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A B S T R A C T   

Background: Growing evidence suggests a complex bidirectional interaction between gut mi-
crobes, gut-derived microbial metabolites, and diabetic kidney disease (DKD), known as the “gut- 
kidney axis” theory. The present study aimed to characterize the role of microbial metabolites in 
DKD. 
Methods: Six-week-old db/db and littermate db/m mice were raised to 20 weeks old. The serum, 
urine, feces, liver, perinephric fat, and kidney were analyzed using liquid chromatography with 
tandem mass spectrometry (LC-MS/MS)-based metabolomic analyses. 
Results: The db/db mice showed obvious pathological changes and worse renal functions than db/ 
m mice. Indoleacetaldehyde (IAld) and 5-hydroxy-L-tryptophan (5-HTP) in kidney samples, and 
serotonin (5-HT) in fecal samples were increased in the db/db group. Phosphatidylcholine (PC), 
phosphatidate (PA), and 1-acylglycerophosphocholine (lysoPC) were decreased in liver and 
serum samples of the db/db group, while PC and lysoPC were decreased in kidney and peri-
nephric fat samples. Suggested metabolomic homeostasis was disrupted in DKD mice, especially 
glycerophospholipid and tryptophan metabolism, which are closely related to the gut 
microbiome. 
Conclusions: Our findings reveal the perturbation of gut microbial metabolism in db/db mice with 
DKD, which may be useful for building a bridge between the gut microbiota and the progression 
of DKD and provide a theoretical basis for the intestinal treatment of DKD.   

1. Introduction 

Diabetes mellitus (DM) affects approximately 10% of the global population [1], and its morbidity and mortality are mainly related 
to complications of multiple organ systems, such as the kidneys. Moreover, approximately 40% of the diabetes cases progress to 
diabetic nephropathy (DKD), which is the prime reason of chronic kidney disease (CKD) globally and leads to kidney failure [2]. 
Despite the tight control of blood sugar and lipids in patients with DKD, renal function often remains poor, partly due to the limited 
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cognition of the complex metabolic processes of DKD [3,4]. 
DKD is related to many metabolic pathways and complex metabolic pathology [5,6]. Intestinal bacteria produced by the host 

organism produce metabolites, such as short-chain fatty acids [7]and uremic toxins [8]. These metabolites act as a bridge between DKD 
and gut microbiota, and can more directly reveal the mutual effect between disease and gut microbiota. The gut microbiota is 
considered as a key regulator of DKD development in patients with DM [9,10]. Intestinal dysbiosis leads to intestinal mucosal barrier 
impairment and entry of gut microbial uremic toxins into the circulatory system, which leads to systemic microinflammation, insulin 
resistance, and kidney damage [11]. Gut microbiota and microbial metabolites, such as tryptophan and polyamine metabolism, can 
mediate renal fibrosis in CKD rats [12,13]. Increasing evidence indicates a complex correlation among intestinal microbiota, 
gut-derived microbial metabolites, and DKD [14–16]. However, there are few studies on the effects of specific metabolites from gut 
microbes and exogenous substances on DKD [17]. The pathophysiological correlation between gut-derived microbial metabolites and 
DKD is unclear. 

Metabolites are the intermediate or final products of biochemical reactions, respectively, which can match the disease phenotype 
and reflect the biological information of genetics, drugs, food, environment, gut microbes, and host [18]. Identifying the microbial 
metabolites derived from the gut of DKD and exploring their effects on multi-organ metabolism will help to unearth the precise 
pathogenesis of DKD and provide a theoretical basis for the intestinal treatment of DKD. In this study, we explore the possible 
mechanisms between the gut-serum-liver-perinephric fat-kidney metabolic axis and microbial metabolites in mice with DKD. 

