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Abstract

Background: The development of microarray-based genetic tests for diseases that are caused by known mutations is
becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need
to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and
structural features like hairpins.

Methods/Findings: We describe a rational, stable method for screening and combining assay conditions for the genetic
analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in
regions with large variations in G+C content (20–75%). Custom-made microarrays with different lengths of complementary
probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient
DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system.
The data were used to assess which parameters play significant roles in assay development.

Conclusions: Several assay development methods found suitable probes and assay conditions for a functional test for all
investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the
search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.
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Introduction

Allele-specific oligonucleotide hybridization (ASH) on the

massively parallel DNA microarray platform encompasses a

simple and powerful method for high-throughput genotyping.

ASH is widely used by Affymetrix as well as other companies, for

analysis of single nucleotide polymorphisms (SNPs). As microarray

technology is potentially a very powerful tool in diagnostics of

known mutations causing diseases, we can expect an increase in

the number of assay developers of clinical grade microarray-based

assays. This paper aims to investigate the expected success rate of

different strategies when developing ASH assays.

ASH exploits the decrease in stability of mismatch (MM)

duplexes (e.g. mutant probe and wild-type target/allele) and

perfect-match (PM) duplexes (e.g. wild-type probe and wild-type

target/allele) when determining genotypes. Probes for ASH are

usually designed so that the variant base/point mutation is situated

centrally, because centrally placed mismatches have a higher

destabilizing effect on the duplex than mismatches at the ends, and

therefore give a better discrimination [1–5]. Discrimination is

strongly dependant on probe length, and decreases dramatically

with increases in probe length [3,6–8]. Nevertheless, the use of

very short probes [9] is generally not recommended, due to a

lower signal yield of the capture probes [3] which compromises the

sensitivity of the assay. Furthermore, the uniqueness of short

probes declines with increasing complexity of the target [3]. One

example of a highly complex target, is genomic DNA, whereas

PCR products represent targets of lower complexity.

Probes can either be chosen experimentally or with the help of

probe prediction algorithms or with a combination thereof. Probe

prediction algorithms typically predict a ‘‘best fit’’ probe from

certain input criteria, such as similar melting points (Tm) or changes

in Gibbs free energy of hybridization values, DG, and sequence

uniqueness. Tm and DG are equalized to allow discrimination at

one assay condition, and uniqueness is required to avoid any

unspecific hybridization. For genome-wide SNP analysis, the goal of

the assay is to cover the genome with markers. In such cases difficult

SNP loci can simply be avoided when designing the assay [10–12].

However, microarrays for diagnosis of disease-causing genetic

mutations require a 100% assay success rate, suggesting that an

alternative strategy for assay development is required.

We investigated the efficiency of a high-throughput probe

characterization method for optimization of an allele-specific

hybridization assay. As we tested crosswise a variety of probe

lengths, assay stringencies and positions of probe sequence relative

to the microarray surface, we covered all possible combinations of

the most commonly modulated assay parameters. The data provide

valuable information for DNA microarray assay developers.
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Materials and Methods

DNA microarray probes
Wild-type (Wt) probes and mutant (Mt) probes were designed to

target 42 different mutations in the human phenylalanine

hydroxylase (PAH) gene (Figure 1 and Table 1). Probes were

designed by using the sequence of the sense strand of PAH. For five

mutations (c. 688G.A, c.727C.T, c. 730C.T, c. 734T.A and

c. 1157A.G) in the proximity of common SNPs (696A.G, c.

735G.A or c. 1155G.C) probe-pairs were designed for both

SNP alleles and for five mutations.

