nonsynonymous (Ka) substitution (Ka/Ks) rates were analyzed using DnaSP 5.0
(http://www.ub.edu/dnasp/) for selective force analysis of a duplicate gene pair [33]. Moreover,
the divergence time of all duplicate pairs was estimated by T = Ks/(2 × 9.1 × 10−9) × 10−6 million years
ago (Mya) [4,32].

http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
http://rice.plantbiology.msu.edu
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
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https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
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First, an all-vs-all BlastP result was obtained by diamond software with parameters: E value 1× e−3

(https://ab.inf.uni-tuebingen.de/software/) as the input file for OrthoFinder v2.0 software (University of
Oxford, Oxford, UK). Then, orthologous groups were analyzed according to the previously published
paper [34]. The phylogenetic tree of all tested species was rebuilt based on the result of orthologous
groups using STAG and STRIDE algorithms in OrthoFinder software [34]. Additionally, the selective
forces on orthologous groups were evaluated by Tajima’s D values and Tajima’s D of each orthologous
group was calculated by DnaSP 5.0 [33].

Exon/intron site and length data were extracted from seven respective genome annotation
GFF files. The conserved motifs of all STP proteins were analyzed by the MEME program (http:
//meme-suite.org/tools/meme) with parameters: the maximum number of 20 motifs with motif length
between 6 wide and 300 wide amino acids. Then, TBtools was used to visualize the phylogenetic tree,
gene structure, and conserved motifs of the STP gene family [35].

2.5. Quantitative Real-Time PCR (qRT-PCR)

All RNAs were extracted by the TRIzol Ragent (Invitrogen, Beijing, China) and reverse
transcriptions of all RNAs were performed using HiScript III 1st Strand cDNA Synthesis Kit (Vazyme,
Shanghai, China), according to their instruction manuals. The qRT-PCR reaction (10 µL) was formulated
using the 2X SYBR Green qPCR Master Mix (US Everbright®Inc., Suzhou, China). Primers of rice
19 STP genes were designed by Primer 5.0 and displayed in Table S1. All qRT-PCRs were carried out
on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The actin gene
was used as an internal control [32]. Three biological replicates (from three independent RNA samples)
of each treated point were used for qRT-PCR. For each biological replicate, three technical replicates
were used. The average threshold cycle (Ct) from three biological replicates was used to calculate the
gene expression fold change by the 2−∆∆CT method [4,32].

3. Results

3.1. Identification and Comparative Phylogenetic of STP Genes in Seven Representative Gramineae Crops

A total of 27, 26, 28, 26, 25, 23, and 22 STP genes were identified in H. vulgare (Hv), B. distachyon
(Bd), O. sativa ssp. japonica (Os), O. rufipogon (Or), S. italica (Si), S. bicolor (Sb), and Z. mays (Zm),
respectively. As shown in Figures 1 and 2, Hv, Bd, Os, and Or have more STP genes than Si, Sb, and Zm.
We speculated the number of differences of STP genes in these species as a result of gene expansion
of different clades among these species. Thus, a phylogenetic analysis and clade classifications were
conducted. We found that all STP proteins were clustered into four clades, which include Clade I,
Clade II, Clade III, and Clade IV. The Clade I, Clade III, and Clade IV showed a clear number expansion
compared to Clade II (Figure 2). Clade III and Clade IV vary greatly among these tested species, while
Clade I and Clade II showed more STP gene copies in Hv, Bd, Os, and Or than Si, Sb, and Zm (Figure 2).

https://ab.inf.uni-tuebingen.de/software/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
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OG1. The different species are displayed by different shaped markers. Proteins * mean unassigned 
STP proteins. 

 
Figure 2. The STP gene numbers and Tajima’s values of four clades among seven species, including 
H. vulgare, B. distachyon, O. sativa ssp. japonica, O. rufipogon, S. italica, S. bicolor, and Z. mays. 

3.2. Homologous Relationship, Gene Structure, and Selective Forces 

Table 1. Ka/Ks values and the divergence time of duplicate gene pairs in seven tested species. 