2. Materials & methods 

2.1. Animals and research design 

Male 6-week-old C57BLKS/J-leprdb/leprdb mice (db/db mice, n = 15) and matched littermate C57BLKS/J-leprdb/leprm mice 
(db/m mice, n = 15, as normal controls) were purchased from the Nanjing University Experimental Animal Center. All mice were fed 
with 10 mL/kg sterile water for 12 weeks after adaptive feeding. All mice were maintained in SPF environment (22 ± 2 ◦C, 55 ± 10% 
humidity, with a 12-h light/dark cycle) and received food/water without restriction. From the 3rd to 14th week, we recorded body 
weights weekly, and fasting blood glucose (FBG) every four weeks. The 24-h urine samples, whole blood samples, feces, kidney tissues, 
perinephric fat, and liver tissues were obtained from each mouse at the completion of the animal experiment. The whole blood samples 
were allowed to stand for about 1 h at room temperature and centrifuged at 3000 rpm for 10 min. After centrifugation of the whole 
blood samples, the upper serum was collected. All left kidneys were taken for pathological section, and the right ones were taken for 
metabolomics analysis. Serum and other specimens were stored at − 80 ◦C for biochemical assays and untargeted metabolomic 
sequencing. The experiments in this study were carried out in line with the requirements of the Laboratory Animal Experimentation 
law, and were allowed by the Experimental Animal Ethics of Jinan University (approval No. 202069-04). A detailed flowchart of 
experiments is shown in Fig. 1a. 

2.2. Biochemical analysis and histopathological examination 

FBG levels were measured by a portable blood glucose meter (BAYER, Germany) and blood glucose test strips (BAYER, Germany). 
The levels of serum cystosin C (Cys-C) were detected using a mouse Cys-C ELISA Kit (E-EL-M3024, Elabscience, Wuhan, China). Urine 
creatinine (Ucr) and urine microalbumin were measured using Ucr enzyme-linked immunosorbent (ELISA) kit (MM-44289M1, 
Elabscience, Wuhan, China) and MAU/ALB ELISA kit (MM-0705M1, Elabscience, Wuhan, China), respectively. Blood urea nitrogen 
(BUN) levels were quantified using an automated biochemical analyzer (Hitachi High-Tecgnoologies, Japan). Student’s t-test was used 
for comparison between the two groups. The formalin-fixed tissue was embedded in paraffin and cut into 4 μm thick sections, and 
further used for hematoxylin-eosin (H&E), Masson, and Periodic Acid Schiff (PAS) staining. The average glomerular perimeter, 
glomerular area, and the percentage of the fibrotic area were detected using the ImageJ software. Histological analysis was operated by 
two independent investigators using a blinded method. 

2.3. Metabolomic analysis 

2.3.1. Sample preparation 
50 mg of each tissue was added in 1000 μL of internal standard mixture (methanol:acetonitrile:water in a 2:2:1 ratio). Next, the 

tissues were ground for 4 min at 35 Hz, and then sonicated thrice on ice bath for 5 min each. Each serum sample (50 μL) was added to 
internal standard mixture (acetonitrile:methanol in a 1:1 ratio, 200 μL). The serum was vortexed for 30 s and then sonicated on an ice 
bath for 10 min. After standing at − 40 ◦C for 1 h, all tissues and serum samples were cryogenically centrifuged for 15 min at 4 ◦C and 
12000r. The supernatants were collected for further testing. 

2.4. LC-MS/MS analysis 

The UHPLC system (Vanquish, Thermo Fisher Scientific) with UPLC BEH Amide (2.1 mm × 100 mm, 1.7 μm) combined with a Q- 
Exactive HFX mass spectrometer (Orbitrap MS, Thermo) was used for LC-MS/MS analysis. Mobile phase A was composed of 25 mmol/L 
ammonium acetate and 25 ammonia hydroxide in water, while mobile phase B was composed of acetonitrile. The detailed parameters 
of MS conditions can be retrieved from our published article [19]. 
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2.5. Data processing 

The MS data was changed into the mzXML format through the ProteoWizard software. Further raw data processing, such as peak 
detection, extraction, alignment, and integration, was performed using an in-house R package. The metabolites were annotated by the 
online database, namely Human Metabolome Database (HMDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and a sec-
ondary MS database (BiotreeDB V2.1) with 0.3 as the cut-off. The quality control results show that the sample quality, experimental 
method, and system stability were reliable and suitable for subsequent metabolomic analysis. For details, see Supplementary Materials 
and Methods and Figs. S1–S5. The relative intensity of each metabolite was normalized using the total ion current (TIC) of each 
metabolite. Metabolites with >50% missing values were removed from the data, and half the minimum value superseded the 
remaining null values. 

Fig. 1. Basic characteristics of db/m (n = 6) and db/db (n = 6) mice. (a) The workflow of the animal experiment. (b) Weight changes in mice during 
the intervention. (C) FBG levels of mice during the intervention. (d–g) The level of (d) BUN, (e) serum Cys-C, (f) UCr, and (g) urine microalbumin in 
the two groups. (h) The average glomerular perimeters and (i) glomerular area detected by H&E staining in the two groups. (j) The percentage of 
glomerular and (k) interstitial fibrosis detected by Masson staining in the two groups. (l) Representative renal tissue pathology (200×) of mice in 
each group (H&E staining, PAS staining, and Masson staining). *P < 0.05 (db/m vs. db/db); “ns”, not significant. Fasting-blood glucose, FBG; blood 
urea nitrogen, BUN; serum cystatin C, Cys-C; urine creatinine, UCr. 

