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Abstract: The scavenging and detection of sulfur hexafluoride (SF6) decomposition products (SO2,
H2S, SO2F2, SOF2) critically matters to the stable and safe operation of gas-insulated switchgear (GIS)
equipment. In this paper, the Rh-doped nitrogen vacancy boron nitride monolayer (Rh-VNBN) is
proposed as a gas scavenger and sensor for the above products. The computational processes are
applied to investigate the configurations, adsorption and sensing processes, and electronic properties
in the gas/Rh-VNBN systems based on the first-principle calculations. The binding energy (Eb) of
the Rh-VNBN reaches −8.437 eV, while the adsorption energy (Ead) and band gap (BG) indicate
that Rh-VNBN exhibits outstanding adsorption and sensing capabilities. The density of state (DOS)
analysis further explains the mechanisms of adsorption and sensing, demonstrating the potential use
of Rh-VNBN in sensors and scavengers of SF6 decomposition products. This study is meaningful as
it explores new gas scavengers and sensors of SF6 decomposition products to allow the operational
status assessment of GIS equipment.

Keywords: high voltage equipment; dielectric material; sulfur hexafluoride (SF6); defect sensing
and scavenging

1. Introduction

Sulfur hexafluoride (SF6) is extensively applied in gas-insulated switchgear (GIS)
equipment because of its good thermal conductivity, high dielectric strength, ideal arc-
extinguishing properties, and chemical inertness [1–3]. Nevertheless, the long-term op-
eration of GIS equipment inevitably results in latent insulation defects that cause partial
discharges (PD) [4]. With the effect of PD, SF6 might decompose into SO2, H2S, SO2F2, and
SOF2 [5–7]. The decomposition products would cause stronger discharges that would sig-
nificantly reduce the insulation properties of the SF6 [8–10]; therefore, the detection of the
SF6 decomposition products is necessary to ensure the reliability of GIS equipment [11,12].

Over the years, considerable attention has been dedicated to two-dimensional (2D)
nanomaterials due to their excellent carrier mobility, high chemical activity, and high spe-
cific surface area [13–15]. General 2D nanomaterials such as graphene [16–18], boron nitride
(BN) [19,20], and transition metal sulfides [21,22] are chemically sensitive materials with
excellent performance, which have been researched extensively for gas sensing [23–26];
however, the selectivity is generally not satisfactory to obtain single 2D nanomaterial gas
sensors. A variety of nanocomposite materials with a second phase, such as metals [27–30],
metal oxides [31–33], and other materials, can be constructed through surface functional-
ization, thereby improving the sensitivity to certain specific gases. For example, the Rh-BN
monolayer has been studied to produce workable SF6 decomposition gas sensors [34].
Meanwhile, 2D nanomaterials are defective for the most part [35]. The formed electronic
variation regions between the defect and pristine material have significant impacts on the
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electronic and chemical properties of 2D nanomaterials [36–38]. Moreover, the nitrogen
vacancy BN monolayer (VNBN) has better semiconducting properties and thermal stabil-
ity [39–41]; however, the effects of the vacancy for BN on monitoring SF6 decomposition
products are less well-understood.

In this study, the Rh-doped nitrogen vacancy BN monolayer (Rh-VNBN) is studied
as a sensor and scavenger of the SF6 decomposition products SO2, H2S, SO2F2, and
SOF2. The relevant theoretical calculations are based on first-principle density functional
(DFT) theory. The adsorption and sensing processes of Rh-VNBN for SO2, H2S, SO2F2,
and SOF2 are calculated and analyzed. The stable configurations of the gas/Rh-VNBN
adsorption systems are presented. Moreover, the adsorption energy (Ead), band gap (BG),
and electronic properties of these gas/Rh-VNBN adsorption systems are investigated. On
this basis, this computational study first presents a gas scavenger and sensor based on
Rh-VNBN, which features promising applicability for the scavenging and detection of SF6
decomposition products, thereby keeping GIS equipment safe and stable during operation.

