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Abstract

Nowadays, given the technological advance in CT imaging and increasing heterogeneity in

characteristics of CT scanners, a number of CT scanners with different manufacturers/tech-

nologies are often installed in a hospital centre and used by various departments. In this

phantom study, a comprehensive assessment of image quality of 5 scanners (from 3 manu-

facturers and with different models) for head CT imaging, as clinically used at a single hospi-

tal centre, was hence carried out. Helical and/or sequential acquisitions of the Catphan-504

phantom were performed, using the scanning protocols (CTDIvol range: 54.7–57.5 mGy)

employed by the staff of various Radiology/Neuroradiology departments of our institution for

routine head examinations. CT image quality for each scanner/acquisition protocol was

assessed through noise level, noise power spectrum (NPS), contrast-to-noise ratio (CNR),

modulation transfer function (MTF), low contrast detectability (LCD) and non-uniformity

index analyses. Noise values ranged from 3.5 HU to 5.7 HU across scanners/acquisition

protocols. NPS curves differed in terms of peak position (range: 0.21–0.30 mm-1). A sub-

stantial variation of CNR values with scanner/acquisition protocol was observed for different

contrast inserts. The coefficient of variation (standard deviation divided by mean value) of

CNR values across scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and

30% for teflon, delrin, LDPE, polystyrene and acrylic insert, respectively. An appreciable dif-

ference in MTF curves across scanners/acquisition protocols was revealed, with a coeffi-

cient of variation of f50%/f10% of MTF curves across scanners/acquisition protocols of 10.1%/

7.4%. A relevant difference in LCD performance of different scanners/acquisition protocols

was found. The range of contrast threshold for a typical object size of 3 mm was 3.7–5.8

HU. Moreover, appreciable differences in terms of NUI values (range: 4.1%-8.3%) were

found. The analysis of several quality indices showed a non-negligible variability in head CT

imaging capabilities across different scanners/acquisition protocols. This highlights the
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importance of a physical in-depth characterization of image quality for each CT scanner as

clinically used, in order to optimize CT imaging procedures.

1. Introduction

In recent years, the extraordinary technical advances in x-ray computed tomography (CT)

have largely increased its use in the clinical practice. Thus, CT has become a fundamental

imaging tool in several body as well as head applications, providing useful information for

diagnosis and patient care [1–3].

Given that CT imaging represents the largest source of population exposure to ionizing

radiation in industrialized countries [4, 5] and increased radiation dose may increase the risk

of cancer [6], it is important to minimize radiation dose (without compromising the diagnostic

potential) through an optimization and standardization of acquisition protocols [7–9].

Accordingly, various technical approaches (e.g. tube current modulation, automatic exposure

control, iterative reconstruction algorithms) to optimize CT acquisitions in various applica-

tions can be used [10–15]. Furthermore, some previous studies have described phantom-based

methods to optimize acquisition protocol for specific CT imaging techniques and applications,

exploiting various physical image quality indices [9, 16–21]. For instance, Zhang et al [9] have

developed a CT protocol optimization platform by combining task-based detectability calcula-

tions with a graphical user interface that demonstrates the trade-off between dose and image

quality. Their platform can be used to improve individual dose efficiency and acquisition pro-

tocol consistency across various patient sizes and CT scanners. Berta et al [19] have described

a method to objectively evaluate image quality when new clinical protocol performances must

be compared with a standard reference. This quantitative approach has been applied to the

images of a typical routine abdominal protocol, which were reconstructed with the standard

filtered back projection (FBP) and the Iterative Reconstruction in Image Space (IRIS) algo-

rithm. An adaptable and global approach for optimizing CT protocols, by evaluating the influ-

ence of acquisition parameters and iterative reconstruction algorithms, has been proposed and

implemented in a software program by Greffier et al [20]. Moreover, Noferini et al [21] have

proposed and validated a method that employs a Channelling Hotelling model Observer in a

CT protocol optimization program, with the aim at assuring that scanners are working at their

own best with regard to image quality and patient exposure.