There were different SNP genotypes (c.735G.A) in the

proximity of two mutations c.727C.T and c.730C.T. Hence,

as the probes would overlap both the SNP and the mutation, these

mutations were analyzed as four mutations (c.727C.T-GG,

c.727C.T-AA, c.730C.T-AG and c.730C.T-GA). This

brought the total number of mutant PAH alleles to 44. Most

mutations (n = 38) were single-base substitutions, two were two-

Figure 1. Experimental design. For each PAH mutation that was genotyped, 14 different probes were designed comprising 7 lengths (13 to 25-
mer) wildtype (Wt) probe and corresponding Tm-matched mutant (Mt) probe. For simplicity, Mt probes are denoted with the same number as
corresponding Wt probe. In reality Mt probes could differ one or two bases in length in order to obtain similar calculated Tm as the corresponding
mutant probe. The probes (PAH capture-sequence) were placed in three different positions: the proximal, central or distal part of the 60-mer
oligonucleotide (Materials and Methods). With these triplicates of each probe there were a total of 42 spots/probes per PAH mutation. These 42 spots
per SNP per probe position were repeated trice per subarray. The array was replicated in 8 identical sub-arrays on the custom-made Agilent slide. For
mutations near a common SNP, additional probes were designed (see Materials and Methods). The microarray slide (all 8 sub-arrays) was hybridized
with amplified patient material. The slide was then washed in a multi-stringency array washer. Each sub-array was washed at 37uC with different
stringency wash buffers all containing 0.1% SDS and varying SSC (as indicated). Furthermore, the wash buffer for two sub-arrays contained the
denaturant urea. After quantification (Materials and Methods) normalized ratios were calculated for each probe-pair. Alternative ratios (R+2nt and
R22nt) (Supplementary Figure S1) were calculated as indicated. For R+2nt a Wt probe (for example 15-mer) was combined with the Mt probe that was
designed to Tm-match the Wt probe that was 2 nucleotides longer (here, 17-mer Wt probe). The reverse was the case for the R22nt. The probe-pair
(length, position and ratio calculation) and stringency that resulted in the best classification genotypes near ideal values: wild-types 1, heterozygotes
0.5 and mutants 0 (Figure 3 and Table 1) are highlighted for three mutations (c.117C.G, c.143T.C and c.688G.A).
doi:10.1371/journal.pone.0014777.g001
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Table 1. Data for probes and assay conditions for the genotyping results shown in Figure 3.

Number
Systematic
name

Mutation
name Position Match

Probe
Length
(Wt/Mt)

Calc.
Tm (6C)
Wt probe

Calc.
Tm (6C)
Mt probe

Calc DG
(kcal/mol)
Wt probe

Calc DG
(kcal/mol)
Mt probe Stringency

1 c.47_48delCT L15/S16fsdelC
orp.S16.XfsX1

Central Mt-2 15/17 32.4 35.2 212 214 0.35 X SSC

2 c.60+5G.T IVS1+5G.T Proximal Mt+2 19/18 55.1 53.3 225 222 4 X SSC

3 c.115_
117delTTC

deltaF39/F39del Central Mt+2 15/13 39.0 31.9 216 214 0.35 X SSC

4 c.117C.G F39L Proximal Tm 19/19 39.6 39.3 217 216 1 X SSC

5 c.136G.A G46S Distal Tm 19/19 41.8 41.4 217 217 0.35 X SSC

6 c.140C.T A47V Proximal Tm 25/24 49.4 48.7 224 221 0.35 X SSC

7 c.143T.C L48S Distal Mt-2 17/18 43.8 46.3 219 221 0.35 X SSC

8 [c.187A.C;
c.190C.A]