2. Modeling of the Gas/Rh-VNBN System
2.1. Configurations of Rh-VNBN and Gas Molecules

Figure 1 displays the geometric configurations of pure BN monolayer and SF6 de-
composition gases (SO2, H2S, SO2F2, SOF2). As can be seen in Figure 1a, BN exhibits
a graphene-like two-dimensional hexagonal layered structure, which contributes to the
increase in specific surface area. The bond length between the B atom and N atom is 1.47 Å.
As shown in Figure 1b–e, unlike SO2 and H2S, SO2F2 and SOF2 have three-dimensional
space structures. The high electronegativity and tetrahedral structure make the SO2F2
extremely stable, while the physicochemical properties of SOF2 are similar to SO2F2 [42–44].

Polymers 2021, 13, x FOR PEER REVIEW 2 of 11 
 

 

sensors [34]. Meanwhile, 2D nanomaterials are defective for the most part [35]. The 
formed electronic variation regions between the defect and pristine material have signifi-
cant impacts on the electronic and chemical properties of 2D nanomaterials [36–38]. More-
over, the nitrogen vacancy BN monolayer (VNBN) has better semiconducting properties 
and thermal stability [39–41]; however, the effects of the vacancy for BN on monitoring 
SF6 decomposition products are less well-understood. 

In this study, the Rh-doped nitrogen vacancy BN monolayer (Rh-VNBN) is studied 
as a sensor and scavenger of the SF6 decomposition products SO2, H2S, SO2F2, and SOF2. 
The relevant theoretical calculations are based on first-principle density functional (DFT) 
theory. The adsorption and sensing processes of Rh-VNBN for SO2, H2S, SO2F2, and SOF2 
are calculated and analyzed. The stable configurations of the gas/Rh-VNBN adsorption 
systems are presented. Moreover, the adsorption energy (Ead), band gap (BG), and elec-
tronic properties of these gas/Rh-VNBN adsorption systems are investigated. On this ba-
sis, this computational study first presents a gas scavenger and sensor based on Rh-
VNBN, which features promising applicability for the scavenging and detection of SF6 
decomposition products, thereby keeping GIS equipment safe and stable during opera-
tion. 

2. Modeling of the Gas/Rh-VNBN System 
2.1. Configurations of Rh-VNBN and Gas Molecules 

Figure 1 displays the geometric configurations of pure BN monolayer and SF6 de-
composition gases (SO2, H2S, SO2F2, SOF2). As can be seen in Figure 1a, BN exhibits a gra-
phene-like two-dimensional hexagonal layered structure, which contributes to the in-
crease in specific surface area. The bond length between the B atom and N atom is 1.47 Å. 
As shown in Figure 1b–e, unlike SO2 and H2S, SO2F2 and SOF2 have three-dimensional 
space structures. The high electronegativity and tetrahedral structure make the SO2F2 ex-
tremely stable, while the physicochemical properties of SOF2 are similar to SO2F2 [42–44]. 

 
 

Figure 1. (a) Configurations of pure BN monolayer. (b–e) Configurations of the molecules of SF6 decomposition products. 

The configurations of VNBN and Rh-VNBN after geometric optimization are de-
picted in Figure 2a,b, respectively. The existence of the nitrogen vacancy (VN) creates ad-
ditional energy states, as the VN has higher chemical stability as compared with the boron 
vacancy (VB) [27]. As can be seen in Figure 2b, the Rh atom occupies the VN and bonds 
to the three adjacent B atoms after doping and geometric optimization. From the front 
view, the Rh atom bonded to the three B atoms is slightly raised from the VNBN surface. 

Generally, the binding energy (Eb) of VNBN is negative after doping with the Rh 
atom, indicating that there is an exothermic doping process. This also suggests that the 
doping reaction occurs spontaneously; hence, the doped configurations of Rh-VNBN have 
higher stability with higher absolute binding energy values. As shown in Figure 2b, high 
Eb (–8.437 eV) suggests that the Rh atom is stably bonded to VNBN, forming a surface 
support and strong bonding force in the doping process [45–47]. The above calculation 

Figure 1. (a) Configurations of pure BN monolayer. (b–e) Configurations of the molecules of SF6 decomposition products.