Nonetheless, an objective and in-depth physical characterization of performance of CT

scanners [22–29], acquisition methods [30–35] and image reconstruction algorithms [36–41],

in terms of specific quantitative image quality indices, remains an essential step. Indeed, these

indices have the potential to serve as a basis for guiding and optimizing clinical protocols [42–

44]. In this regard, previous phantom studies have shown that CT image quality can vary sub-

stantially when acquisitions are performed on different scanners [45–48], even using similar

acquisition protocols [49–52]. Therefore, a careful assessment of image quality for each specific

CT imaging technique and application is recommended.

Given also time efficiency and cost considerations, head CT is a first line imaging examina-

tion for assessing neurological disorders [53–55]. In particular, head CT imaging is highly sen-

sitive to bleeding, and is an essential diagnostic modality to investigate osseous structures as

well as to detect calcifications. Moreover, it is usually preferred to magnetic resonance imaging

for its wide availability, rapid acquisition and high spatial resolution [56, 57]. In this regard, 5

CT scanners, with different technical characteristics, are currently installed at our hospital
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centre. It should be noted that radiologists and neuroradiologists by various departments of

our institution execute head CT examinations on these scanners by using different acquisition

protocols, with similar radiation dose values. Therefore, toward an optimization of CT imag-

ing procedures at our hospital centre, the aim of this phantom study was to comprehensively

assess whether and how head CT physical image quality varies with different scanners as clini-

cally used for routine examinations.

2. Materials and methods

2.1. Scanners and phantom acquisitions

Images of the Catphan-504 phantom (The Phantom Laboratory, NY, USA) were acquired on 5

CT scanners (one 128-slice, two 64-slice and two 16-slice CT scanners) from different manu-

facturers (Table 1). The phantom has a cylindrical shape with a diameter of 20 cm and it is

composed of four modules. In particular, the CTP486 and CTP404 modules of the phantom

were employed for CT acquisitions. The CTP486 module is a homogeneous water-equivalent

module, while the CTP404 module includes multiple inserts of different materials in a water-

equivalent background (Fig 1). Nominal CT Hounsfield units (HU) values of the inserts are

reported in Table 2.

Sequential and/or helical clinical CT head protocols, with different acquisition parameters

but similar radiation doses in terms of CTDIvol, were employed for acquisitions on CT scan-

ners as indicated in Table 3. CT images were reconstructed by using the conventional filtered

back-projection algorithm.

2.2. Physical image quality assessment

For each CT scanner/acquisition protocol, physical image quality was assessed through a num-

ber of indices which are strictly related to the main characteristics of images in terms of noise,

spatial resolution and contrast properties [59–64]. In particular, quantitative metrics of noise

level, noise power spectrum (NPS), contrast-to-noise ratio (CNR), modulation transfer func-

tion (MTF), low contrast detectability (LCD) and non-uniformity index (NUI) were

estimated.

For each image quality index and CT scanner/acquisition protocol, 5 repeated acquisitions

were performed. The estimated value and uncertainty of a quality index were obtained as the

mean value and standard deviation (SD) across repeated measurements, respectively.

Image analysis was performed by using ImageJ (Wayne Rasband, National Institute of

Health, USA), Origin (OriginLab Corporation, MA, USA) and Matlab (The MathWorks, Inc.,

MA, USA) software packages.

2.2.1. Noise level

Noise level was evaluated by computing the SD of HU values within a 4.5 cm diameter circular

region of interest (ROI), placed at the centre of the acquisition slab central image of the uni-

form CTP486 module.

Table 1. CT scanners enrolled in the study.

Scanner ID Manufacturer Model Number of slices

Toshiba-16 Toshiba Medical Systems, Japan Aquilion 16 16

GE-16RT GE Healthcare, USA LightSpeed RT16 16

GE-64VCT GE Healthcare, USA LightSpeed VCT 64

Siemens-64 Siemens Healthineers, Germany Sensation 64 64

GE-128 GE Healthcare, USA Discovery 750 HD 128

https://doi.org/10.1371/journal.pone.0245374.t001
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2.2.2. Noise power spectrum (NPS)

Texture properties of CT image noise were assessed by computing the NPS (i.e. the spatial fre-

quency distribution of noise) [65, 66]:

NPSðfx; fyÞ ¼
Dx � Dy
Nx � Ny

� < jFFTðROInoiseÞj
2
> ð1Þ

where fx/fy are the spatial frequencies along the main orthogonal directions, Δx/Δy are the

voxel sizes, Nx/Ny are the number of voxels for each direction, FFT is the two-dimensional

(2D) fast Fourier transform, ROInoise(x,y) is the local value of an "only-noise" ROI and<>

indicates the ensemble average (i.e. the average across measurements performed on a number

of ROIs). In particular, for each acquisition, an ensemble of 5 ROIs (64 pixels × 64 pixels) was

selected from the acquisition slab central image of the uniform CTP486 phantom module.

Given the radial symmetry of the 2D NPS, radial profiles along many directions were averaged

Fig 1. ROIs position for CNR evaluation in the CTP404 module of the Catphan-504 phantom. The depicted ROIs

refer to the LDPE contrast insert.

https://doi.org/10.1371/journal.pone.0245374.g001

Table 2. Nominal HU values of the Catphan-CTP404 module inserts [58].

Material HU range (reference values)

LDPE -121: -87

Polystyrene -65: -29

Acrylic 92: 137

Delrin 344: 387

Teflon 941: 1060

https://doi.org/10.1371/journal.pone.0245374.t002
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in order to obtain the one dimensional NPS curve. In particular, the selection of radial profiles

was carried out every 10˚ over 360˚, obtaining a total of 36 radial profiles.

In order to estimate peak position, NPS curves were fitted by using a specific peak function

(namely "InvsPoly") implemented in Origin:

f ðxÞ ¼ y0 þ
A

1þ A1 2
x� xc
w

� �2
þ A2 2

x� xc
w

� �4
þ A3 2

x� xc
w

� �6
ð2Þ

where xc is the peak position, A/A1/A2/A3 are coefficients related to the amplitude of the peak,

w is a parameter related to the width of the curve and y0 is an offset.

2.2.3. Contrast-to-noise ratio (CNR)

Images of different inserts (i.e. teflon, delrin, LDPE, polystyrene, acrylic) of the CTP404 phan-

tom module, whose nominal HU values are reported in Table 2 [60], were used to estimate

CNR. In particular, CNR was estimated as follows [67, 68]:

CNR ¼
jHUobj � HUbkgj

sbkg
ð3Þ

where HUobj and HUbkg are the mean of HU values in a circular ROI (diameter 9 mm) in the

considered insert and background region, respectively, while σbkg is the SD of CT numbers in

a background region close to the considered insert (Fig 1).

2.2.4. Modulation transfer function (MTF)

Spatial resolution was evaluated in the spatial frequency domain. The modulation transfer

function (MTF) was computed through the circular edge method (i.e. starting from edge

spread function measurements) as follows [65, 69]:

MTFðf Þ ¼
j
R

d
dx ESFðxÞ � e

� i2pfxdxj
R

d
dx ESFðxÞdx

ð4Þ

where f and ESF represent the spatial frequency and edge spread function, respectively. In par-

ticular, ESF was referred to the teflon insert of the CTP404 phantom module [58]. The spatial

frequencies corresponding to 50% (f50%) and 10% (f10%) of each MTF curve were estimated.

Table 3. Clinical head CT imaging protocols used for each scanner by the staff of various Radiology/Neuroradiology departments at the Pisa university hospital.

Scanner

ID

Scan

mode

Tube load

(mAs)

Tube voltage

(kVp)

Pitch

factor

Slice thickness

(mm)

S-FOV Collimation

(mm)

CTDIvol

(mGy)

Reconstruction

kernel

Toshiba-16 h 165 120 0.688 4 M 16 56.6 FC64

s 220 120 - 4 M 8 54.7 FC64

GE-16RT s 330 120 - 2.5 head 10 57 Standard

GE-

64VCT

s 320 120 - 5 head 20 57.5 Standard

Siemens-

64

s 380 120 - 6 head 18 55.7 H31S

GE-128 h 280 120 0.969 5 head 20 56.1 Standard

s 280 120 - 5 head 20 55.9 Standard

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t003
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2.2.5. Low contrast detectability (LCD)