Seq_1 Seq_2 Ka/Ks Duplication Type Date (MY) Purifying Selection 
BdSTP21 BdSTP22 0.4413 Tandem duplication 25.29 YES 
BdSTP7 BdSTP12 0.1415 WGD or segmental duplication 60.90 YES 
BdSTP13 BdSTP21 0.6124 WGD or segmental duplication 30.94 YES 
OrSTP1 OrSTP2 0.5062 Tandem duplication 6.58 YES 
OrSTP8 OrSTP9 0.6519 Tandem duplication 28.34 YES 
OrSTP9 OrSTP10 0.6026 Tandem duplication 20.73 YES 
OrSTP10 OrSTP11 0.7493 Tandem duplication 25.73 YES 
OrSTP4 OrSTP10 0.6994 WGD or segmental duplication 31.39 YES 
OsSTP8 OsSTP7 0.5424 Tandem duplication 6.24 YES 

Figure 1. An NJ phylogeny tree of STP protein sequences from H. vulgare, B. distachyon, O. sativa ssp.
japonica, O. rufipogon, S. italica, S. bicolor, and Z. mays. Different colors of branches represent different
clades. The numbers in outside circles represent different orthologous groups (OGs), such 1 means
OG1. The different species are displayed by different shaped markers. Proteins * mean unassigned
STP proteins.
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Figure 2. The STP gene numbers and Tajima’s values of four clades among seven species, including
H. vulgare, B. distachyon, O. sativa ssp. japonica, O. rufipogon, S. italica, S. bicolor, and Z. mays.

3.2. Homologous Relationship, Gene Structure, and Selective Forces

To understand the expansion mechanism of paralogues in these species, we investigated gene
locations and duplication modes within each species via MCScanX. The identified STP genes among
these tested species were unevenly distributed on the chromosomes (Chrs). Only the ZmSTP22 (gene
ID: Zm00001d000183_T001) could not be mapped to any Chr conclusively (Figure 3 and Table S2).
In total, 29 duplicate gene pairs were identified containing two duplicate types: whole genome
duplication (WGD)/segmental duplication and tandem duplication in these seven species (Table 1 and
Figure 3). Further studies displayed that the numbers and types vary greatly among these six species
(Table 1 and Figure 3), which indicates that gene expansion mechanisms of these tested species are
different. For example, no duplicate gene pair was found in Hv, whereas nine, five, five, four, three,
and three duplicate gene pairs were detected in Si, Or, Os, Zm, Sb, and Bd (Table 1 and Figure 3).
Numbers and types of duplicate gene pairs were the same between Os and Or, which supported that
wild rice (Or) is the ancestor of cultivated rice (Os) [36]. In addition, the number of WGD/segmental
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duplication was more than that of tandem duplication in Bd and Zm, while the number of tandem
duplication was more than that of WGD/segmental duplication in Or, Os, Sb, and Si. Divergence time
of all gene duplicate pairs ranged from 5.57 to 60.90 Mya and varied greatly among these tested species.
For example, divergence time of Bd duplicate gene pairs were more than 25 Mya, that of Or and Os
ranged from 5 to 31 Mya, that of Sb were more than 23 Mya, that of Si ranged from 15 to 50 Mya,
and that of Zm was more than 29 Mya. However, Ka/Ks values of all identified duplicate pairs were
less than 1.0 (Table 2). These results suggested that multiple duplication events play essential roles in
the gene expansion of Gramineae crop genomes during the long-term evolutionary process and the
main duplication mode are different between these tested species. However, all duplicate genes are
under purifying selective forces (all Ka/Ks values of all identified duplicate pairs <1.0).Cells 2019, 8, x FOR PEER REVIEW 13 of 14 
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and Z. mays (G). The blue lines represent tandem duplication and red lines mean whole genome 
duplication (WGD)/segmental duplication events. A high-resolution version of Figure 3 is provided 
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We found that the number of genes in each OG is not identical to each other. For instance, OG1 
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Figure 3. The chromosome locations and duplication events of STP genes in seven species, including
H. vulgare (A), B. distachyon (B), O. sativa ssp. japonica (C), O. rufipogon (D), S. italica (E), S. bicolor (F),
and Z. mays (G). The blue lines represent tandem duplication and red lines mean whole genome
duplication (WGD)/segmental duplication events. A high-resolution version of Figure 3 is provided in
Figure S1.

