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Holger Fröhlich*, Mark Fellmann, Holger Sültmann, Annemarie Poustka and Tim Beissbarth
German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany

Received on October 5, 2007; revised and accepted on December 18, 2007

Advance Access publication January 28, 2008

Associate Editor: Dmitrij Frishman

ABSTRACT

Motivation: Targeted interventions using RNA interference in

combination with the measurement of secondary effects with DNA

microarrays can be used to computationally reverse engineer

features of upstream non-transcriptional signaling cascades based

on the nested structure of effects.

Results: We extend previous work by Markowetz et al., who

proposed a statistical framework to score different network

hypotheses. Our extensions go in several directions: we show how

prior assumptions on the network structure can be incorporated into

the scoring scheme by defining appropriate prior distributions on the

network structure as well as on hyperparameters. An approach

called module networks is introduced to scale up the original

approach, which is limited to around 5 genes, to infer large-scale

networks of more than 30 genes. Instead of the data discretization

step needed in the original framework, we propose the usage of a

beta-uniform mixture distribution on the P-value profile, resulting

from differential gene expression calculation, to quantify effects.

Extensive simulations on artificial data and application of our module

network approach to infer the signaling network between 13 genes in

the ER-� pathway in human MCF-7 breast cancer cells show that our

approach gives sensible results. Using a bootstrapping and a

jackknife approach, this reconstruction is found to be statistically

stable.

Availability: The proposed method is available within the

Bioconductor R-package nem.

Contact: h.froehlich@dkfz-heidelberg.de

1 INTRODUCTION

The advent of RNA silencing enables researchers to selectively

silence genes of interest on large scale. DNA microarrays allow

to measure the effects of a perturbation on a genome-wide

scale. This enables to reverse engineer interdependencies
between gene products on a non-transcriptional level. The

genes of interest are silenced individually, and the respective

downstream effects on gene expression are measured by using

genome-wide microarrays. By observing the nested structure of

significant up- or down-regulations of affected genes, this

allows to reconstruct features of the upstream signaling
pathway (Boutros et al., 2002).

In a recent work, Markowetz et al. (2005) introduced nested

effect models as a method to reverse engineer the signal flow

between perturbed genes using the nested subset relationship

of secondary downstream effects. They developed a Bayesian

statistical framework, in which for a given network hypothesis

one can calculate a score and thus can reduce the set of all

possible networks to the most likely ones. A severe limitation of

this method lies, however, in the restriction to small networks

of up to five genes, because the method completely enumerates

all possible network hypotheses. Furthermore, a difficulty in

the practical use is the required binary discretization of the data

(‘secondary effect present/not present’).
In our work, we extend the framework by Markowetz et al.

in several directions in order to overcome these restrictions:

instead of the data discretization step needed in the original

framework, we propose the usage of a beta-uniform mixture

distribution on the P-value profile, resulting from differential

gene expression calculation, to quantify effects (Pounds and

Morris, 2003). Moreover, we show how prior assumptions on

the network structure can be incorporated into the network

scoring scheme by defining appropriate prior distributions on

the network structure as well as on its hyperparameter. Finally,

and most important, we present our so-called module networks

to scale up the original approach, which is limited to small

pathways with around five genes, to the inference of large-scale

networks (up to more than 30 genes). The idea is to build the

complete network recursively from smaller pieces that are

connected subsequently. In order to validate our approach, we

conduct extensive simulations on artificially created networks

and compare it to the triplets inference scheme described in

Markowetz et al. (2007). We show that module networks offer a

better performance in terms of reconstruction quality while

being significant computationally faster at the same time. We

also apply our module networks to infer the signaling network

between 13 genes in the ER-� pathway in human MCF-7 breast

cancer cells. Using bootstrapping and the jackknife this recon-

struction is found to be statistically stable.