A low-contrast detectability (LCD) analysis was performed on the homogeneous module of

the phantom (CTP486), using a statistical method [64, 70, 71] based on the Rose model of

threshold signal detectability [72–75]. Specifically, squared ROIs ranging from 2 × 2 pixels to

11 × 11 pixels (i.e. object sizes approximately ranging from 0.85 mm to 4.75 mm) were

employed in this analysis. A set of 900 ROIs (placed randomly and covering all phantom

image) were analysed for each ROI size and the contrast threshold (Ct) was evaluated, by

assuming a Gaussian distribution of the average of HU values within each ROI [64, 70, 71], as

follows:

CtðHUÞ ¼ 3:29 � D ð5Þ

where Δ is the standard deviation of the Gaussian distribution, with mean value μ. Accord-

ingly, a low contrast object of the same size as the ROIs can be revealed at a confidence level of

95% if its mean HU value differs more than 3.29 Δ from μ [76].

2.2.6. Non-uniformity index (NUI)

Variation of CT numbers within acquisition slab central image of the uniform CTP486 module

was assessed through the non-uniformity index (NUI). In particular, NUI was estimated by

adapting the method proposed by Li et al and suggested by the AAPM TG233 report for assess-

ing spatial non-uniformity of noise maps [38, 77]. Images of the entire phantom were divided

into M = 249 small ROIs of 7 mm × 7 mm size. Then, NUI index was calculated as:

NUIð%Þ ¼
100

I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � 1

XM

j¼1

ðIj � IÞ2
v
u
u
t ð6Þ

where Ij and<I> are the average of CT numbers within the j-th ROI and average of all Ij val-

ues, respectively.

3. Results

Noise results are reported in Table 4. An appreciable difference in noise values across different

scanners/acquisition protocols was found. Noise values ranged from 3.5 ± 0.1 HU (Siemens-64

scanner) to 5.7 ± 0.1 HU (GE-16RT scanner).

Fig 2 shows NPS curves for each scanner/acquisition protocol. NPS curves differed in terms

of peak position (Table 5), with Toshiba-16 (both axial and helical scan mode) (~ 0.22 mm-1)

Table 4. Noise (σ) values (mean ± standard deviation across five repeated measurements), for each CT scanner/

acquisition protocol.

Scanner ID Scan mode σ (HU)

Toshiba-16 h 4.2 ± 0.1

s 4.6 ± 0.2

GE-16RT s 5.7 ± 0.1

GE-64VCT s 3.9 ± 0.1

Siemens-64 s 3.5 ± 0.1

GE-128 h 4.6 ± 0.1

s 4.3 ± 0.1

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t004
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and Siemens-64 (~ 0.21 mm-1) scanners showing lower peak position with respect to the other

scanners (> 0.29 mm-1).

CNR results are reported in detail in Table 6. A substantial variation of CNR values with

scanner/acquisition protocol was observed for all inserts (teflon, delrin, LDPE, polystyrene,

acrylic). The coefficient of variation (standard deviation divided by mean value) of CNR values

Fig 2. Noise power spectrum (NPS) of images acquired using different CT scanners/acquisitions protocols. Panels A, B, C, D and E show the NPS

curves (mean ± standard deviation across five repeated measurements) for Toshiba-16, GE-16RT, GE-64VCT, Siemens-64 and GE-128 scanners,

respectively. In order to better compare the different NPS curves, panel F shows on the same graphic the NPS curves for all scanners/acquisition

protocols.

https://doi.org/10.1371/journal.pone.0245374.g002

Table 5. Peak position of NPS curves for each CT scanner/acquisition protocol.

Scanner ID Scan mode Peak position (mm-1)

Toshiba-16 h 0.22 ± 0.01

s 0.22 ± 0.01

GE-16RT s 0.29 ± 0.01

GE-64VCT s 0.29 ± 0.01

Siemens-64 s 0.21 ± 0.01

GE-128 h 0.30 ± 0.01

s 0.30 ± 0.01

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t005
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across different scanners/acquisition protocols was 18.3%, 31.4%, 34.2%, 30.4% and 30% for

teflon, delrin, LDPE, polystyrene and acrylic insert, respectively.