Additionally, to understand the evolutionary pattern of STP genes in Gramineae crops,
the orthologous groups (OGs) were identified by OrthoFinder software. A total of 174 STP genes
were assigned into 19 OGs except for three unassigned STP genes (Figure 1, Table 2, and Tables S3
and S4). We found that the number of genes in each OG is not identical to each other. For instance,
OG1 contained 29 genes, while OG16 and OG17 had only four and two genes, respectively. Of these
OGs, these seven tested species shared 12 OGs (OG1–OG12). Three single-copy OGs were found,
which include OG10, OG11, and OG12. OG13–OG17 only existed in some species. When taking
into account these results, we concluded that unequal loss or expansion of most OGs happened
during the evolutionary process, but a few OGs were very conservative (e.g., OG10, OG11, and OG12).
Additionally, all Tajima’s D values of OGs were less than 0, which means the STP gene family was
under strong purifying selection (Table 2). We also calculated Tajima’s D values for four clades using
the same methods and found four Tajima’s D values were less than 0. These results indicated that
the STP gene family in these tested species was under strong purifying selection. Next, conserved
motifs analysis of clades and OGs showed that a total of 20 conserved motifs were found and most
STP proteins had similar conserved motifs (Figure S2B), which indicates the STP domain was strictly
conserved in plants. However, we noticed that gene structures of four clades differed greatly, even in
one OG (Figure S2C), which implies STP genes might have been differentiated.
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Table 1. Ka/Ks values and the divergence time of duplicate gene pairs in seven tested species.

Seq_1 Seq_2 Ka/Ks Duplication Type Date (MY) Purifying Selection

BdSTP21 BdSTP22 0.4413 Tandem duplication 25.29 YES
BdSTP7 BdSTP12 0.1415 WGD or segmental duplication 60.90 YES

BdSTP13 BdSTP21 0.6124 WGD or segmental duplication 30.94 YES
OrSTP1 OrSTP2 0.5062 Tandem duplication 6.58 YES
OrSTP8 OrSTP9 0.6519 Tandem duplication 28.34 YES
OrSTP9 OrSTP10 0.6026 Tandem duplication 20.73 YES

OrSTP10 OrSTP11 0.7493 Tandem duplication 25.73 YES
OrSTP4 OrSTP10 0.6994 WGD or segmental duplication 31.39 YES
OsSTP8 OsSTP7 0.5424 Tandem duplication 6.24 YES

OsSTP11 OsSTP12 0.3240 Tandem duplication 5.57 YES
OsSTP14 OsSTP1 0.5108 Tandem duplication 21.25 YES
OsSTP1 OsSTP15 0.7193 Tandem duplication 23.42 YES

OsSTP10 OsSTP18 0.5693 WGD or segmental duplication 31.75 YES
SbSTP17 SbSTP18 0.4488 Tandem duplication 23.42 YES
SbSTP18 SbSTP19 0.7516 Tandem duplication 25.57 YES
SbSTP11 SbSTP16 0.6396 WGD or segmental duplication 30.31 YES
SiSTP22 SiSTP23 0.2625 Tandem duplication 26.71 YES
SiSTP16 SiSTP17 0.5320 Tandem duplication 20.80 YES
SiSTP17 SiSTP18 0.4016 Tandem duplication 23.18 YES
SiSTP18 SiSTP19 0.6358 Tandem duplication 28.01 YES
SiSTP2 SiSTP3 0.4998 Tandem duplication 20.83 YES
SiSTP3 SiSTP4 0.3743 Tandem duplication 15.09 YES
SiSTP2 SiSTP15 0.6225 WGD or segmental duplication 30.39 YES
SiSTP4 SiSTP18 0.5679 WGD or segmental duplication 33.62 YES
SiSTP22 SiSTP25 0.1653 WGD or segmental duplication 50.11 YES