2 METHODS

2.1 Original approach

We start with a brief review of the framework by Markowetz et al.: in

general one distinguishes between silenced genes (S-genes) and genes*To whom correspondence should be addressed.
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showing a downstream effect (E-genes). It is assumed that each E-gene

is attached to a single S-gene only (Fig. 1). Knocking down a specific

S-gene Sk interrupts signal flow in the downstream pathway, and hence

an effect on the E-genes attached to Sk and all S-genes depending on Sk

is expected. Let us assume n knock-downs are performed and there exist

m E-genes in total. The outcomes of these experiments are summarized

in an m � n data matrix D. According to Bayes’ formula, a specific

network hypothesis � 2 f0, 1}n � f0, 1}n can be scored as:

Pð�jDÞ ¼
PðDj�ÞPð�Þ

PðDÞ
ð1Þ

The position of the E-genes is introduced as a model parameter

�¼f�i|�i2 f1, . . ., n}, i ¼ 1, . . .,m}, i.e. �i ¼ j, if E-gene i is attached to

S-gene j. Assuming independence of the observations (rows) Di in the

data matrix D (given a fixed network hypothesis � and model param-

eters �) one can write down the conditional likelihood P(D|�, �) as:

PðDj�;�Þ ¼
Ym
i¼1

PðDij�; �iÞ ð2Þ

It is furthermore assumed that all parameters �i are statistically

independent, i.e.

Pð�j�Þ ¼
Ym
i¼1

Pð�ij�Þ ð3Þ

The likelihood P(D|�) can then be written as:

PðDj�Þ ¼

Z
PðDj�;�ÞPð�j�Þd� ð4Þ

¼
Ym
i¼1

Xn
j¼1

PðDij�; �i ¼ jÞPð�i ¼ jj�Þ ð5Þ

We now suppose a decomposition of P(Di|�,�i) as follows:

PðDij�; �iÞ ¼
Yn
k¼1

PðDikj�; �iÞ ð6Þ

This makes the assumption that knock-down experiments are

statistically independent from each other. Hence, Equation (5) can be

written down as

PðDj�Þ ¼
Ym
i¼1

Xn
j¼1

Yn
k¼1

PðDikj�; �i ¼ jÞPð�i ¼ jj�Þ ð7Þ

2.2 Extensions

2.2.1 Generalized inference framework Markowetz et al. sup-

pose the data matrix D to consist of counts, how often a specific E-gene

shows an effect in ‘ experiment repetitions. This requires a data

discretization step, for which user-specified type-I and type-II error

rates are assumed. The choice of these parameters is critical for the

inference procedure, because it directly influences (6) and is difficult to

estimate. Markowetz et al. suppose to have both, positive and negative

controls (pathway stimulated/not stimulated) for this procedure, which

for our data is not available (Section 3.2).

In our approach we only make the quite general assumption that D is

an m � n matrix of (raw) P-values, which specify the likelihood of

E-gene i being differentially expressed after knock-down of S-gene k.

The P-values are calculated using an arbitrary method for detecting

differential gene expression, e.g. limma (Smyth, 2004). They are sup-

posed to be drawn from a mixture of a uniform [0, 1] distribution

reflecting the null hypothesis and another distribution f1 reflecting the

alternative hypothesis (Pounds and Morris, 2003):

P ðDikÞ ¼ �k þ ð1� �kÞ � f1ðDikÞ; �k 2 ð0; 1Þ ð8Þ

Under the alternative hypothesis, there is a high density for small

P-values and a strong decrease for increasing P-values. Both distribu-

tions overlap with mixing coefficient �k � P (Dik|�,�i) can therefore be

decomposed as:

PðDikj�; �iÞ ¼
f1ðDikÞ if � predicts an effect
1 otherwise

n
ð9Þ

The density function f1 reflects the strength of the knock-down effect on

E-gene i under the alternative hypothesis. If it is greater than 1 the

alternative hypothesis would be accepted, and if it is smaller than 1

rejected. Still the problem remains, how to define f1 appropriately. For

this purpose one may simply assume a single Beta (1, �k) (�k 4 2)

distribution (c.f. Fröhlich et al., 2007a, b). However, a better fit can be

obtained by modeling P(Dik) : ¼ f(Dik) as a three component mixture of

a uniform, a Beta(1, �k) (�k42) and a Beta (�k, 1) (�k51) distribution:

f ðDikÞ ¼ �1k þ �2kBetaðDik; �k; 1Þ þ �3kBetaðDik; 1; �kÞ ð10Þ

with �1k þ �2k þ �3k ¼ 1 (�rk � 0, r ¼ 1, 2, 3). This three component

beta-uniform mixture model (BUM) can be fitted via an EM algorithm

(Dempster et al., 1977). The alternative distribution f1 can then be

extracted as follows: Let �̂ ¼ f ð1Þ be the maximum uniform part of the

BUM model. Then

f1ðDikÞ ¼
fðDikÞ � �̂

1� �̂
ð11Þ

Fig. 1. Main idea of the inference framework by Markowetz et al.:

a network hypothesis is a directed graph between S-genes. Attached to

each S-gene are several E-genes. Knocking down S-gene S2 interrupts

signal flow in the downstream pathway, and hence an effect of E-genes

attached to S2 and to S1 is expected.
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Fig. 2. Histogram of the P-value distribution of AKT2 knock-down

(see Section 3.2). Black: mixture model curve; red: extracted alternative

distribution.
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Figure 2 shows an example histogram of a P-value distribution

resulting from one of our real-life experiments, which are explained in

detail in Section 3.2. As seen the model curve drawn in black fits the

histogram perfectly. The extracted alternative distribution is shown

in red.

2.2.2 A Bayesian prior on the network structure Equation (1)

allows to specify a prior P(�) on the network structure itself. This can

be thought of biasing the score of possible network hypotheses towards

prior knowledge or assumptions. At the same time, we have to take into

account that our assumptions may only be true up to a certain degree.

Hence, for each edge we should suppose a prior probability reflecting

the degree of belief in its existence. In principle, this degree of belief

can be very different for each edge. We summarize all prior edge

probabilities in an n � n matrix �̂. Making the assumption that all

edge priors P(�ij) are independent, i.e.

Pð�Þ ¼
Y
i;j

Pð�ijÞ ð12Þ

allows us to define the connection between �ij and �̂ij for each edge

separately. Note that �ij 2 f0, 1} depending on whether we set the edge

i ! j or not. Hence, for each edge we have a certain difference

j�ij � �̂ijj to our prior assumptions. The smaller this difference, the

higher P(�ij) should be. We can therefore model P(�ij) as a Laplacian

distribution with width parameter � (cf. Imoto et al., 2003):

P ð�ijj�Þ ¼
1

2�
exp

�j�ij � �̂ijj

�

 !
ð13Þ

The width parameter � can scale the prior in an adjustable way. From a

Bayesian perspective one should hence specify a prior on the parameter

� as well. A natural choice for this purpose is the inverse gamma

distribution with hyperparameters 1 and 0.5:

� � InvGammað1; 0:5Þ ð14Þ

The full edge prior P(�ij) can then be obtained via marginalization:

Pð�ijÞ ¼

Z 1

0

Pð�j�ÞPð�Þd� ¼
1

1þ 2j�ij � �̂ijj

� �2 ð15Þ

If the difference j�ij � �̂ijj to our prior assumptions is zero, then the

prior is 1, whereas for j�ij � �̂ijj ! 1 the prior superlinearly drops

to 1/9.

2.2.3 Large-scale network inference The inference framework

(Sections 2.1 and 2.2.1), does not answer the question how to come up

with a candidate network topology, which we would like to score.

Markowetz et al. (2005) completely enumerate all possible topologies.

This is, however, only suitable for small networks of up to 5 S-genes.

For 5 S-genes there already exist more than 1 000 000 and for 10 genes

more than 1027 possible network topologies. In this context it should be

noted that the scoring scheme (Section 2.1) cannot distinguish between

two network hypotheses, if they only differ in transitive edges. This

issue is known as prediction equivalence and is due to the fact that subset

relationships, which are represented by a nested effects model, are

transitive in principle. Hence, it only makes sense to consider the set of

all transitively closed network hypotheses. However, restricting

ourselves to this limited class of network structures does not generally

solve the problem, since even then the number of networks to consider

scales in a similar way with the number of S-genes. Hence, we have to

resort to heuristics.

Module networks: The idea of the module network is to build up a

graph from smaller subgraphs, called modules in the following. Here we

present an updated version of the algorithm presented in our earlier

publications (Fröhlich et al., 2007a, b).

