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The data presented in this paper are related to the research article
entitled “QM/MM modeling of the hydrolysis and transfructosy-
lation reactions of fructosyltransferase from Aspergillus japonicas,
an enzyme that produces prebiotic fructooligosaccharide” (Jiton-
nom et al., 2018) [1]. This paper presents the procedure and data
for characterizing the whole relative energy profiles of hydrolysis
and transglycosylation reactions whose elementary steps differ in
chemical composition. The data also reflects the choices of the QM
cluster model, the functional/basis set method and the equations
in determining the reaction energetics.

& 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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A procedure for characterization of potential energy profiles of hydrolysis and
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profiles.
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 Bangkok, Thailand

ata accessibility
 Data is available with this article.
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Value of the data

� Data of potential energy profiles and method can be valuable to further study focusing on similar
system and related properties.

� The data provide a theoretical understanding of the thermodynamics and kinetics of two com-
petitive processes, hydrolysis and transfructosylation, in a fructosyltransferase enzyme

� Characterization of energetics of hydrolysis and transglycosylation reactions might pave the way
for further studies on enzymes with transglycosylation activity.

� The procedure allows other researchers to predict the rate-limiting step of both hydrolysis and
transglycosylation reactions catalyzed by related enzymes.

� Method and basis set employed in this data article can guide the choice of method in the future
studies of relevant systems.
1. Data

The data described in this paper provides information for the calculated energy profiles of the
hydrolysis and transfructosylation reactions catalyzed by Aspergillus japonicas fructosyltransferase
(AjFT) and data obtained from the density functional theory (DFT) calculation on small cluster models.
Table 1 provides details of how the three cluster models (QM1, QM2 and QM3) were designed. Table 2
shows the data obtained from DFT calculations for all cluster models. Table 3 shows the relative
barriers for fructosylation (RC→IM1; ΔE1), hydrolysis (IM2→PC2; ΔE2), and transfructosylation
(IM3→PC3; ΔE3) steps computed with five different functionals (B3LYP, M06-2X, B97D, wB97XD,
MPWB1K) based on QM2 model. Tables 4 and 5 show the overall barriers and reaction energies for
hydrolysis and transfructosylation reactions computed with the same functionals and the QM2 model
using the procedure suggested by Bras et al. [3] and the developed equations in this data article
at have been used to estimate the potential energy profiles.

Description

Side-chain atoms of Asp60 (nucleophile), Asp191 (TS stabilizer),
Glu292 (acid/base), and substrate (the same QM region as QM/MM
calculations [1])
QM1 þ side chains of Phe118, Asp119, His144, Arg190, Glu318,
Ser329, His332, Tyr369, Tyr404, Glu405 and backbone of Ile143
(or see Fig. 2 in Ref. [1])
QM2 þ water moleculesc

(minimized) stationary structures of each reaction step (fructosylation: RC→IM1, hydrolysis:
n: IM3→PC3)
ave a total charge of –2.
ed to control the amount of the total atoms (242 atoms) for each reaction steps.



Table 2
Values of relative energies (ΔE, kcal/mol) for each species computed at the B3LYP/6–31þG(d)-CPCM (ε ¼ 80) level of theory for
different QM cluster models. Gas-phase QM energies are indicated in parenthesis. Electronic energies (E) with CPCM for QM3
model were also included.

Species QM1 QM2 QM3

ΔE ΔE E/a.u. ΔE

ES 0.0( 0.0) 0.0( 0.0) –6018.936815 0.0(0.0)
TS1 18.2(12.1) 19.0( 4.2) –6018.907247 18.6(7.4)
IM1 0.6(–0.8) 7.8(–5.0) –6018.921811 9.4(0.7)
IM2 0.0( 0.0) 0.0( 0.0) –5943.226656 0.0( 0.0)
TS2 19.4(13.0) 17.5(17.0) –5943.201925 15.5(15.1)
PC2 –12.3(–19.6) –14.5(–5.3) –5943.250060 –14.7(–7.5)
IM3 0.0( 0.0) 0.0( 0.0) –6094.608459 0.0( 0.0)
TS3 24.9(18.0) 22.6(17.9) –6094.571815 23.0(19.1)
PC3 1.1(–6.9) 7.4( 8.2) –6094.594087 9.0(11.2)

Table 3
Relative barrier (in kcal/mol) for fructosylation (RC→IM1; ΔE1), hydrolysis (IM2→PC2; ΔE2), and transfructosylation
(IM3→PC3; ΔE3) steps computed at the 6–311þG(2d,2p)-CPCM (ε ¼ 80) level of theory with different functional using QM2
model.