T. Zhu et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e17844

4

2.6. Statistical analysis 

MetaboAnalyst 5.0 (www.metaboanalyst.ca) was used for metabolomic data analysis. Global metabolic changes between the two 
groups were determined using the Orthogonal partial least squares discriminate analysis (OPLS-DA) model. The model parameters R2 
and Q2 served as indicators for evaluating the interpretability and predictability of the model, respectively. R2 and Q2 > 0.05 indicate 
that the model was robust and reliable. The OPLS-DA model produced variable importance in projection (VIP) values. Metabolites 
satisfying conditions (P < 0.05, VIP >1, and |fold change| > 1.5) were selected as differentially expressed metabolites (DEMs). The 
metabolic pathway enrichment analysis was performed using the pathway analysis module of Metaboanalyst 5.0. Pathways with p <
0.05 and impact >0.1 were considered statistically significant. The identified metabolites were classified according to the HMDB 
database. The DEMs were classified using MetOrigin (http://metorigin.met-bioinformatics.cn/) [20]. The DEMs from microbiota and 
co-metabolites were considered as gut-derived microbial metabolites. And we performed a correlation analysis of microbial metab-
olites and co-metabolites from feces and the serum, liver, kidney, and perinephric fat (Tables S17–S20). The levels of fecal microbial 
metabolites and co-metabolites were associated with the levels of microbial metabolites and co-metabolites from the serum, liver, 
kidney, and perinephric fat. In a correlation analysis network diagram, the variations of some microbial metabolites in feces are 
correlated with their variations in serum and peripheral organs (Fig. S6). Volcano plots and heat maps were generated using the R 
packages ‘ggplot’ and ‘pheatmap’, respectively. Spearrelations between gut-derived microbial DEMs were performed in R using the 
Hmisc package. Data with a correlation coefficient >0.6 were visualized as chord diagrams in R using circlize packages. 

3. Results 

3.1. The baseline data of db/db mice 

Baseline characteristics have been described in our previously published paper [21]. The body weight, FBG, renal function index 
(blood urea nitrogen, Cystatin-C, urine microalbumin) were higher in db/db than db/m mice from 8th - 20th week of feeding (P <
0.05). The db/db mice exhibited more severe renal pathology than the db/m mice. These results suggest the development of DKD in 
db/db mice. The baseline data were shown in Fig. 1b–l and Table S1. 

3.2. Fecal metabolite profiling in db/db mice 

In all, 1255 metabolites (positive mode: 983 and negative mode: 272) were identified from fecal samples. OPLS-DA models indicate 
noticeable metabolic differences between the db/db and db/m feces samples (R2 = 0.995, Q2 = 0.759) (Fig. 2a). We identified that 
133 metabolites were upregulated, while 20 were downregulated (Fig. 2b, Table S2). Moreover, 153 DEMs in the feces were signif-
icantly enriched in six pathways, involving three metabolic abnormalities: energy metabolism (lipid and amino acid metabolism), and 
cofactor and vitamin metabolism (Fig. 2c, Table S3). Based on the origin of metabolites, the DEMs were further classified into five 
groups as follows: host (3), microbiota (13), co-metabolite (18), exogenous (93), and unknown (26) (Fig. 2d, Table S2). Co-metabolites 
refer to the DEMs derived from the microbiota and host. To better understand the underlying role of the gut microbiome, we analyzed 
the correlations and biological functions of 31 DEMs from microbiota and co-metabolites. In metabolite-metabolite correlations, most 
gut-derived microbial DEMs in the network were lipids (Fig. 2e, Table S4). The pathway analysis revealed that amino acid metabolism, 
including tryptophan metabolism, tyrosine metabolism, and phenylalanine metabolism and glycerophospholipid metabolism were the 
main pathways in the db/db group (Fig. 2f, Table S3). The expression and classification of these 31 microbe-derived metabolites are 
shown in Fig. 2g (Table S2), and we found that lipid metabolites accounted for the most. These findings suggest that amino acid and 
lipid metabolism disturbances characterize gut-derived microbial metabolites in fecal metabolic profiles. 