ZmSTP20 ZmSTP21 0.5103 Tandem duplication 35.43 YES
ZmSTP20 ZmSTP13 0.5835 WGD or segmental duplication 34.12 YES
ZmSTP5 ZmSTP13 0.5345 WGD or segmental duplication 35.53 YES
ZmSTP11 ZmSTP13 0.3853 WGD or segmental duplication 29.68 YES

Note: WGD mean whole genome duplication. MY mean million years ago.

Table 2. Numbers and Tajima’s D values of all orthologous groups (OGs) among seven tested species.

Bd Hv Or Os Sb Si Zm Total Tajima’s D
OG1 6 4 4 4 4 4 3 29 −0.6892
OG2 2 4 3 3 2 1 2 17 −0.49247
OG3 2 1 2 2 4 4 2 17 −0.57229
OG4 2 2 2 2 2 3 2 15 −0.56846
OG5 2 1 1 3 1 3 2 13 −0.75888
OG6 1 1 2 2 1 1 2 10 −0.20414
OG7 2 2 1 2 1 1 1 10 −0.17804
OG8 2 2 1 1 1 1 1 9 −1.00743
OG9 1 2 1 1 1 2 1 9 −0.72613
OG10 1 1 1 1 1 1 1 7 −0.15393
OG11 1 1 1 1 1 1 1 7 −0.23779
OG12 1 1 1 1 1 1 1 7 −0.44667
OG13 1 1 1 0 0 1 2 6 −0.72003
OG14 1 1 1 1 1 0 1 6 −0.14611
OG15 1 1 1 1 1 1 0 6 −0.23085
OG16 0 0 1 2 1 0 0 4 −0.84257
OG17 0 0 1 1 0 0 0 2

Note: Different colors in table represent numbers from lower (green color) to higher (red color). Red OG means
single-copy OG among these seven species.
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3.3. Expression Profiling of Rice STP Genes in 14 Tissues

Expression analysis of one gene family can provide vital clues for functional differentiation [4,32].
We, thus, analyzed expression patterns of rice 19 STP genes during the flower organ development
process by qRT-PCR. In the present study, we found that rice STP genes showed diversified expression
patterns and most STP genes showed relatively higher expressions in some specific tissues (Figure 4).
For example, more than 50% of STP genes showed the predominant expressions in Car and SC of
different ages. OsSTP27 were highly expressed in Pan10 and P20, while OsSTP28 and OsSTP14 had
relatively high expression in Pan10 and Pan20, separately. In addition, OsSTP17 showed higher
expressions in An than other tissues. Our result also illustrated that most STP genes showed a relatively
low expression level in SO and ImSe relative to other tissues.
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Figure 4. Expression profiles of the rice STP genes in 14 different tissues by qRT-PCR. Pan10/20
(panicles harvested before heading at lengths of 10/20 cm), SC1/2 (seed coat, 3/15 days after flowering),
An (anther, 1 to 3 days before flowering), SO (stigma and ovary, 1 to 3 days before flowering), ImSe
(immature endosperm, 15 days after flowering), and Car1/3/5/7/10/15/20 (caryopses, 1/3/5/7/10/15/20
days after flowering) [31]. The color scale represents relative expression levels from the 2−∆∆CT method:
red indicates a high level and green represents a low level of transcript abundance.