T63P/H64N Central Mt+2 19/17 41.3 39.9 221 219 1 M Urea

9 c.194T.C I65T Proximal Mt+2 19/16 40.6 39.1 219 218 4 X SSC

10 c.204A.T R68S Proximal Tm 15/14 34.9 34.6 216 214 1 X SSC

11 c.311C.A A104D Proximal Mt+2 15/15 46.1 43.3 217 216 0.35 X SSC

12 c.329C.T S110L Proximal Tm 15/17 37.1 37.3 217 217 4 X SSC

13 c.371C.T T124I Distal Tm 17/17 31.4 31.6 215 214 0.35 X SSC

14 c.473G.A R158Q Proximal Tm 19/21 45.8 45.6 219 220 0.1 X SSC

15 c.529G.C V177L Proximal Mt-2 15/18 40.7 44.3 217 221 3 M Urea

16 c.663_
664delAG

221/222 del
AG/E221fs

Distal Tm 15/15 26.3 25.8 213 212 4 X SSC

17 c.688G.A V230I Central Mt-2 17/20 38.6 43.1 216 219 0.01 X SSC

18 c.727C.T-GG R243X Proximal Tm 13/13 48.6 49.4 221 220 0.35 X SSC

19 c.727C.T-AA R243X Proximal Tm 13/13 48.6 49.4 221 220 0.01 X SSC

20 c.730C.T-AG P244S Distal Mt+2 15/13 51.5 40.3 221 215 0.35 X SSC

21 c.730C.T-GA P244S Proximal Tm 21/22 64.8 65.8 232 232 3 M Urea

22 c.734T.A V245E Distal Tm 19/19 62.6 62.2 227 228 1 M Urea

23 c.781C.T R261X Central Mt+2 15/14 52.5 48.8 221 218 0.01 X SSC

24 c.782G.A R261Q Distal Tm 15/16 51.3 51.2 220 219 1 M Urea

25 c.814G.T G272X Central Mt-2 23/26 53 53.9 228 228 3 M Urea

26 c.842C.T P281L Central Tm 13/15 38.3 36.5 215 215 1 M Urea

27 c.842+4A.G IVS7nt4a.g Central Tm 15/14 37.8 38.4 214 215 1 M Urea

28 c.844G.A D282N Distal Mt+2 21/21 54.5 50.4 222 221 0.1 X SSC

29 c.898G.T A300S Central Tm 13/14 46.5 45.4 218 218 0.35 X SSC

30 c.916A.G I306V Central Mt-2 17/17 38.4 44.1 217 218 0.35 X SSC

31 c.997C.T L333F Proximal Tm 15/15 45.5 44.6 217 216 4 X SSC

32 c.1006C.T Q336X Distal Tm 17/18 35.0 35.0 216 216 4 X SSC

33 c.1042C.G L348V Distal Tm 13/15 48.5 48.3 217 217 1 M Urea

34 c.1066-11G.A IVS10-11G.A Central Mt+2 15/16 47.1 47.0 220 219 0.35 X SSC

35 c.1068C.G Y356X Proximal Mt-2 23/25 54.4 56.5 226 227 1 M Urea

36 c.1139C.T T380M Central Mt+2 17/17 42.1 48.8 215 219 0.1 X SSC

37 c.1157A.G Y386C Distal Tm 15/14 43.7 43 218 216 0.1 X SSC

38 c.1169A.G E390G Central Mt+2 21/17 42.5 43.8 219 217 0.35 X SSC

39 c.1208C.T A403V Central Tm 17/18 41.7 42.1 218 217 0.35 X SSC

40 c.1222C.T R408W Central Mt-2 13/16 47.8 45.9 220 220 4 X SSC

41 c.1223G.A R408Q Distal Tm 13/14 48.3 48.4 220 220 0.1 X SSC

42 c.1241A.G Y414C Distal Tm 21/19 50.9 52.2 223 223 1 M Urea

Assay Development Success Rate
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base substitutions and four were small (1–3 nt) conserved deletions

(Table 1). Seven lengths (13 to 25-mer) in 2 nt increments of Wt

probes with three different spacer lengths were designed for each

mutation (Figure 1). Each Mt probe was designed to be as closely

Tm-matched to its respective Wt probe as possible. Thus, the Mt

probe could be as long as the Wt probe or longer/shorter. The

calculations of Tm and DG are described in [13]. The variation in

the calculated Tm of all probe-pairs in the probe-set was kept to a

minimum (within 6uC).

As the Agilent microarrays had a default of 60-mer probes,

the probe was divided into three sections: proximal (closest to

the microarray surface), central (in the middle) and distal

(furthest away from the surface). All probes contained a PAH-

specific sequence (capture sequence) and a spacer/filler

sequence, selected for not hybridizing to the PAH targets

(unpublished results). Twenty-one different probe-pairs were

designed for each mutation; they comprised seven different

lengths of the wild-type (Wt) capture sequence, 13–25

nucleotides in steps of two nucleotides, and their Tm-matched

mutant (Mt) probes in three different positions relative to the

microarray surface (proximal, central and distal) (Figure 1). The

positioning of the PAH capture sequence relative to the

microarray surface was obtained by varying the location of

the spacer/filler sequence [13].

Agilent DNA microarrays
For genotyping the 44 mutated PAH alleles (Table 1) we used

custom made (eArray 4.5) high-density in situ synthesized Agilent

expression microarrays in the 8x15K format (Agilent Technolo-

gies, Palo Alto, CA). There were triplicates of each probe in the

eight identical sub-arrays (Figure 1).

DNA samples and target preparation
Genomic DNA (gDNA) samples used in this study originated

from 38 individuals who were compound heterozygous (n = 31) or

homozygous (n = 7) for mutation/s in the PAH gene [13]. Each

mutation was genotyped separately. Homozygous mutants were

only available for six different mutations. Thus 44 different

mutated alleles were analysed by the 38 hybridization reactions.

The original molecular diagnosis was made by denaturing gradient

gel electrophoresis (DGGE) [14] followed by direct DNA

sequencing.

Target preparation of PAH exons 1–12 with flanking sequences

was carried out in a two-step process, involving PCR amplification

of gDNA with an incorporated T7 promoter sequence followed by

T7 in vitro transcription as described in [13]. Hence, the amplified

target was complementary RNA (cRNA).

Hybridization and stringency washes
Hybridization and stringency washes were carried out as

described in [13] and Figure 1. Details regarding the in-house

multi-stringency array washer (MSAW) are provided in [13].

Stripping procedure for hybridized slides
In order to reuse the slides, hybridized targets were stripped

off by using a modified version of the protocol used by Hahnke

et al [15] as described in [13]. We reused each microarray up to

three times. Although stripping off hybridized targets is not

recommended by the manufacturer, several protocols describe

successful reuse of stripped microarrays with reproducible

results [15–18].