MTF results are shown in Fig 3 and Table 7. MTF curves varied appreciably across scan-

ners/acquisition protocols. Overall, GE-128, GE-64VCT and GE-16RT scanners were

Table 6. CNR values (mean ± standard deviation across five repeated measurements) of different inserts from the CTP404 phantom, for each CT scanner/acquisi-

tion protocol.

Scanner ID Scan mode Teflon Delrin LDPE Polystyrene Acrylic

Toshiba-16 h 167 ± 6 44 ± 3 43 ± 3 31 ± 1 5.5 ± 0.6

s 150 ± 20 38 ± 2 42 ± 4 28 ± 2 5.3 ± 0.5

GE-16RT s 140 ± 11 41 ± 2 35 ± 2 23 ± 2 4.7 ± 0.5

GE-64VCT s 209 ± 20 65 ± 8 54 ± 4 38 ± 4 7.4 ± 0.4

Siemens-64 s 233 ± 22 89 ± 6 73 ± 5 55 ± 2 10.6 ± 0.8

GE-128 h 200 ± 10 59 ± 3 31 ± 2 33 ± 1 6.2 ± 0.4

s 177 ± 12 64 ± 5 31 ± 3 30 ± 3 6.4 ± 0.5

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t006

Fig 3. Modulation transfer function (MTF) curves of images acquired using different CT scanners/acquisitions protocols. Panels A, B, C, D and E

show the MTF curves (mean ± standard deviation across five repeated measurements) for Toshiba-16, GE-16RT, GE-64VCT, Siemens-64 and GE-128

scanners, respectively. In order to better compare the different MTF curves, Panel F shows on the same graphic the MTF curves for all scanners/

acquisition protocols, with a zoomed in version for the 40%-60% range of MTF.

https://doi.org/10.1371/journal.pone.0245374.g003
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characterized by MTF curves with higher values with respect to the other scanners (Fig 3F).

Specifically, GE-128 scanner with sequential acquisition protocol showed the best performance

in terms of spatial resolution properties. The coefficient of variationof f50% and f10% across

scanners/acquisition protocols was 10.1% and 7.4%, respectively.

A relevant difference in LCD performance of different scanners/acquisition protocols was

found (Fig 4). For all object sizes, the Siemens-64 and GE-64VCT scanners showed lower con-

trast threshold values with respect to the other scanners. The contrast threshold for a typical

object size of 3 mm ranged from 3.7 HU (Siemens-64 scanner) to 5.8 HU (Toshiba-16 scanner,

sequential scan mode).

NUI results are reported in detail in Table 8. NUI values ranged from 4.1% (GE-128 scan-

ner, sequential scan mode) to 8.3% (Toshiba-16 scanner, sequential scan mode) across differ-

ent CT scanners/acquisition protocols.

Table 7. Spatial frequencies (mean ± standard deviation across five repeated measurements) corresponding to

50% (f50%) and 10% (f10%) of the MTF curves, for each CT scanner/acquisition protocol.

Scanner ID Scan mode f50% (mm-1) f10% (mm-1)

Toshiba-16 h 0.31 ± 0.01 0.66 ± 0.02

s 0.31 ± 0.01 0.66 ± 0.02

GE-16RT s 0.35 ± 0.01 0.65 ± 0.03

GE-64VCT s 0.35 ± 0.01 0.65 ± 0.02

Siemens-64 s 0.28 ± 0.02 0.63 ± 0.03

GE-128 h 0.34 ± 0.01 0.67 ± 0.02

s 0.38 ± 0.01 0.78 ± 0.02

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t007

Fig 4. Low-contrast detectability (LCD) curves of images acquired using different CT scanners/acquisition

protocols. Panels A, B, C, D and E show the LCD curves (mean ± standard deviation across five repeated

measurements) for Toshiba-16, GE-16RT, GE-64VCT, Siemens-64 and GE-128 scanners, respectively. In order to

better compare the different LCD curves, Panel F shows on the same graphic the LCD curves for all scanners/

acquisition protocols.

https://doi.org/10.1371/journal.pone.0245374.g004
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4. Discussion