We begin with a hierarchical clustering of the preprocessed

expression profiles of all S-genes, e.g. via average linkage. The idea is

that S-genes with a similar E-gene response profile (here: with regard to

the Pearson correlation similarity) should be close in the signaling path.

We now successively move down the cluster tree hierarchy until we find

a cluster with only 4 S-genes at most. Figure 3 illustrates the idea with

an assumed network of 10 S-genes. At the beginning we find S8 as a

cluster singleton. Then by successively moving down the hierarchy we

identify clusters S6, S7, S1, S10, S3, S2, S5 and S4, S9. All these clusters

(modules) contain 4 S-genes at most and can thus be estimated by

taking the highest scoring of all possible network hypotheses.

Once all modules have been estimated their connections are

constructed. This is done in a constraint greedy hill-climbing fashion:

we successively add that edge between any pair of S-genes being

contained in different modules, which increases the likelihood of the

complete network most. This procedure is continued until no improve-

ment can be gained any more, i.e. we have reached a local maximum

of the likelihood function.

3 EXPERIMENTS

3.1 Large-scale inference: evaluation on artificial

networks

To test our methods and to get better insights into the

performance of our large-scale inference methods, we generated

data from artificial random networks.

3.1.1 Network topology creation Artificial random networks
were generated as follows: For each node Sk we randomly chose

the number o of outgoing edges between 0 and 3. We then

selected o nodes having at most 1 ingoing edge, connected Sk to
them and transitively closed the graph. Averaged over 100

random networks for n ¼ 10, this procedure yielded an average

of 3.5 � 2.1 ingoing and 3.5 � 3.6 outgoing edges per node
(min. 0, max. 9 in both cases). After network topology

construction, the m E-genes were attached uniform randomly

over all S-genes.

3.1.2 Data sampling We then simulated knock-downs of the
individual S-genes. For those E-genes, where no effects were

expected, the ‘P-values’ were drawn uniform randomly from

Fig. 3. Basic idea of module networks: by successively moving down

the cluster hierarchy we identify the clusters (modules) of S-genes,

which are marked in red. They contain 4 S-genes at most and can be

estimated by exhaustively searching for the highest scoring model.
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[0, 1]. For the others there was an independent prior

effect probability depending on the path distance d to the

‘knocked-down’ S-gene of 1� 1
2ðn�1Þ d, i.e. at the maximal

achievable path distance of d ¼ n � 1 there was only a 50%

chance to observe an effect. For each E-gene we threw a biased

coin with the corresponding prior effect probability, and

depending on the outcome the ‘P-value’ was either again

drawn uniform randomly from [0, 1] or sampled from the

alternative distribution [Equation (8)]. In order to do so we

sampled random parameters �k 2 (0, 1), �k 2 [5, 50] and �2k, �3k

2 (0, 0.5) (note that �1k ¼ 1 � �2k � �3k) of the three

component BUM model [Equation (10)] for each ‘knocked-

down’ separately. That means for each S-gene the ‘P-values’

could have a different distribution. To take into account the

BUM model re-estimation error, we additionally blurred each

parameter with normally distributed noise (SD �k: 10%; other

parameters: 0.05). These ‘noisy’ parameters were then used to

draw ‘P-values’ from the alternative distribution. However, to

quantify the effect strength according to Equation (11) the

original parameters were used. Hence, we simulated a mismatch

between the empirical and the modeled ‘P-value’ distribution.

3.1.3 Simulation results We sampled networks with n ¼ 10,
20, 30 S-genes. For each number of S-genes we varied the

number m ¼ n, 2n, 4n, 8n of E-genes. We compared the module

network with the triplets inference approach described in

Markowetz et al. (2007). The idea of the latter is to decompose

the complete network in all n
3

� �
possible combinations of three

S-genes. For each triplet the highest scoring model can then be

found among all 29 possible ones. No prior knowledge on the

network structure was used. We evaluated both methods in

terms of average sensitivity (i.e. ratio of correctly learned edges

to total number of edges in the original network) and specificity

(i.e. ratio of correctly unconnected genes to total number of

unconnected genes in the original network over 10n generated

networks for nS-genes. Moreover, the balanced accuracy,

i.e. the average of sensitivity and specificity was computed.
In Figure 4, we show the results for n ¼ 10, 20 S-genes. While