3.4. Expression Changes of STP Genes in Rice Seedling under Cold, High Temperature, and Submergence Stress

Our result demonstrated that rice STP genes respond differently to submergence, cold temperature,
and high-temperature stress, which hints at functional differentiation of STP genes (Figure 5). In the
present result, more genes respond to submergence and high-temperature stress than cold stress
(Figure 5, Table S5). For example, OsSTP14, OsSTP28, OsSTP1, and OsSTP3 were up-regulated under
submergence stress, whereas OsSTP11, OsSTP8, OsSTP20, and OsSTP21 showed clear up-regulation
under high-temperature stress. It should be noted that OsSTP14 showed apparent up-regulation in
all tested time points of submergence and high-temperature stress, as well as two time points of cold
temperature stress.
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Figure 5. Expression changes of the rice seedling under cold stress, high-temperature stress,
and submergence stress by qRT-PCR. Sub0, Sub1, Sub3, Sub6, and Sub12 represent 0 h, 1 h, 3 h,
6 h, and 12 h after the submergence stress. C0, C1, C3, C6, and C12 mean 0 h, 1 h, 3 h, 6 h, and 12 h after
cold stress (4 ◦C). H0, H3, H6, and H12 represent 0 h, 1 h, 3 h, 6 h, and 12 h after high-temperature
stress (40 ◦C). The color scale represents fold changes (2−∆∆CT method): the red color indicates high
up-regulation and the green color represents low up-regulation.

3.5. Expression Changes of STP Genes in Rice under Blast Infection and Wounding Stress

In this study, most STP genes were down-regulated after rice blast infection. However, several
STP genes were up-regulated (Figure 6). For example, two STP genes (OsSTP8 and OsSTP16) showed
significant up-regulation during 0–1 h, while OsSTP3, OsSTP11, OsSTP14, OsSTP19, OsSTP1, OsSTP10,
OsSTP4, and OsSTP28 were up-regulated significantly at various time points during 1–48 h (Figure 6,
Table S5). Based on our knowledge, the functions of rice STP genes under wounding stress were
poorly documented to date. Our results showed that two STP genes (OsSTP11 and OsSTP16) had
up-regulation after wounding stress, especially OsSTP11 (Figure 7, Table S5). Moreover, OsSTP28,
OsSTP14, and OsSTP4 were up-regulated at various time points after wounding stress (Figure 7,
Table S5).
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Figure 7. Expression changes of the rice seedling after wounding. Wound-0Hr, Wound-0.25Hr,
Wound-0.5Hr, Wound-1Hr, Wound-3Hr, Wound-6Hr, Wound-12Hr, and Wound-24Hr mean 0, 0.25, 0.5,
1, 3, 6, 12, and 24 h after wounding. The color scale represents fold changes and is the same as Figure 6.

4. Discussion

The availability of various Gramineae crops’ genomes has provided great opportunity to explore
the short-term evolutionary dynamics of the STP gene family in Gramineae crops. In this study, 27,
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26, 28, 26, 25, 23, and 22 STP genes were identified in Hv, Bd, Os, Or, Si, Sb, and Zm, respectively.
We found no direct relevance between genome sizes and the number of STP genes. For example, there
were 26 STP genes in Bd (genome size: 355 Mbp), while there were 23 STP genes in Sb (genome size:
730 Mbp) (Figure 1). Z. mays has reportedly undergone one specific WGDs more than other Gramineae
plants [37]. However, we found that maize did not have more STP genes than other species. Instead,
maize had the fewest STP genes in the tested species in this study (only 22). We speculated that a large
number of gene losses occur after the gene duplication events. This speculation was supported by
OGs results in which the lesser gene number was found in Zm than other tested species among key
OGs, such as OG1 and OG2 (Table 2). Additionally, OG15, OG16, and OG17 were lost and 7 OGs
containing only one member were retained, which included OG7–OG12, and OG13 (Table 2). Earlier
studies reported that tandem, WGDs, segmental duplication events are the main driving forces for the
expansion of one gene family [11,32,38]. Our results of identified duplication events and divergence
time of duplicate gene pairs also indicated that tandem and WGDs/segmental duplication events play
essential roles in the gene expansion of some Gramineae crops (expect for Hv). Notably, of these tested
species, expansion mechanisms of the STP gene family were different. Furthermore, Hv had the most
STP genes relative to other tested species. However, no tandem, WGDs/segmental duplication events
were found. This result suggested that the expansion of the Hv STP gene family may result from other
duplication types, such as proximal, dispersed, and replicative transposition.