3.3. Serum metabolite profiling in db/db mice 

Untargeted metabolic analysis of serum samples detected 678 metabolites (positive mode: 459 and negative mode: 219). OPLS-DA 
analysis of serum metabolite profiles showed differences between the db/db and db/m samples (Q2 = 0.887, R2 = 0.999) (Fig. 3a). We 
screened 216 serum DEMs according to the criteria mentioned in the methods, with 109 upregulated metabolites and 107 down-
regulated metabolites (Fig. 3b, Table S5). These DEMs were enriched in 15 pathways involving lipid metabolism, amino acid meta-
bolism, and nucleotide metabolism (Fig. 3c, Table S6). Among 216 serum DEMs, 38 DEMs were derived from microbiota, and 67 DEMs 
were derived from co-metabolites (Fig. 3d, Table S5). Among 105 gut-derived microbial metabolites, we found that lipid and organic 
acid metabolites (mostly amino acid metabolites) had the greatest correlation with other metabolites (Fig. 3e, Table S7). Moreover, 
these microbe-derived metabolites were mostly enriched in glycerophospholipid metabolism, arginine and proline metabolism, and 
arginine biosynthesis (Fig. 3f, Table S6). The expression and classification of these 105 microbe-derived metabolites are shown in 
Fig. 3g (Table S5), and we found that lipid and organic acid metabolites accounted for the most. 

3.4. Liver metabolite profiling in db/db mice 

Untargeted metabolic analysis of liver samples detected 743 metabolites (positive mode: 526 and negative mode: 217). OPLS-DA 
analysis of liver metabolite profiles showed differences between the db/db and db/m samples (Q2 = 0.9, R2 = 0.995) (Fig. 4a). We 
screened 231 liver DEMs, with 19 upregulated and 212 downregulated metabolites (Fig. 4b, Table S8). These DEMs were mostly 
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enriched in lipid metabolism, amino acid metabolism, and carbohydrate metabolism (Fig. 4c, Table S9). Among 231 liver DEMs, 16 
DEMs were derived from microbiota, and 70 DEMs were derived from co-metabolites (Fig. 4d, Table S8). Among 86 gut-derived 
microbial metabolites, we found that organic acid metabolites (mostly amino acid metabolites) and lipid metabolites had the great-
est correlation with other metabolites (Fig. 4e, Table S10). Moreover, these microbial metabolites were mostly enriched in glycer-
ophospholipid metabolism, sphingolipid metabolism, ascorbate metabolism, and aldarate metabolism (Fig. 4f, Table S9). The 

Fig. 2. Fecal metabolic profiling in db/db mice. (a) OPLS-DA score showing the conspicuous differential metabolic features of feces between db/m 
and db/db groups. (b) Volcano plot showing 153 DEMs in feces between the db/m and db/db groups. (c) KEGG pathway analysis of 153 DEMs in 
feces between the db/m and db/db groups. (d) Column graph showing the number of fecal DEMs from different sources. Co-metabolites refer to the 
DEMs derived from microbiota and host. (e) The chord diagram showing significant correlations between fecal DEMs of different classes or within 
the same class. Metabolite class is shown as a color bar around the circumference. Each line indicates a significant correlation (Spearman’s cor-
relation, r > 0.6, p < 0.05). Pink, positive correlation; Cyan, negative correlation. (f) KEGG pathway analysis of DEMs derived from microbiota and 
co-metabolites. (g) Heatmap of 31 DEMs derived from microbiota and co-metabolites of fecal samples. Metabolite classes and origins are shown on 
the left of the heatmap. The red font represents DEMs in the tryptophan metabolism and the glycerophospholipid metabolism pathway. Phos-
phatidylcholine, PC. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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expression and classification of these 86 microbial metabolites are shown in Fig. 4g (Table S8), and we found that lipid and organic 
acid metabolites accounted for the most. 