module networks and the triplets inference algorithm yield a

comparable specificity, the sensitivity for module networks is

much higher. As a result, the balanced accuracy for module

networks differs from that of the triplets inference algorithm

significantly for all numbers of E-genes. This conclusion was

assessed by a pairwise t-test at significance level 0.05. At the

same time, the computation time for the triplets inference was

significantly higher (Fig. 5) than for the module networks. For

n ¼ 30 S-genes triplets inference already became impractically

slow, so that we omit results here. In contrast, the module

network only needed around 2min for one network inference

on average, which seems affordable. As indicated by the plots

in Figure 6, the network reconstruction quality does not differ

much from that for n ¼ 10, 20.
Next we investigated the effect of the network prior

[Equation (15)]. For each network we randomly picked 25%,

50%, 75% of all edges in the original network (true positives)

and included 5% false positives. For both, true and false
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Fig. 4. Simulation results for artificial networks with n ¼ 10, 20 S-genes and varying number of E-genes.
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positives, the prior edge probability was set to 100%. Figure 7

summarizes the average improvement in terms of sensitivity,

specificity and balanced accuracy, which is gained by our prior

for the module network. As expected, the sensitivity is highly

increased, especially for a lower number of E-genes. At the

same time the specificity for m4 10 remains almost constant.

In conclusion, for all numbers of E-genes a significant improve-

ment of the balanced accuracy can be gained (P5 0.05).

3.2 Application to RNAi data from human ER-a
pathway

3.2.1 Data We applied the module network to infer the
complete topology for a network of n ¼ 13 S-genes in the ER-�
pathway. The 13 genes were selected from previous microarray

studies in our department to be influenced by ER status

in breast cancer patients. Each of the 13 genes was silenced

individually using two different siRNAs, respectively, and the

effect on gene expression was studied on whole genome cDNA

microarrays. The data were generated in our department.

Details are omitted here due to restrictions of space, but can be

obtained from the authors.

3.2.2 Preprocessing For each knock-down experiment after
VSN normalization (Huber et al., 2002) P-values for differ-

ential gene expression detection were calculated using limma

(Smyth, 2004). Afterwards BUM models were fitted to quantify

effects as described in Section 2.2.1. An a priori filtering among

the joint set of the top 100 E-genes from each experiment was

performed to select patterns of differentially expressed genes
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that can be expected to be non-randomly: supposed a gene is

significantly non-differentially expressed in knock-down experi-

ment k. Nonetheless we can observe a (multiple testing

corrected) P-value 5 � with false-positive rate �. Let us

encode with 1, if the P-value is smaller than � and 0 otherwise.

For n knock-down experiments, we can summarize the outcome

for each E-gene in a binary vector b ¼ (b1, . . ., bn)
T. Let M be

the total number of E-genes and sk the number of significant

genes in experiment k. Then, under the null hypothesis the

probability to observe b just by chance is

PrðbjH0Þ ¼
Yn
k

ðbk�
sk
M

þ ð1� bkÞð1� �Þ
M� sk

M
Þ ð16Þ

Among M E-genes we can thus expect to see b Pr(b|H0)M times

just be chance. The statistical significance of observing b

more often than can be expected by chance can therefore be

assessed by a binomial test. The corresponding P-value for

each pattern is corrected for multiple testing using the

Bonferroni method later. We then only choose those E-genes,

which show a significant pattern. In conclusion this procedure

eliminates false-positive patterns and thus reduces the noise

in the data. Moreover, the dimensionality of the data is

reduced efficiently. For our data we arrived at m ¼ 621 E-genes

this way.