The configurations of VNBN and Rh-VNBN after geometric optimization are depicted
in Figure 2a,b, respectively. The existence of the nitrogen vacancy (VN) creates additional
energy states, as the VN has higher chemical stability as compared with the boron vacancy
(VB) [27]. As can be seen in Figure 2b, the Rh atom occupies the VN and bonds to the three
adjacent B atoms after doping and geometric optimization. From the front view, the Rh
atom bonded to the three B atoms is slightly raised from the VNBN surface.

Generally, the binding energy (Eb) of VNBN is negative after doping with the Rh
atom, indicating that there is an exothermic doping process. This also suggests that the
doping reaction occurs spontaneously; hence, the doped configurations of Rh-VNBN have
higher stability with higher absolute binding energy values. As shown in Figure 2b, high
Eb (−8.437 eV) suggests that the Rh atom is stably bonded to VNBN, forming a surface
support and strong bonding force in the doping process [45–47]. The above calculation
proves that there is a strong interaction between Rh and VNBN and that the Rh-VNBN
configurations have high stability.
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Figure 2. Configurations of the Rh-doped nitrogen vacancy BN monolayer. The red circle represents
the nitrogen vacancy. (a) VNBN, (b) Rh-VNBN.

2.2. Electronic Properties of Rh-VNBN

The band structures of the pure BN monolayer and Rh-VNBN are illustrated in
Figure 3a,b, respectively. The figure indicates that the band gaps (BG) of the pure BN
monolayer and Rh-VNBN are 4.655 eV and 2.892 eV, respectively. The lower band gap
of Rh-VNBN indicates that the nitrogen vacancy and doped Rh atom will significantly
increase the conductivity and improve the adsorption and sensing properties.
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The total density of states (TDOS) and the partial density of states (PDOS) analyses
were applied to describe the electronic properties of the nitrogen vacancy BN monolayer
after doping with the Rh atom. As shown in Figure 3c, the TDOS of the pure BN monolayer
shows notable semiconductor properties, with a band gap at the Fermi level. After doping
with the Rh atoms into the nitrogen vacancy, some new states appeared in the TDOS of
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the Rh-VNBN at the Fermi level, indicating the nitrogen vacancy and the doped Rh atom
contributes obviously to the TDOS. The change in TDOS is consistent with the change
in BG, which means that electrons can be easily transferred from the valence band to the
conduction band. It can be seen from the PDOS results in Figure 3d that the states of the
B 2p orbitals highly overlap with those of the Rh 4d orbital within the range of −5 eV to
5 eV. The above electronic properties suggest strong bonding between the Rh atom and
adjacent B atoms in the Rh-VNBN, leading to stable Rh-B bonds and a larger absolute
binding energy.

2.3. Configurations of Gas/Rh-VNBN Adsorption Systems

Different configurations of gas/Rh-VNBN pre-adsorption systems are considered
in this computational study. Similar to binding energy, the adsorption energy (Ead) of
the gas/Rh-VNBN system is generally negative, which corresponds to an exothermic,
spontaneous gas adsorption process. With the higher absolute value of Ead, the SF6
decomposition gases are more easily adsorbed by the Rh-VNBN, which also results in
higher stability of the gas/Rh-VNBN adsorption system. After comparing the adsorption
energy, the stable systems of various SF6 decomposition products (SO2, H2S, SO2F2, SOF2)
on Rh-VNBN are displayed in Figure 4. The adsorption distances between Rh-VNBN and
various SF6 decomposition products (SO2, H2S, SO2F2, SOF2) are 2.289 Å, 2.462 Å, 2.262 Å,
and 2.444 Å, respectively. Compared with the pre-adsorption systems, the distance between
Rh-VNBN and the SF6 decomposition gases is shortened, which suggests a tendency of the
SF6 decomposition gases to move toward the Rh-VNBN.
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3. Results and Discussion
3.1. Adsorption and Sensing Properties of Gas/Rh-VNBN Adsorption System