3.5. Perinephric fat metabolite profiling in db/db mice 

500 metabolites (positive mode: 344 and negative mode: 156) were detected from perinephric fat samples. OPLS-DA models 
showed noticeable differences in perinephric fat metabolic profiles between the db/db and db/m samples (Q2 = 0.851, R2 = 0.999) 
(Fig. 5a). We identified 169 DEMs in db/db mice, with 22 upregulated and 147 downregulated (Fig. 5b, Table S11). These perinephric 
fat DEMs were significantly enriched in 13 pathways, involving five types of metabolic abnormalities, including energy metabolism 
(lipid and amino acid metabolism) and carbohydrate metabolism (Fig. 5c, Table S12). Of the 169 perinephric fat DEMs, 82 DEMs 
derived from microbiota and co-metabolites were screened (Fig. 5d, Table S11). Among 82 gut-derived microbial metabolites, we 
found that lipid and organic acid metabolites (mostly amino acid metabolites) had the greatest correlation with other metabolites 
(Fig. 5e, Table S13). In addition, the gut-derived microbial DEMs were mostly involved in the tryptophan, pyrimidine, and glycer-
ophospholipid metabolism (Fig. 5f, Table S11). The expression and classification of these 82 microbe-derived metabolites are shown in 
Fig. 5g (Table S11), and we found that lipid and organic acid metabolites accounted for the most. 

3.6. Kidney metabolite profiling in db/db mice 

Untargeted metabolic analysis of kidney samples detected 897 metabolites (positive mode: 666 and negative mode: 231). OPLS-DA 
analysis of kidney metabolite profiles showed differences between the db/db and db/m samples (Q2 = 0.903, R2 = 0.992) (Fig. 6a). 
We identified 337 DEMs in db/db mice, with 178 upregulated and 159 downregulated (Fig. 6b, Table S14). KEGG enrichment analysis 
revealed that 337 DEMs were enriched in 23 pathways, including lipid metabolism and amino acid metabolism (Fig. 6c, Table S15). 
According to the source analysis results of metabolites, we screened out 33 DEMs derived from microbiota and 82 DEMs derived from 
co-metabolites (Fig. 6d, Table S14). In metabolite-metabolite correlations, most gut-derived microbial DEMs in the network were lipids 
and organic acids (mostly amino acid metabolites) (Fig. 6e, Table S16). Moreover, these gut-derived microbial metabolites were 
chiefly enriched in the glycerophospholipid, arachidonic acid, and tryptophan metabolism pathways (Fig. 6f, Table S15). Fig. 6g 
(Table S14) shows the expression levels and classification of gut-derived microbial DEMs. We found that most of these DEMs belong to 
the organic acids (mostly amino acids), followed by lipids. 

Gut-serum-liver-perinephric fat-kidney metabolic alterations in tryptophan metabolism and glycerophospholipid metabolism: 
According to the characteristics of gut-derived microbial metabolites, we found that db/db mice were mainly characterized by 

disturbances in lipid and amino acid metabolism, especially glycerophospholipid and tryptophan metabolism. We observed that se-
rotonin (5-HT), 6-hydroxymelatonin, and phosphatidylcholine (PC) were high in the feces sample of db/db group. 1-acylglycerophos-
phocholine (lysoPC), PC, and phosphatidate (PA) were low in the serum sample of db/db group. PA, PC, lysoPC, 
phosphoethanolamine, glycerone-phosphate, glycerophosphoethanolamine, CDP-choline, and CDP-ethanolamine were low in liver 
samples of db/db group. Phosphoethanolamine, lysoPC, PC, 5-hydroxy-L-tryptophan (5-HTP), and indoleacetaldehyde (IAld) were low 
in perinephric fat samples of db/db group. In addition, lysoPC, acetyl-CoA, phosphatidyl-N-dimethylethanolamine, and PC were low in 
kidney samples of db/db group. In contrast, 5-HTP and IAld were high in kidney samples of db/db group. Gut-serum-liver-perinephric 
fat-kidney metabolic alterations in tryptophan metabolism and glycerophospholipid metabolism are shown in Fig. 7. The expression 
levels of metabolites in the pathways are shown in Figs. 2g, 3g and 4g, 5g, and 6g. 

4. Discussion 

Metabolomics is widely used in diabetes research, with lipids and amino acids being the most frequently studied compounds [17]. 
Metabolites are the intermediate or final products of biochemical reactions, respectively, which can match the disease phenotype and 
reflect the biological information of genetics, drugs, food, environment, gut microbes, and host [18]. In this study, we screened 
metabolites derived from gut microbes and investigated their varion in gut-serum-liver-perinephric fat-kidney metabolic axis in DKD 
mice. The results revealed that homeostasis of microbial metabolism was disrupted in DKD mice, especially the glycerophospholipid 