3.2.3 Network inference We ran both, the triplets inference

algorithm and the module network reconstruction on our

dataset. We found the log marginal likelihood of the triplets

inference algorithm network to be significantly lower than that

of the module network (likelihood difference 142), thus

supporting our conclusions drawn from the simulation studies.
For our final network reconstruction we employed boot-

strapping in order to ensure the statistical stability and

robustness of the solution: we sampled m E-genes from the

total set of E-genes 1000 times with replacement and each time

ran the module network for topology induction. We did not use

any of the literature knowledge for inference here in order to

have an external source of validation later on. We only

considered edges, which were found in more than 50% of all

bootstrap trials. The average bootstrap probability for these

edges was 90 � 14%, i.e. most edges were inferred with high

stability. Furthermore, we assessed the stability of the

reconstructed network in a different way via jackknifing:

Each S-gene was left out once and the network inferred on

the present S-genes. We then counted the frequency of each

edge among all n network reconstructions. Only edges with a

jackknife probability of more than 50% were considered. The

average probability of these edges was 86 � 11%, i.e. again

most edges were highly stable. The overlap of the results

obtained from bootstrapping and from the jackknife is depicted

in Figure 8 as a transitively reduced graph.1

3.2.4 Comparison with literature We performed a literature
scan for known interdependencies between S-genes using the

IngenuityTM Software (Fig. 8, left). The edge ESR1 ! AKT2

in our network reconstruction is reflected by the signaling

cascade ESR1 ! Hsp70 ! AKT1 ! TCL1B ! AKT2.

Likewise, AKT2 ! BCL2 ! AKT1 can be confirmed by the

signaling cascade AKT2! ESR1! BCL2!Hsp90! AKT1.

Furthermore, our network contains BCL2 ! STAT5B, which

in the literature is BCL2 ! PPP2CA ! PTPN7 ! STAT5B,

and STAT5B ! ERK2 ! FOXA1, which is reflected by

STAT5B ! PTPN7 ! ERK2 ! TP53 ! Hist3 ! FOXA1.

At this point it should also be mentioned that due to

experimental circumstances in RNAi knock-down experi-

ments and due to the used cell line in principle there

might be deviances of the literature knowledge to the mea-

sured data.

AKT1

AKT2

BCL2

CCNG2

ERK2

ESR1

FOXA1

HSPB8

LOC120224

STAT5B

STC2

TP53

XBP1

Fig. 8. Left: Literature network obtained from IngenuityTM. Right: Consensus network induced by our method (transitively reduced graph).

1A transitive reduction G0 of a directed graph G is defined as graph with
a minimal number of edges such that the transitive closure of G0 is the
same as the transitive closure of G (Aho et al., 1972).
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4 CONCLUSION

We proposed a method for reconstructing signaling pathways
from secondary effects, which were observed on microarray

after silencing genes of interest via RNAi. Our approach
systematically extends and generalizes previous work by
Markowetz et al. instead of data discretization, a beta-uniform

mixture distribution on the P-value profile resulting from
differential gene expression calculation was used, to quantify
effects. A Bayesian prior on the network structure was
developed to incorporate assumptions on the network struc-

ture. In our simulation studies, we could show that in principle
this way the sensitivity of network reconstruction can be
increased significantly.

We developed an algorithm for large-scale inference of
signaling pathways and evaluated in a systematic fashion on
artificially created data. Our module networks, which recur-

sively build up the complete topology from smaller pieces, were
found to have a significantly better network reconstruction
quality than the previously proposed triplets inference

algorithm (Markowetz et al., 2007). At the same time, our
module networks could be computed much faster and therefore
allowed for the inference of large-scale networks of more than
30 genes.

We used the module network to infer the signaling pathway
for 13 genes in the ER-� pathway in human MCF-7 breast
cancer cells and used a bootstrapping as well as a jackknife

approach to ensure the statistical stability of the result. The
induced edges in our inferred network were found with
high consistency and could partially be also confirmed by

the literature. Future biological experiments are planned
to validate our reconstructed network in a systematic way.
In conclusion of our results we think that our approach offers a
scalable, reliable and fairly general way for large-scale inference

of signaling pathways from secondary effects and therefore
provides researchers with a valuable tool to gain insight into
complex cellular processes.

The code for the module network inference method is
available in the latest version of the R-package nem, which can
be obtained from the Bioconductor homepage.
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Fröhlich,H. et al. (2007a) Estimating large scale signaling networks through nested

effects models from intervention effects in microarray data. Proceedings

German Conf. on Bioinformatics, Gesellschaft für Informatik, pp. 45–54.
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