Figure 5a shows the adsorption energy values of the four gas/Rh-VNBN adsorption
systems mentioned above. The adsorption energy values of SO2/Rh-VNBN, H2S/Rh-
VNBN, SO2F2/Rh-VNBN, and SOF2/Rh-VNBN adsorption systems are−1.176 eV, −0.911 eV,
−0.476 eV, and −1.005 eV, respectively. The adsorption energy of SO2F2/Rh-VNBN is
lower than the other three adsorption systems and is physically absorbed by the Rh-VNBN.
This indicates that the SO2F2/Rh-VNBN adsorption system is not as stable as the other
three adsorption systems; however, it is important that the adsorption processes of SF6
decomposition products in Rh-VNBN are all spontaneous and stable.
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As presented in Figure 5b, the BG values of SO2/Rh-VNBN, H2S/Rh-VNBN, SO2F2/Rh-
VNBN, and SOF2/Rh-VNBN adsorption systems are 2.190 eV, 3.334 eV, 2.037 eV, and
2.800 eV, respectively. Moreover, the sensing analysis of the gas/Rh-VNBN adsorption
systems is based on the changes of resistance. It is well known that the greater the change
in BG, the greater the change in conductivity (σ) of the gas/Rh-VNBN system. As the
resistance and σ are negatively correlated, the sensing properties of Rh-VNBN for SO2,
H2S, and SO2F2 are consequently better than those for SOF2.

In addition, the Rh charge transfer (QRh) and Gas charge transfer (Qgas) based on the
Mulliken population analysis are shown in Figure 5c,d, respectively. The charge transfer
values of the Rh atom in the SO2/Rh-VNBN, H2S/Rh-VNBN, SO2F2/Rh-VNBN, and
SOF2/Rh-VNBN adsorption systems are −0.783 eV, −0.283 eV, −0.733 eV, and −0.838 eV,
respectively. The QRh is negative in all four adsorption systems, indicating that Rh atom
always loses electrons during the adsorption process. In Figure 5d, the charge transfer
values of the gas molecules in the SO2/Rh-VNBN, H2S/Rh-VNBN, SO2F2/Rh-VNBN and
SOF2/Rh-VNBN adsorption systems are −0.145 eV, 0.176 eV, −0.027 eV, and −0.045 eV,
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respectively. The Qgas is negative for all adsorption systems except the SO2/Rh-VNBN
adsorption system. This indicates that electrons are transferred from gases to Rh-VNBN dur-
ing the adsorption process for most of the SF6 decomposition products (H2S, SO2F2, SOF2).

3.2. Electronic Properties and Mechanisms of the Gas/Rh-VNBN Adsorption Systems

The TDOS and PDOS analyses for various gas adsorption systems are used for in-
depth investigation of the electronic properties of gas/Rh-VNBN adsorption systems to
elucidate sensing and adsorption mechanisms. As presented in Figure 6, except for the
H2S/Rh-VNBN adsorption system, the TDOS values near the Fermi level in the other
adsorption systems shift slightly to the left, with more electrons appearing between the
valence band and conduction band. As such, most of the adsorption is beneficial to the
conductivity of the gas/Rh-VNBN systems; however, the conductivity of the H2S/Rh-
VNBN adsorption systems decreases slightly, which is consistent with the change of the
band gap.
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From the perspective of PDOS, the Rh orbital in the SO2F2/Rh-VNBN adsorption
system has relatively little overlap with the frontier atom orbitals of the gas molecule
compared to the other three systems; therefore, the Rh 4d orbital is less hybridized with
S 3p, O 2p, and F 2p of SO2F2. This suggests that the bonding force between Rh-VNBN
and SO2F2 is not as strong as the other three gases (SO2, H2S, SOF2). The PDOS explains
why the adsorption energy absolute value of SO2F2/Rh-VNBN is higher than the other
three adsorption systems. Moreover, the Rh 4d orbital is strongly hybridized with frontier
atom orbitals of SO2, H2S, and SOF2 gas molecules, demonstrating that the bonding
force between Rh-VNBN and these three gases is strong. Correspondingly, the PDOS
also illustrates that most gas/Rh-VNBN adsorption systems in this study are stable. In
summary, the DOS values of gas/Rh-VNBN adsorption systems also further illustrate the
potential of Rh-VNBN in sensors and scavengers of SF6-decomposed products.

4. Conclusions

In this study, Rh-VNBN is proposed for the scavenging and detection of SF6-decomposed
products. First-principle calculations based on DFT theory are applied to study the con-
figurations, adsorption and sensing process, and electronic properties of Rh-VNBN for
SF6-decomposed products. The following conclusions are drawn from the present study.