Fig. 3. Serum metabolic profiling in db/db mice. (a) OPLS-DA score showing the conspicuous differential metabolic features of serum between the 
db/m and db/db groups. (b) Volcano plot showing 216 DEMs in serum between the db/m and db/db groups. (c) KEGG pathway analysis of 216 
serum DEMs between the db/m and db/db groups. (d) Column graph showing the number of serum DEMs from different sources. Co-metabolites 
refer to the DEMs derived from microbiota and host. (e) The chord diagram showing significant correlations between serum DEMs of different 
classes or within the same class. Metabolite class is shown as a color bar around the circumference. Each line indicates a significant correlation 
(Spearman’s correlation, r > 0.6, p < 0.05). Pink, positive correlation; Cyan, negative correlation. (f) KEGG pathway analysis of DEMs derived from 
microbiota and co-metabolites. (g) Heatmap of 105 DEMs derived from microbiota and co-metabolites of serum samples. Metabolite classes and 
origins are shown on the left of the heatmap. The red font represents DEMs in the glycerophospholipid metabolism pathway. Phosphatidate, PA; 
Phosphatidylcholine, PC; 1-Acylglycerophosphocholine, lysoPC. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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Fig. 4. Liver metabolic profiling in db/db mice. (a) OPLS-DA score showing the conspicuous differential metabolic features of liver between the db/ 
m and db/db groups. (b) Volcano plot showing 231 DEMs in liver between the db/m and db/db groups. (c) KEGG pathway analysis of 231 liver 
DEMs between the db/m and db/db groups. (d) Column graph showing the number of liver DEMs from different sources. Co-metabolites refer to the 
DEMs derived from microbiota and host. (e) The chord diagram showing significant correlations between liver DEMs of different classes or within 
the same class. Metabolite class is shown as a color bar around the circumference. Each line indicates a significant correlation (Spearman’s cor-
relation, r > 0.6, p < 0.05). Pink, positive correlation; Cyan, negative correlation. f) KEGG pathway analysis of DEMs derived from microbiota and 
co-metabolites. (g) Heatmap of 86 DEMs derived from microbiota and co-metabolites of liver samples. Metabolite classes and origins are shown on 
the left of the heatmap. The red font represents DEMs in the glycerophospholipid metabolism pathway. Phosphatidate, PA; Phosphatidylcholine, PC; 
1-acylglycerophosphocholine, lysoPC. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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and tryptophan metabolism. Previous study revealed that abnormal metabolites derived from the gut microbiome can accelerate the 
progression of DKD [18]. Hyperglycemia disrupts the tight junctions of the gut, thereby damaging the gut barrier. Abnormal gut 
metabolites caused by gut dysbiosis and gut barrier disruption promote the entry of the gut microbiome and the harmful metabolites 
derived from them into the circulatory system, wherein they reach distant organs, such as the liver, kidneys, adipose tissue, and heart, 

(caption on next page) 
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and exert harmful effects. 
Previous studies have demonstrated the critical effects of tryptophan metabolism on kidney diseases [22]. Zhao et al. [13] observed 

marked changes in tryptophan metabolism in a rat model of CKD. Tryptophan metabolism mainly constitutes three branches, including 
the serotonin, kynurenine, and indole derivative pathways, which are influenced by the gut microbiota. Our study found that IAld was 
elevated in kidney samples of db/db group. Lactobacillus can transform tryptophan to IAld in the presence of indole lactate dehy-
drogenase and aromatic amino acid aminotransferase [23]. There is compelling evidence that microbial tryptophan catabolites, such 
as indole, indoleacetic acid (IAA), indolelactic acid (ILA), and IAld, are essential for aryl hydrocarbon receptor (AHR) activation [24, 
25]. The role of AHR in renal fibrosis has been confirmed [26,27]. Activated AHR leads to glomerular and tubular cell dysfunction, 
resulting in interstitial fibrosis and glomerulosclerosis. 

Moreover, we observed that 5-HT was high in feces of db/db mice. In line with our results, previous studies have reported high 
plasma 5-HT concentrations as a biomarker for assessing the early risk of DKD [28,29]. In the gut, Ruminococcus gnavus and Clostridium 
sporogenes breakdown tryptophan to produce tryptamine [30]. Tryptamine is converted to 5-HT in enterochromaffin cells on the 
intestinal mucosal surface under the key regulation of the gut microbiota [31]. Although 5-HT is not an AHR ligand, it can promote 
sustained AHR signaling [32]. Besides, 5-HT has been shown to enhance the production of collagen IV by human mesangial cells [33]. 
In addition, 5-HTP was increased in kidney samples of db/db group. Chen et al. [34] found that increased 5-HTP exacerbated tubu-
lointerstitial fibrosis in the unilateral ureteral obstruction (UUO) rats. In all, these results indicate that the synergy of intestinal flora 
and tryptophan metabolism plays a crucial role in the development of DKD. 