Functional ΔE1 ΔE2 ΔE3 ΔΔE ¼ ΔE3–ΔE2

B3LYP 17.5 17.6 23.0 5.4
M06-2X 21.1 22.6 27.5 4.9
B97D 16.7 14.8 17.7 2.9
wB97XD 19.5 20.1 22.7 2.6
MPWB1K 19.2 20.0 27.0 7.0

a Values (ΔE1, ΔE2, ΔE3) are the changes of electronic energies of TSs with respect to its initial state for each reaction steps, i.e.,
RC, IM2 and IM3 for fructosylation, hydrolysis, and transfructosylation, respectively. All energies were derived using the same
procedure as Bras et al. [3].

Table 4
Overall reaction barrier and reaction energiesa (in kcal/mol) for hydrolysis and transfructosylation reactions computed at the 6–
311þG(2d,2p)-CPCM (ε ¼ 80) level of theory with different functional using QM2 model and equations in Scheme 1.

Functional Hydrolysis Transfructosylation

activation
energies

reaction
energies

activation
energies

reaction
energies

B3LYP 49.0 18.4 32.3 17.5
M06-2X 65.4 32.8 30.4 11.2
B97D 64.0 36.7 21.9 10.2
wB97XD 28.3 –4.0 27.4 10.8
MPWB1K 56.1 24.8 30.9 14.2

a Values are calculated for the energies of TS2/TS3 and PC2/PC3 (shown in Fig. 1) with respect to the energy of RC (set to
zero).
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(Scheme 1). Figs. 1 and 2 show the whole relative energy profiles based on QM2 for both hydrolysis
and transfructosylation reactions computed with the five functionals based on Bras et al. [3] and
equations in Scheme 1.



Table 5
Overall reaction barrier and reaction energiesa (in kcal/mol) for hydrolysis and transfructosylation reactions computed at the 6–
311þG(2d,2p)-CPCM (ε ¼ 80) level of theory with different functional using QM2 model and the procedure described in Bras
et al.b.

Functional Hydrolysis Transfructosylation

ΔGdiss
c activation

energies
reaction
energies

activation
energies

reaction
energies

B3LYP 3.1 20.8 –9.8 26.2 11.5
M06-2X 3.3 24.9 –7.7 29.8 10.6
B97D 3.1 20.8 –6.5 23.6 12.0
wB97XD 3.1 24.9 –7.4 27.6 10.9
MPWB1K 3.3 22.5 –8.8 29.4 12.8

a Values are calculated for the energies of TS2/TS3 and PC2/PC3 (shown in Fig. 2) with respect to the energy of RC (set to
zero).

b Ref. [3]
c Dissociation free energy (ΔGdiss, kcal/mol) of a glucose molecule under two different environment (in enzyme and in

solvent) which is estimated from the difference between the two dielectric continuum solvents (ε ¼ 4 and ε ¼ 80).

Scheme 1. Equations that have been used to calculate the potential energy profiles of each elementary steps (fructosylation,
hydrolysis and transfructsylation) catalyzed by a fructosyltransferase enzyme.
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2. Experimental design, materials, and methods

2.1. QM/MM model

The X-ray crystal structures of the D191A mutant of AjFT in complex with sucrose and 1-kestose
(solved at 2.1−2.2 Å resolution, PDB ID: 3LDK and 3LDR) [4] were used as starting structures for



Fig. 1. Energy profiles for hydrolysis and transfructosylation reactions computed at the 6–311þG(2d,2p)-CPCM (ε ¼ 80) level
of theory with different functionals (B3LYP, B97D, MPWB1K, M06-2X and wB97XD) using QM2 model and equations in
Scheme 1. All energies are relative to the energy of RC.
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modeling the sucrose hydrolysis and transfructosylation steps. The wildtype was generated by
manually mutating Ala191 to Asp191. All crystallographic water molecules were kept and the missing
hydrogen atoms were added. PROPKA 3.1 (http://propka.ki.ku.dk) [5] was used to determine the
protonation states of titratable residues at pH 7. All aspartate and glutamate residues including Asp60
(nucleophile) and Asp191 (TS stabilizer) were deprotonated, while Asp119 and Glu292 (acid/base
catalyst) were protonated (see Ref. [1]). Histidine residues were assigned following their tautomeric
state assigned on the basis of the hydrogen bonding network by WHAT-IF (http://swift.cmbi.ru.nl) [6].
The link atom approach [7] was used to couple the QM and MM regions. The QM region is treated by
SCC-DFTB method [8] comprising the catalytic triad, Asp60, Asp191 and Glu292, and the substrate
(sucrose/1-kestose). Hydrogen link atoms [9] were placed between Cα and Cβ on Asp60 and Asp191
and between Cβ and Cγ on Glu292. The QM regions for each reaction consist of 67 (fructosylation), 46