Nowadays, the technological advance in CT imaging has brought increasing number of clinical

exams/applications, as well as increasing heterogeneity in characteristics/performance of CT

scanners. Therefore, a number of CT scanners with different models or by different manufac-

turers are often installed in a hospital centre and used by various departments. Previous phan-

tom studies, mainly focused on body applications, have shown that CT image quality can vary

substantially across scanners [45–48], even when similar acquisition protocols are employed

[49–52]. For instance, in a multicentre study, Racine et al [45] have compared the image qual-

ity of 68 scanners, in terms of only low contrast detectability, using local clinical acquisition

protocols for abdominal CT examinations. They have found an important difference in image

quality levels, associated with a variability in CTDIvol values, which increased with growing

phantom size. Kuo et al [47] have aimed at characterizing CT practices and performance of 16

CT scanners, in terms of noise and spatial resolution (i.e. MTF), in different centres for cystic

fibrosis. A large variety in CT protocols, image quality and radiation dose among the centres

was found. A task-based image quality assessment of 4 “older” (model released between 2003

and 2007) and 4 “newer” (model released between 2012 and 2014) CT scanners has been per-

formed by another study [49], using similar acquisition protocols with fixed CTDIvol. The

authors have revealed an appreciable difference in high contrast spatial resolution and low

contrast detectability across CT scanners. In the study by Zhang et al [50], both subjective and

objective methods were used to evaluate the high contrast spatial resolution capabilities of

three 64-slice CT scanners, using the same scanning parameters. The CT scanners exhibited

different performances, which resulted more relevant for the subjective than the objective

method for spatial resolution assessment. Solomon et al [52], using comparable acquisition

protocols, have carried out a quantitative comparison of noise texture properties (i.e. NPS

analysis) of two CT scanners, for a number of reconstruction filters. The peak frequency values

ranged from 0.39 mm-1 to 1.03 mm-1 for one scanner and from 0.43 mm-1 to 0.62 mm-1 for

the other.

To the best of our knowledge, this is the first phantom study which comprehensively

assessed physical image quality of 5 different scanners (from various manufacturers) for head

CT imaging at a single centre, considering the clinical acquisition protocols used by the staff of

various Radiology/Neuroradiology departments of our hospital centre for routine examina-

tions. Specifically, we performed an in-depth analysis of head CT image by using a number of

quality indices such as noise level, NPS, CNR, MTF, LCD and NUI. Indeed, noise is one of the

main factors affecting image quality, given that it can yield fluctuations in raw data and CT

numbers. Noise level is usually estimated as the standard deviation of CT numbers within a

Table 8. NUI values (mean value ± standard deviation across five repeated measurements) for each CT scanner/

acquisition protocol.

Scanner ID Scan mode NUI (%)

Toshiba-16 h 7.6 ± 0.2

s 8.3 ± 0.3

GE-16RT s 7.5 ± 0.3

GE-64VCT s 8.0 ± 0.2

Siemens-64 s 4.2 ± 0.1

GE-128 h 4.2 ± 0.2

s 4.1 ± 0.3

h = helical, s = sequential.

https://doi.org/10.1371/journal.pone.0245374.t008
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relatively small ROI. However, this approach does not consider any spatial relationship among

fluctuations of CT numbers within the image. We have hence included, in our study, the anal-

ysis of NPS, which is mathematically defined as the Fourier transform of the autocorrelation

function and provides information regarding the correlation of the fluctuations that occur at

different positions on the image [38, 65, 67, 76, 78]. NPS is strictly related to the image appear-

ance, i.e. image texture. Notably, different CT scanners/acquisition protocols can be character-

ized by different image textures, even at fixed noise level [66]. Moreover, noise can affect the

detectability of an object, which depends on its contrast, as well as on its size. Therefore, for

various contrast objects (teflon, delrin, LDPE, polystyrene, acrilic), we assessed CNR as the

ratio between contrast (i.e. difference in CT numbers between the object and background) and

noise [51, 67, 68, 79]. Furthermore, we included the LCD analysis, which allows to assess the

limiting detectable contrast threshold for a given object size [71, 80–83]. In addition, the spatial

resolution of CT scanner systems with varying spatial frequencies was evaluated by computing