Since excess sugar can be converted into lipids, hyperglycemia can lead to a loss of balance in lipid metabolism [35]. Exploring the 
complex lipid metabolic pathways is beneficial for understanding the underlying mechanisms of DKD [36,37]. Small-molecule lipids, 
such as glycerophospholipids, including PA, PC, and phosphatidyl ethanolamines, are formed by two fatty acid (FA) molecules of the 
glycerol backbone. Hydrolysis of glycerophospholipids may lead to increased levels of FA, diacylglycerols, and monoacylglycerol [38], 
which are closely related to insulin resistance [39,40]. Under the action of phospholipase A2 (PLA2), glycerophospholipids are hy-
drolyzed to generate lysoPC. The accumulation of lysoPC induces insulin resistance and oxidative stress [41]. In our study, the levels of 
PC, PA, and lysoPC were decreased in the liver and serum samples of mice in the db/db group, while the levels of PC and lysoPC were 
decreased in the kidney and perinephric fat samples. In line with our results, some studies found that PC and lysoPC levels in plasma of 
T2D patients and animal models were lower than that in the controls [42,43]. Contrary to our results, Sun et al. [37] found that lysoPC 
was decreased, but PC was elevated in the kidney of the db/db group compared with the control group. However, Chen et al. [40] 
found decreased PC in the kidneys of T2DM rats. 

Our study focused on the glycerophospholipid metabolism pathway associated with gut microbiota. We found that PC was 
increased in the feces sample of mice in the db/db group. PC abundant in food can be transformed into trimethylamine (TMA) under 
the impact of gut microbiota, such as Anaerococcus hydrogenalis and Clostridium. Then, TMA is rapidly converted to TMA-N-oxide 
(TMAO) under the catalysis of liver enzymes. On the one hand, TMAO promotes increased expression of bone-related molecules, 
resulting in calcification of smooth muscle cells and vascular tissues in CKD [44]. On the other hand, TMAO induces the expression of 
transcription factor FOXO1 by binding to endoplasmic reticulum stress kinase, thereby promoting hyperglycemia [45]. High levels of 
PC in the gut of db/db mice were broken down into TMA by gut microbes, resulting in decreased concentrations in blood, perinephric 
fat, liver, and kidneys. PC may act as a bridge between gut microbes and DKD progression [46]. Few studies have been conducted on 
glycerophospholipid metabolism pathways and gut microbes. However, further research is needed to explore the metabolic mecha-
nisms between glycerophospholipid metabolism and gut microbiota. 

4.1. Strengths & limitations 

As per our knowledge, this study is the first metabolomic analysis to distinguish between host-derived, microbiota-derived, and 
exogenous metabolites. Using MetOrigin published in 2022 [20], we screened metabolites derived from gut microbes for analysis. In 
addition, given that multiple organs are involved in the progression of diabetes to diabetic nephropathy, we explored the multi-organ 
metabolic axis to understand the body-wide metabolic changes during disease progression. The intestinal treatment of DKD has 
increasingly become a research hotspot, and our results show that intestinal treatment of DKD serves as a new therapeutic strategy for 
DKD.   

Fig. 5. Perinephric fat metabolic profiling in db/db mice. (a) OPLS-DA score showing the conspicuous differential metabolic features of perinephric 
fat between the db/m and db/db groups. (b) Volcano plot showing 169 DEMs in perinephric fat between the db/m and db/db groups. (c) KEGG 
pathway analysis of 169 perinephric fat DEMs between the db/m and db/db groups. (d) Column graph showing the number of perinephric fat DEMs 
from different sources. Co-metabolites refer to the DEMs derived from microbiota and host. (e) The chord diagram showing significant correlations 
between perinephric fat DEMs of different classes or within the same class. Metabolite class is shown as a color bar around the circumference. Each 
line indicates a significant correlation (Spearman’s correlation, r > 0.6, p < 0.05). Pink, positive correlation; Cyan, negative correlation. (f) KEGG 
pathway analysis of DEMs derived from microbiota and co-metabolites. (g) Heatmap of 82 DEMs derived from microbiota and co-metabolites of 
perinephric fat samples. Metabolite classes and origins are shown on the left of the heatmap. The red font represents DEMs in the tryptophan 
metabolism and the glycerophospholipid metabolism pathways. Phosphatidate, PA; Phosphatidylcholine, PC; 1-Acylglycerophosphocholine, lysoPC. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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The defect of our study is the small sample size, but the modeling and operating procedures are recognized. Although we selected gut- 
derived metabolites, combining the gut microbiota sequencing would be better. Future studies investigating the relationship between 
gut microbiota and multi-organ metabolic axis would validate the findings of the current analysis. 