Detection, quantification and data analysis
The processed microarrays were visualized by fluorescent

scanning and the resulting images were quantified as described

in [13]. Each mutation was genotyped separately. For assigning

genotypes, a normalized ratio was calculated for each Wt and Mt

probe-pair in the separate stringency zones. The normalized ratio

(R) was calculated by dividing the average signal from the Wt

probe by the sum of the signals from the average Wt and average

Mt probes (SWt/(SWt+SMt)) (Figure 1). The normalized ratio is also

termed ‘‘relative allele signal’’ (RAS) in Affymetrix software.

Furthermore, ratios were calculated for each Wt probe in

combination with the Mt probe Tm-matched with a shorter or

longer (22 or +2 nucleotides) Wt probe (Supplementary Figure

S1). The Agilent 8x15K array format was chosen for the

experiment because it allowed a multi-parametric test of probes

for genotyping (about 15,000 probes/sub-array) in combination

with multi-stringency washes of the eight identical sub-arrays,

thereby maximizing the data output, and making the experiment

practically and economically feasible. With triplicates of each

probe sequence the total number of analyzed probes in each sub-

array was about 3000 (the remaining probes were not included in

this study). Quantification of the eight sub-arrays of each

microarray slide and 38 hybridized microarray slides resulted in

approximately 910,000 data points.

Methods for assigning genotypes
We tested four different methods for assigning genotypes in

order to evaluate the success rate of different assay designs. The

methods for assigning genotypes were used to determine whether a

probe-pair resulted in successful separation of the three potential

genotypes: homozygous wild-type (Wt/Wt), heterozygote (Wt/Mt)

or homozygous mutant (Mt/Mt).

Number
Systematic
name

Mutation
name Position Match

Probe
Length
(Wt/Mt)

Calc.
Tm (6C)
Wt probe

Calc.
Tm (6C)
Mt probe

Calc DG
(kcal/mol)
Wt probe

Calc DG
(kcal/mol)
Mt probe Stringency

43 c.1243G.A D415N Distal Tm 15/17 42.3 42.3 220 219 0.35 X SSC

44 c.1315+1G.A IVS12+1G.A Central Tm 19/22 31.9 31.5 213 214 1 X SSC

The 44 PAH sites included in this study and optimal assay conditions for each investigated site. Site (mutations) name and exon/intron position in the PAH
gene and the combination of assay conditions for each site for the best genotyping ratio (plotted in Figure 3). Probe sequence data are given in Supplementary Table
S1. ‘‘Match’’ refers to the length of the corresponding mutant probe relative to the wild-type probe in the probe-pair. ‘‘Position’’ refers to location of specific probe
sequence where ‘‘Proximal’’ denotes placement of the specific part close to the surface, ‘‘Central’’ denotes placement of the specific part in the middle of the 60 nt DNA
and ‘‘Distal’’ denotes placement of the specific part at the end of the 60 nt DNA.
doi:10.1371/journal.pone.0014777.t001

Table 1. Cont.

Assay Development Success Rate

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e14777



Figure 2 depicts the four methods used to assign genotypes.

Methods A and B only required separation of the normalized

ratios of the three possible genotypes (wild-type, heterozygote and

mutant) within a certain difference (d) between the minimum and

maximum ratios observed for each respective genotype. Hence,

genotyping was successful if the separation criteria were fulfilled,

independent of whether wild-type, heterozygote and mutant ratios

were high or low (Figure 2, examples 1–3). In contrast, methods C

and D for assigning genotypes required that homozygous wild-

types or mutants were less than 0.3 from their ideal ratio of 1 and

0, respectively, and heterozygotes less than 0.15 (method C) or 0.1

(method D) from their ideal ratio of 0.5. The distance ‘‘d’’ of 0.1

simulate a stronger test while and d = 0.05 a weaker test.

Ethical considerations
The Kennedy Institute granted us permission to use archived

anonymous samples from subjects investigated for mutations in the

PAH gene. As these samples were only reanalysed for mutations

that had already been diagnosed, we did not gain any additional

genetic information about the subjects. Therefore there was no

need to apply for an ethics approval or for further informed

consent from the subjects.

Results

For a multi-parametric test of probe choice strategies for

genotyping with ASH-based assays, we combined custom made

(Agilent) high-density microarrays with an in-house multi-

stringency array washer which has been described in [13]. The

modulated parameters were: the length of the PAH capture probe,

the position of the PAH capture probe relative to the microarray

surface, and finally the post-hybridization stringency wash. In

order to make the experiment economically feasible, we reused

each microarray up to three times by stripping the hybridized

cRNA targets off with alkali and heat denaturation. Although the

signal decreased with each successive re-hybridization, we were

able to assign genotypes (data not shown). Control scans after the

stripping procedure showed no signal from the microarray spots.