The Rh atom occupies the nitrogen vacancy and bonds to the three adjacent B atoms
to form a stable configuration of Rh-VNBN. The binding energy (Eb) of Rh-VNBN reaches
−8.437 eV, indicating that the Rh atom is stably bonded to VNBN. Moreover, the nitrogen
vacancy and doped Rh atom significantly improve the conductivity of Rh-VNBN.

1. Based on the analysis of the adsorption energy (Ead), the adsorption processes of
SF6 decomposition products on Rh-VNBN are spontaneous and stable. In addition,
the changes of the band gap (BG) suggest the sensing properties of Rh-VNBN for
SO2, H2S, and SO2F2 are better than that for SOF2. Rh-VNBN exhibits outstanding
adsorption and sensing capabilities for various SF6-decomposed gases;

2. The electronic properties of gas/Rh-VNBN systems are studied, contributing to the
understanding of the adsorption and sensing mechanisms. Additionally, the DOS
further demonstrates the potential of Rh-VNBN for use in sensors and scavengers of
SF6-decomposed products;

3. From a long-term perspective, this computational study on gas/Rh-VNBN adsorp-
tion systems is important for future research on scavengers and sensors of SF6-
decomposed gases, thereby ensuring the safe and stable operation of GIS equipment.

5. Computational Details

All of the first-principle calculations were performed using the DMol3 package in
Materials Studio (MS) based on DFT [48], which has been demonstrated to be reasonable
in previous experimental and theoretical studies [15,49–52]. The electron exchange and
correlation process was set to the generalized gradient approximation (GGA) of the Perdew–
Burke–Ernzerhof (PBE) functional [53]. The double numerical basis with polarization (DNP)
was used as the atomic orbital basis set, while the DFT semi-core pseudopotential (DSSP)
was applied to process the relativistic effects of the Rh atom [54]. Considering the van
der Waals forces of the gases and Rh-VNBN, the semi-empirical dispersion corrections
(DFT-D) method proposed by Grimme was applied to better investigate long-range weak
interactions [55]. The pure BN monolayer supercell, including 16 B and 16 N atoms, was
built with a graphene-like structure. The k-point sample of the Monkhorst–Pack grid was
sampled as 8 × 8 × 1 and 5 × 5 × 1 for electronic structure and geometry optimization
calculations, respectively [56]. The convergence criteria adopted in this study, including
the energy tolerance accuracy, maximum force, and maximum displacement, were set as
10−5 Ha, 2 × 10−3 Ha/Å, and 5 × 10−3 Å, respectively [57]. For static electronic structure
calculations, a self-consistent loop energy of 10−6 Ha, global orbital cutoff radius of 5.0 Å,
and smearing of 5 × 10−3 Ha were applied [30].
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To identify the doping site of the nitrogen vacancy BN monolayer with the best
stability, various Rh doping sites were considered and analyzed. In general, the binding
energy (Eb) of Rh-VNBN is adopted to assess the doping stability of the Rh atom. The Eb is
determined using Formula (1) as presented below:

Eb = ERh-VNBN − ERh − EVNBN (1)

where ERh-VNBN, ERh, and EVNBN are the energy of the Rh-VNBN, Rh atom, and nitrogen
vacancy BN monolayer, respectively.

Similarly, to identify the best stability of geometric configurations for SF6 decompo-
sition gases (SO2, H2S, SO2F2, SOF2) adsorbed on the Rh-VNBN, the adsorption energy
(Ead) of the gas/Rh-VNBN adsorption system is commonly applied to assess adsorption
properties. The Ead is calculated using the following formula:

Ead = Egas/Rh-VNBN − ERh-VNBN − Egas (2)

where Egas/Rh-VNBN, ERh-VNBN, and Egas represent the total energy of the gas/Rh-VNBN
adsorption system, isolated Rh-VNBN, and gas molecule, respectively.

Depending on the variation of the band gap (BG), the relevant conductivity (σ) changes
of gas/Rh-VNBN system can be calculated using Formula (3):

σ ∝ exp(−BG/2kT) (3)

where T is the temperature in kelvin (K).
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