(caption on next page) 
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5. Conclusion 

In conclusion, we observed that microbial metabolites in gut, serum, liver, perinephric fat, and kidney of DKD mice were involved 
in the tryptophan and glycerophospholipid metabolism pathways. Tryptophan metabolites and glycerophospholipid metabolites were 
altered under the direct or indirect effects of gut microbes in peripheral organs of DKD mice. Our data revealed a global gut microbe- 
derived metabolic alterations across multiple organ axis in DKD mice. These findings uncover the perturbation of gut microbial 
metabolism in mice with DKD, which may be useful for building a bridge between the gut microbiota and the progression of DKD and 
provide a theoretical basis for the intestinal treatment of DKD. 

Fig. 6. Kidney metabolic profiling in db/db mice. (a) OPLS-DA score showing the conspicuous differential metabolic features of kidney between db/ 
m and db/db group. (b) Volcano plot showing 337 DEMs in kidney between db/m and db/db group. (c) KEGG pathway analysis of 337 kidney DEMs 
between db/m and db/db groups. (d) Column graph showing the number of kidney DEMs from different sources. Co-metabolites refer to the DEMs 
derived from microbiota and host. (e) The Chord diagram showed significant correlations between kidney DEMs of different classes or within the 
same class. Metabolite class was shown as the color bar around the circumference. Each line indicates a significant correlation (spearman’s cor-
relation, r > 0.6, p < 0.05). Pink, positive correlation; Cyan, negative correlation. (f) KEGG pathway analysis of DEMs derived from microbiota and 
co-metabolites. (g) Heatmap for 115 DEMs derived from microbiota and co-metabolites in kidney samples. Metabolite classes and origins are shown 
on the left of the heatmap. The red font represents the DEMs in the tryptophan metabolism and the glycerophospholipid metabolism pathways. 
Phosphatidylcholine, PC; 1-Acylglycerophosphocholine, lysoPC. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 7. Schematic diagram showing the tryptophan metabolism and glycerophospholipid metabolism under the gut microbiota control in db/db 
mice. The green circles represent metabolites from microbiota and co-metabolites in the tryptophan metabolism pathway. The purple circles 
represent metabolites from microbiota and co-metabolites in the glycerophospholipid metabolism pathway. The red font represents DEMs identified 
in db/db mice. Indolelactic acid, ILA; Indoleacetic acid, IAA; indoleacetaldehyde, IAld; 5-hydroxy-L-tryptophan, 5-HTP; serotonin, 5-HT; Aryl hy-
drocarbon receptor, AHR; Phosphatidate, PA; Phosphatidylcholine, PC; 1-Acylglycerophosphocholine, lysoPC; trimethylamine, TMA; trimethyl-
amine N-oxide, TMAO. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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DM Diabetes mellitus 
DKD diabetic kidney disease 
LC-MS/MS liquid chromatography with tandem mass spectrometry 
IAld indoleacetaldehyde 
5-HTP 5-hydroxy-L-tryptophan 
5-HT serotonin 
PC phosphatidylcholine 
PA phosphatidate 
lysoPC 1-acylglycerophosphocholine 
CKD chronic kidney disease 
FBG Fasting blood glucose 
Cys-C cystosin C 
Ucr Urine creatinine 
ELISA enzyme-linked immunosorbent 
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H&E hematoxylin and eosin 
PAS Periodic Acid Schiff 
HMDB Human Metabolome Database 
KEGG Kyoto Encyclopedia of Genes and Genomes 
TIC total ion current 
OPLS-DA Orthogonal partial least squares discriminate analysis 
VIP Variable importance in projected 
DEMs differentially expressed metabolites 
BUN blood urea nitrogen 
ILA indolelactic acid 
IAA indoleacetic acid 
AHR Aryl hydrocarbon receptor 
FA fatty acids 
PLA2 phospholipase A2 
TMA trimethylamine 
TMAO TMA-N-oxide 
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