Identification of performance-optimized assay for
genotyping PAH mutations

To illustrate the optimal separation of genotypes for each PAH

mutation in this study, the best genotyping results relative to the

ideal case were observed when wild-types gave ratios close to 1,

heterozygotes close to 0.5 and (if available) homozygous mutated

near 0 (Figure 3A). Table 1 shows the assay conditions that

provide the optimal genotyping ratios for each mutation, i.e.

combinations of probes, stringency, probe position and usages of

non-Tm-matched probes. Some mutations were genotyped by

many combinations of probes, stringency and probe positions,

while others were only genotyped by one probe length and assay

condition. As many combinations of probe length and assay

conditions were tested, the identified probe lengths and assay

conditions represent the performance-optimized assay for each

respective site. Even with full freedom in the probe design and

assay conditions, four mutations (c.473G.A, c.734T.A,

c.1139C.T and c.1222C.T, or number 14, 22, 36 and 40,

respectively) did not fulfil the criteria for method D for calling

genotypes, but only fulfilled the remaining three methods for

calling genotypes (A, B and C). This was due to the low

Figure 2. Methods A–D for calling genotypes. Graphical illustration of allowed ratio values for each method for calling genotypes. Method A
requires that the difference (d) between the minimum Wt/Wt (wild-type) ratio and maximum Wt/Mt (heterozygote) ratio, as well as difference (d)
between the minimum Wt/Mt (heterozygote) ratio and maximum Mt/Mt (mutant) ratio is .0.05. Method B requires that the difference (d) between
the minimum Wt/Wt ratio and maximum Wt/Mt ratio, as well as the difference (d) between the minimum Wt/Mt ratio and maximum Mt/Mt ratio is
.0.1. Method C requires that the minimum Wt/Wt ratio is .0.7, the maximum Wt/Mt ratio is ,0.65, the minimum Wt/Mt ratio is .0.35 and the
maximum Mt/Mt ratio is ,0.3. Method D requires that the minimum Wt/Wt ratio is .0.7, the maximum Wt/Mt ratio is ,0.6, the minimum Wt/Mt ratio
is .0.4 and the maximum Mt/Mt ratio is ,0.3. For methods A and B, three examples (Ex1–Ex3) of acceptable ratio values are shown. As the examples
illustrate, the criteria for methods A and B for calling genotypes are fulfilled if the difference (d) between the different genotypes (wild-type,
heterozygote and mutant) is greater than 0.05 or 0.1, respectively, regardless of whether the ratio values generally are high, intermediate or low.
doi:10.1371/journal.pone.0014777.g002

Assay Development Success Rate
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heterozygote ratio (minimum ratio below 0.4 for c.473G.A) or

high heterozygote ratio (above 0.6 for the remaining three

mutations). However, it should be noted that other combinations

of probe-pairs and assay stringency resulted in the successful

assignment of genotypes, especially when using methods A and B

(Figure 4).

The diversity of the assay parameters in the performance-

optimized assay became apparent when analysing Table 1. The

Figure 3. Genotyping the 44 different mutated PAH alleles*. A) For each mutation, the probe-pair (probe length, position from surface and Wt
and Mt probe combination) and assay condition (stringency) for the best separation of genotypes is shown. Details about PAH mutations, probe-pairs
and assay conditions are found in Table 1. Best separation was defined as wild-type (Wt/Wt) normalized ratios (see Materials and Methods section)
clustering around 1, heterozygotes (Wt/Mt) around 0.5 and mutants (Mt/Mt) around 0. For each mutation, the average ratio of all samples carrying
the wild-type DNA sequence on both alleles is represented by a diamond, the average normalized ratios for heterozygous samples is represented by
a dash, and the average normalized ratio for homozygous mutated is represented by a triangle. Error bars show the observed minimum and
maximum ratios. *42 unique PAH mutations and 44 different mutant PAH alleles were investigated (see Materials and Methods). B) Number of sites
that were genotyped with Tm-matched probe-pairs or alternative probe-pairs The data was obtained by analysing Table 1. C) DTm (difference in Tm
between wild type and mutant probe) and DDG (difference between DG of wild type probe and mutant probe) of probe-pair function in the shown
genotyped PAH mutations (A).
doi:10.1371/journal.pone.0014777.g003

Assay Development Success Rate
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three possible probe positions were equally represented in the

performance-optimized assay (distal: 14 sites, central 16 sites and

proximal 14 sites) (Figure 3B). Furthermore, about 60% of the sites

were genotyped with wild type and corresponding mutant probes

that had the same calculated Tm and DG (Figure 3B, Table 1).