Our clade classifications supported previous classification results that STP genes can be divided
into four main clades [5,11]. We found most STP proteins had similar conserved motifs, while gene
structures of four clades were greatly different, even in one OG (Figure S2), which implies the function
of STP genes has been differentiated. Our gene expression profiling of STP genes also confirmed the
functional differentiation of STP genes due to various expression patterns. Moreover, Ka/Ks results of
all duplicate gene pairs and Tajima’s D values of all OGs or four clades both suggested that the STP
gene family in Gramineae crops was under purifying selective forces. In addition, we found that a
total of 17 OGs were identified. Further studies showed that OG1 contained 29 genes, while OG16
and OG17 had only four genes and two genes, respectively. These results indicated that different OGs
have occurred at different degrees of expansion and loss. For example, OG1 and OG2 contained many
duplication events, while OG16 and OG17 did not contain any duplication event. We hypothesized
that the current difference in gene numbers for all OGs may be the result of natural or artificial selection.
Beneficial genes to plants gained more copies, while redundant or pseudo-genes were lost in evolution.
This speculation needs further verification in future work.

Previous studies reported orthologous with the same expression patterns, gene structure,
and motifs [11,16,39]. We, thus, detected STP gene expression levels in multiple tissues and under
several stresses for preliminary insights into the functional analysis of rice STP genes and orthologous
in other tested species. In our expression result, STP genes have different expression patterns in
diverse tissues and some STP genes with tissue-specific expressions. These results were consistent
with previous findings on other species [11,13,18]. We found most STP genes showed the predominant
expressions in Car and SC of different ages, which indicates STP genes play essential roles in Car and
SC development. Previous studies reflected that STP genes play crucial roles in stresses and disease
responses [4,11,13,26]. For example, wounding induces AtSTP3 [26]. Our result showed several STP
genes with strong responses to cold, high temperature, and submergence stresses, which indicates that
STP genes are associated with these stresses. We noted that OsSTP14 could be one good candidate gene
for abiotic stress resistance breeding. In addition, OsSTP11 showed strong up-regulated responses to
wounding, but the actual mechanism needs to be further explored in the future.

5. Conclusions

In the present study, 27, 26, 28, 26, 25, 23, and 22 STP genes were identified in H. vulgare (Hv),
B. distachyon (Bd), O. sativa ssp. japonica (Os), O. rufipogon (Or), S. italica (Si), S. bicolor (Sb), and Z. mays
(Zm), respectively. Then, a systemic analysis, including phylogenetic relationship, chromosomal
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location, gene structure, protein motifs, duplication events, orthologous groups (OGs), selective forces,
and expression patterns of rice STP genes were conducted. Our result revealed different expansion
mechanisms of the STP gene family among these tested species and reported differential selective
pressures of different clades and OGs. The expression result from qRT-PCR suggested that STP genes
play essential roles in plant development and stress responses. We believe that OsSTP14 and its
orthologous may be a good candidate gene for plant resistance breeding.

Supplementary Materials: Supplementary Materials are available online at http://www.mdpi.com/2073-4409/8/6/
560/s1, Table S1: Primers of rice STP genes were used for qRT-PCR in this study. Table S2: The detailed information
on rice monosaccharide STP genes in seven tested species. Table S3: Orthologous groups among these seven
species. Table S4: Statistical result of orthologous groups among these seven species. Table S5: Statistical analysis
(Fold change, P value, Benjamini-Hochberg corrected p-value) of Figures 5–7. Figure S1: A high resolution version
of Figure 3. Figure S2: The phylogenetic tree (A), conserved motif compositions (B), and exon/intron structure
of the STP genes in these seven species (C). A NJ phylogeny tree of STP protein sequences from H. vulgare,
B. distachyon, O. sativa ssp. japonica, O. rufipogon, S. italic, S. bicolor, and Z. mays. Different colors of branches
represent different clades. Different shaped markers indicated the different species. The numbers in blue boxes
means different OGs. The widths of the grey bars showed the relative lengths of genes and proteins. Yellow boxes
and grey lines displayed the exons and introns, respectively.
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