http://propka.ki.ku.dk
http://swift.cmbi.ru.nl


Fig. 2. Energy profiles for hydrolysis and transfructosylation reactions computed at the 6–311þG(2d,2p)-CPCM (ε ¼ 80) level
of theory with different functionals (B3LYP, B97D, MPWB1K, M06-2X and wB97XD) using QM2 model and the procedure
described in Bras et al. [3]. All energies are relative to the energy of RC.
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(hydrolysis), and 88 atoms (transfructosylation); all of these have a net charge of –2, corresponding to
the negative charge of Asp60 and Asp191. All remaining atoms of the protein, carbohydrate, and
solvent were treated in the MM region with the CHARMM22 all-atom force field [10]. Two 900-ps
QM/MM MD simulations of the enzyme-substrate complex were carried out in an NVT ensemble at
300 K using the same protocols applied previously [11,12].
2.2. QM/MM reaction path calculations

The adiabatic mapping calculations [11] were performed to explore the reaction path for the whole
catalytic cycle in Scheme 1 and its reaction coordinate (r) definition is described in detail in Ref. [1].
During the adiabatic mapping its value was incremented by 0.1 Å each step, using a force constant of
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5000 kcal mol−1 Å−2 to drive the coordinate to each particular value. Energy minimizations at each r
value were performed to within an energy gradient value of 0.01 kcalmol−1 Å−1. The results of these
calculations will provide information regarding stationary structures along the QM/MM potential
energy profiles (see Ref. [1]).

2.3. Cluster model single-point energy calculations

Cluster models of the active site were developed for the purpose of computing the whole relative
energies for the hydrolysis and transfructosylation reactions at higher level of theory (see also Ref. [1]
for the limitation of SCC-DFTB). On the basis of the QM/MM stationary structures, three cluster
models (denoted as QM1, QM2 and QM3) were extracted from the enzyme active site. These small
cluster models of different size were designed to test the QM-size dependence on the reaction
energetics (see Table 1 for more details of the three models below). We also investigated the per-
formance of five density functionals, one “standard" functional not including dispersion (B3LYP) and
four of which have been constructed to account for dispersion (B97D, wB97XD, M06-2X and
MBK1MK), in producing the relative reaction energies with a larger basis set (6–311þG(2d,2p)).

In cluster model calculations, we performed single-point (SP) energy calculations on the cluster
models with the different functional/basis set methods. This SP energy calculation on a single
snapshot structure has previously shown in our previous paper [12] to be useful when one want to
validate the relative energetics resulting from the SCC-DFTB/MM method. In this data article, we have
tried two different procedures for estimating the relative energies when switching from IM1 species
to either IM2 or IM3 species: one is based on the procedure described in Bras et al. [3] and the other is
based on simplified equations in Scheme 1. In this paper, we developed a simplified equation for
estimating the overall reaction energies as shown in Scheme 1. In the procedure described in Bras
et al. [3], we estimated the free energy change of a glucose molecule when it was surrounded by two
dielectric continuum solvents (ε ¼ 4 and ε ¼ 80). Then, we performed the vibrational frequency
calculations (at the B3LYP/6–311þG(2d,2p) level of theory) on the (optimized) glucose with the CPCM
continuum model [13,14] and two dielectric constants (ε ¼ 4 and ε ¼ 80). A dielectric constant of
4 mimics a hydrophobic protein environment, whereas a value of 80 corresponds to an aqueous
environment. The dissociation free energy, ΔGdiss, corresponds to the difference between these two
values, which is estimated to be 3.1 kcal/mol. This ΔGdiss value was used to correct the relative
energies between the two half-reactions, generating the whole relative energy profile as depicted in
the related research article [1]. These calculations were performed using Gaussian 09 program [2].
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