The remaining sites were genotyped with unbalanced probes with

regard to Tm and DG calculations. The unbalanced probe-pairs

had 2 bases longer or shorter mutant probes when compared to

the Wt probe. Unbalanced probe-pairs are referred to as

‘‘alternative probes’’ (Supplementary Figure S1). The probe-pairs

with similar calculated Tms and DGs were over-represented at the

proximal and distal positions in the performance-optimized assays,

while the probe-pairs of alternative Mt probes were typically found

in the central position (Figure 3B). As expected, the difference in

calculated Tm and DG between the wild-type and mutant probe in

the performance-optimized probe-pairs (DTm and DDG respec-

Figure 4. Percentage of successfully genotyped mutations for each assay strategy employed. Each column is the average percentage of
successfully genotyped mutations obtained by using probes in the proximal, central and distal position (except for strategy 1 and 3 where all
positions were varied). Error bars are maximum and minimum percentage of successfully genotyped mutations in one of the three positions
(proximal, central or distal). A total of nine assay strategies (strategy 1–9) were investigated by varying (open square) or fixing (closed square) the
following assay parameters: melting temperature Tm, probe length, position, stringency and probe-pair combination. The performance of each assay
strategy was found as the percentage of successfully genotyped mutations using A) Method A for calling genotypes, B) Method B for calling
genotypes, C) Method C for calling genotypes and D) Method D for calling genotypes.
doi:10.1371/journal.pone.0014777.g004

Assay Development Success Rate
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tively) showed that the Tm-matched probe-pairs had DTms close

to zero with little spread. The DDGs for Tm-matched probe-pairs

were also close to zero with little spread (Figure 3C). As expected,

the alternative probes (probe-pairs) displayed a generally lower

DTm for shorter mutant probes or higher DTm for longer mutant

probes when compared to the Tm-matched pairs. However, the

average DDG for pairs with alternative mutant probes was similar

to that of the pairs that were Tm-matched (Figure 3C). This was

expected as the performance-optimized probes in a pair should

have the same affinity in order to give heterozygote values close to

0.5. It should be noted that a large spread in DTm and DDG

values was observed for the alternative probes-pairs (Figure 3C),

indicating that we cannot fully explain ideal probe-pairs with

thermodynamic calculations of the probe sequence alone.

Assessment of the influence of optimization parameters
on success rate when developing assays

Each method for calling genotypes (Figure 2) was analysed for

the percentage of mutation sites that were successfully genotyped

(success rate) by nine different assay strategies (Figure 4). The assay

strategies had different combinations of fixed or flexible assay

parameters, including assay stringency, probe design parameters

and probe-pair combinations. For nearly all assay strategies, a

decrease in success rate was observed in the direction from

methods A and B for assigning genotypes to methods C and D.

This was especially clear for assay strategies with limited flexibility,

e.g. one probe length or Tm-matched probe-set at one stringency,

strategy 8 and 9, respectively. As expected, the highest success

rates were observed when all or nearly all parameters were varied

(Figure 4A–D). The three most flexible assay strategies (strategy 1–

3, Figure 4) had 100% success-rate for methods A and B for calling

genotypes. This implies that all 44 mutant alleles/42 unique

mutations (see Materials and Methods) could be genotyped

accurately and thus be implemented in a clinical assay. A 100%

success-rate for method C was only obtained with full assay

flexibility (strategy 1).

Assay success rate when fixing calculated Tm
The rationale of using Tm-matching Wt and Mt probe-pairs

was to obtain probes with similar melting points. Furthermore,

when combining probe-pairs with similar Tms they should - in

theory - function at common assay conditions. However, this

strategy (strategy 9, Figure 4) resulted in one of the lowest success

rates of the tested assay strategies, irrespective of which genotype

assigning method was applied. Applying a stringency gradient

alone, resulted in 10–20% higher success rates (compare strategy 7

and 9). This indicates that although probes were Tm-matched

within a Tm range of 6uC they perform optimally at different

stringencies, which supports previous observations [19–20].

Assay success rate when fixing the probe length
Another assay strategy is simply to use one common probe

length in the probe-set instead of Tm-matching the entire probe-

set. As previously mentioned, this study included seven different

Wt probes, with lengths ranging from 13 to 25 nt, that were Tm-

matched with the respective Mt probes. The assay strategy with

one common probe length and multiple stringencies produced a

high success rate (above 90%) with method A for calling

genotypes, but dropped below 40% when using the more stringent

method D for assigning genotypes (Figure 4A and D, strategy 5).