MTF, defined as the Fourier transform of the point spread function of the system, which repre-

sents the modulation/loss of contrast as a function of the spatial frequency due to the limited

spatial resolution of the imaging system [61]. Therefore, MTF is a descriptive metric of the CT

system performance in detecting objects with decreasing sizes (related to the inverse of spatial

frequency of MTF). Moreover, in order to make our analysis more complete, we performed

also the NUI analysis. NUI assesses the non-uniformity degree of CT numbers within the

image, which can reflect the presence of potential artifacts (e.g. beam hardening).

In line with the findings of previous studies [45–52], we revealed appreciable differences in

all CT image quality indices across scanners/acquisitions protocols. Noise level (Table 4), peak

position of NPS curve (Table 5), f50% (Table 7), f10% (Table 7) and contrast threshold for a typi-

cal object size of 3 mm (Fig 4) differed across scanners/acquisition protocols up to 62.8%,

42.8%, 35.7%, 23.8% and 56.7%, respectively. Moreover, CNR values (Table 6) varied across

CT scanners/acquisition protocols, with this effect resulting lower for the high contrast teflon

insert as compared to the other contrast inserts. In particular, CNR values varied across CT

scanners/acquisitions protocols up to 66.4%, 134.2%, 135.5%, 139.1% and 125.5% for teflon,

delrin, LDPE, polystyrene and acrylic inserts, respectively. In addition, NUI values (Table 8)

differed across scanners/acquisition protocols more than 100%.

While the head CT imaging acquisition protocols for the 5 scanners at our hospital centre

were characterized by similar CTDIvol values (range: 54.7–57.5 mGy), there are some differ-

ences in various elements which include collimation (range: 8–20 mm), slice thickness (range:

2.5–6 mm) and reconstruction kernel (see Table 3). These differences can partly explain some

results of noise, CNR and spatial resolution analyses [42, 52, 84, 85]. For instance, the relatively

high slice thickness (6 mm) and soft reconstruction kernel (H31S) for acquisitions on the Sie-

mens-64 scanner can contribute to the lower/higher noise/CNR values as well as to the lower

spatial resolution properties with respect to the other scanners/acquisition protocols. Nonethe-

less, we cannot exclude a possible effect of scanner technology, as well as of some specific com-

ponents of scanner hardware such as detectors and x-ray tube.

In the 5 CT scanners (from different manufacturers) enrolled in this study, given also the

specific way of operating and needs of various Radiology/Neuroradiology departments of our

hospital centre, different acquisition protocols for routine head CT examinations are

employed, albeit they present similar CTDIvol values. We revealed a not negligible difference

in CT image quality across scanners/acquisition protocols. As future research, our results can

be useful to guide an optimization of head acquisition protocols for each CT scanner [42–44]

or to possibly homogenize CT image quality across scanners. Nonetheless, given that a “best”

or “worst” CT scanner/acquisition protocol for all image quality analyses was not found, the

characterization that we performed can be potentially employed to allow a more appropriate
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selection of a CT scanner/acquisition protocol for a specific clinical situation. In fact, different

clinical applications may require specific image quality properties. For instance, higher perfor-

mance of a CT scanner in terms of lower noise level are needed to optimize the detection of

small haemorrhagic lesions. On the other hand, higher spatial resolution properties can

improve metastatic brain lesions detection, while higher low contrast detectability properties

are essential for a better interpretation of images acquired after ischemic stroke [86].

5. Conclusions

In this phantom study, a comprehensive assessment of image quality of 5 scanners (from vari-

ous manufacturers and with different models) for head CT imaging, as clinically used at a sin-

gle hospital centre, was performed. While similar clinical acquisition protocols in terms of

dose value (i.e. CTDIvol) were employed, the analysis of several quality indices (including noise

level, NPS, CNR, MTF, LCD and NUI) has shown an appreciable and non-negligible variabil-

ity in head CT imaging capabilities across different scanners/acquisition protocols. This high-

lights the importance of a physical characterization of each CT scanner/acquisition protocol,

in order to optimize CT imaging procedures.
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