The assay strategy approach of choosing a fixed probe length

resulted in success rates comparable to those for Tm-matched

probe-sets (compare strategy 8 and 9 in Figure 4). As with Tm-

matched probe-sets, processing microarrays at multiple stringen-

cies resulted in higher success rates than when using a common

stringency (compare strategy 5 and 8 in Figure 4). This is intuitive,

as probes of the same length that target different mutation sites

have different G+C contents, and hence, probes that require

different stringencies in order to perform optimally. Therefore, a

higher success rate was achieved by allowing a probe-set with

probes of varying length and a Tm to compensate for variances in

the G+C content at the different mutation sites (strategy 6,

Figure 4) as compared to the success rate when fixing these

parameters (Figure 4, strategy 8 and 9).

The influence of the capture-probe position relative to
the microarray surface

When different spacer lengths were included as varying assay

parameters, the assay success rate increased for methods C and D

for assigning genotypes (Figure 4). A general analysis underlined

that fixed probe positions (as in strategy 2 and 4) gave poorer assay

success rates than those achieved by placing probes at different

positions in the final assay (as in strategy 1 and 3). However, this

was most pronounced when applying methods C and D and less

when applying methods A and B (Figure 4).

The effect of method-choice for assigning genotype on
assay success rate

In a genotyping assay, the wildtype-to-mutant signal intensity

ratio of individual genotypes (homozygous wildtypes, hetetozy-

gotes and homozygous mutants) should preferably be clearly

separated. As expected, the methods for assigning genotypes

(Figure 2) that require the greatest (0.1) separation of genotypes,

methods B and D, had an approximately 10% lower assay success

rate, than methods A and C, respectively (Figure 4).

Discussion

Allele-specific hybridization (ASH) to DNA microarrays is

commonly used for SNP genotyping and mutation analysis. When

setting up ASH-based genotyping assays some rules of thumb have

been established to ensure the likelihood of obtaining a functional

assay. Probes should be short (often 15–25 nucleotides), with the

mismatch placed in the middle of the probe to maximize the signal

difference obtained from mismatch and perfect-match hybrids.

Probes with similar working optima are also chosen because

microarrays are often processed under one particular assay

condition (hybridization and stringency wash temperature and

buffer composition). This is a challenge when addressing target

sequences with varying G+C contents. Melting temperature (Tm)

calculations are based on thermodynamic models that use solution

parameters and an assumption that reactions have reached

equilibrium. Consequently, Tm calculations do not fully predict

hybridization and dissociation on microarray surfaces [2,4,21].

Only weak correlations have been observed between calculated

Tms and the temperature at which optimal assay performance was

obtained [19–20]. We solved these limitations by developing

assays by systematically varying parameters that influence assay

specificity, i.e. assay stringency, probe length and probe position

relative to surfaces. After the initial screening of probes, the next

step is to select a combination of probe length, probe position and

assay stringency that fulfill the criteria for assigning a genotype for

each mutation site. In fact our approach is the reverse of regular

SNP assay development in which the assay conditions are fixed

and the SNPs that function within the set conditions, are selected

[10–12].
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Figure 5. Overview over different assay development strategies. A) After choosing the method for calling genotypes (Figure 2) or for
genotyping loci, placed in genomic regions with wide to narrow ranges in G+C content, the choice to run the assay at a single or at many assay
stringencies is made. Based on the above selections ‘‘Input criteria’’ the parameters (Opt. Param.) that need to be optimized/flexible are shown below
with the achieved success rate (SR) (percentage of mutations successfully genotyped). The parameters that must be optimized are probe length/Tm,
spacer length (position of probe relative to array surface) and alternative combinations of wildtype and mutant probe in probe-pairs (Alt probes). The
success rate obtained in this study (genotyping of PAH mutations) is valid for the wide range in G+C content. The results from a narrow range in G+C
content are from genotyping mutations in the HBB gene (reference). B) The steps in bottom-up (left) and top-down (right) assay strategies are listed.
The bottom-up approach is an iterative process with many rounds of probe design, testing and the redesigning of probes. In contrast the top-down
approach only utilizes one optimization experiment including all parameters needed for a functional assay.
doi:10.1371/journal.pone.0014777.g005
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We observed that the method of choice for assigning genotypes,

had a large impact on the fraction of successfully genotyped

mutations with a given assay strategy (Figure 4). The success rate

of methods A and B was higher for most assay strategies than that

of methods C and D. The likely reason is that methods C and D

necessitate probe ratios in the proximity of the ideal values for

each genotype class (1 = wild-type homozygous, 0.5 = heterozy-

gous and 0 = homozygous mutant). In order to obtain ideal ratios,

each probe-pair (mutant and wild-type probe) in a probe-set must

have similar assay condition preferences and similar DG values in

order to function in assay. In contrast, methods A and B only

require that the Wt- and corresponding Mt-probe signals can be

discriminated at an optimal stringency. Methods C and D are

therefore very sensitive to the relative stability of perfect-match

and the corresponding mismatch hybrid/duplex. Interestingly, by

screening probes of different lengths, their position relative to the

surface and assay washing conditions, it was possible to find probes

and conditions where the Wt- and Mt-probes had similar stability

and thus, a value of 0.5 for heterozygotes. As noted above

(Figure 3C), the DG values between wild-type and corresponding

mutant probes could vary significantly, indicating that we do not

fully understand the formation of hybrids at the array surface. This

further supports the fact that screening probes and conditions are

warranted.

Assay strategies that employed multiple assay conditions

(stringencies) were easier to obtained functional assays for than

strategies that used one common optimized condition. This

corroborates the findings of a smaller scale diagnostic assay using

spotted microarrays of Tm-matched probes immobilized on agarose

coated slides [20,22], as well as other studies [6,13,19,23–29]. The

effect of introducing restrictions in assay conditions appears to be

cumulative and the more restrictions introduced the less the

likelihood of obtaining a functional assay (Figure 4). The commonly

used assay strategy 9, i.e. fixed Tm, probe position and stringency,

only results in a 20–70% success rate depending on the method used

for assigning genotypes (Figure 4). In contrast, allowing the variation

of all parameters at the same time will give assays that successfully

genotype 100% of the mutation sites.

We have previously shown that each part of the 60 nt probe

exposes the respective hybrid to different stringencies [13].

Stringency at the distal position of the polymer was significantly

less than at the central and proximal positions which explains the

more solution-like properties of probes placed on longer spacers

[13,30–33]. This suggests that probes should be placed distally.

However, in the performance-optimized assay described in Table 1

and Figure 3A, only a third of the sites were genotyped with probes

placed distally (Figure 3B) indicating that both proximal and central

positions create a nano-environment that is superior to that found at

the distal end. The mechanism is still unclear, but we speculate that

conformations in targets and probes as well as the length of the tail

of the target might play a role in creating unique nano-

environments. Finding computer models for these interactions is

not the scope of this article, but we demonstrate that a functional

assay can be achieved with sufficient probe/assay screening.

In conclusion, our experiments showed that the selected method

for assigning genotypes if the assays are run with or without

varying stringency had a great impact on the success rate of the

different assay strategies. We therefore recommend a top-down

strategy (Figure 5), when developing an ASH-based genotyping

assay. This implies an initial selection of method for assigning

genotypes. Secondly, it is important to consider if the mutations/

SNP lies in areas with high or low variance in GC content

variance. Thirdly it is important to determine if the final assay is to

be performed at one or many stringencies. From these input

criteria an assay optimization procedure can be chosen to obtain a

final assay where all the desired mutations/SNP’s can be analysed

(Figure 5A). PAH genotyping was tested with all four genotype-

calling methods. Mutations in the PAH gene lies in region with

highly varying GC content. Obtaining a final assay genotyping

mutations in the PAH genes required different optimization

procedure depending mainly on the method to call genotypes.

Methods A and B which accepts non-ideal probe behaviour (see

above) requires that the assay was optimized using assay

parameters stringency and probe length. In contrast genotype-

calling methods C and D that accepts only ideal probe behaviour

required that all four parameters were optimized (probe length/

Tm, spacer, alternative probes and stringency).

In contrast to the PAH genotyping assay in this study, assays

targeting genomic regions with a narrower span in G+C content

require optimization of fewer parameters. Previous papers

regarding identification of optimal assay conditions for genotyping

mutations in the HBB gene found that an optimization only

involved probe length and stringency [20,22] (Figure 5). This is

probably due to the relatively few (nine) HBB genotyped mutations

and that the mutations were placed in genomic regions with a

lower span (45–75%) in G+C content in contrast to the mutations

in the PAH gene (20–75%).

Assay optimization can be performed along two routes (Figure 5B).

An iterative trial and error process can be employed when limited

optimization is needed (Figure 5B left panel). For example, the

iterative process is successful when optimizing the assay stringency

and probe set for a small set of mutations [22, 34]. Alternatively, as

shown here, a non-iterative process can be employed (Figure 5B right

panel). This latter optimization strategy can save time, valuable

patient material and most likely costs, as all essential parameters

influencing assay functionality are tested in one experiment. One

drawback of this optimization strategy with high-density microarrays,

is that the optimized probe-set needs to stay on the same or similar

microarray platform, e.g. Agilents microarrays. Because the same

probe-set cannot be expected to function on a spotted oligonucleotide

array on a different microarray substrate, or will at least require

further optimisation or validation.

Supporting Information

Figure S1 Experimental strategy, use of alternative probes.

Found at: doi:10.1371/journal.pone.0014777.s002 (3.17 MB TIF)

Table S1

Found at: doi:10.1371/journal.pone.0014777.s001 (0.06 MB

PDF)
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