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SUMMARY

We derive optimal designs to estimate efficacy and toxicity in active controlled dose-finding trials when
the bivariate continuous outcomes are described using nonlinear regression models. We determine upper
bounds on the required number of different doses and provide conditions under which the boundary points
of the design space are included in the optimal design. We provide an analytical description of minimally
supported optimal designs and show that they do not depend on the correlation between the bivariate
outcomes.

Some key words: Admissible design; Equivalence theorem; Particle swarm optimization; Tchebycheff system.

1. INTRODUCTION

Most literature on optimal design of experiments concerns univariate outcomes. In practice, however,
experiments are often conducted to measure multiple outcomes that may be correlated. For instance,
pharmaceutical dose-finding trials invariably measure bivariate outcomes involving efficacy and toxicity.
Heise & Myers (1996) used the Gumbel bivariate binary quantal response model and Magnusdottir (2013)
applied c-optimal designs to the bivariate Emax model to study efficacy and toxicity. Similarly, Fan &
Chaloner (2004) proposed using a continuation ratio model for a trinomial outcome, where the outcome of
a patient is classified as no reaction when neither toxicity nor efficacy occurs, efficacy for efficacy without
toxicity, and adverse reaction for toxicity. Adaptive dose-finding trials incorporating both efficacy and
safety have also been investigated; see for example, Dragalin et al. (2008).

Recently, the use of active controls instead of placebos in dose-finding trials has received considerable
attention (Temple & Ellenberg, 2000; Splawinski & Kuzniar, 2004; Helms et al., 2015). Dette et al. (2014,
2015) discussed design issues for such trials with univariate outcomes. To the best of our knowledge,
however, the problem of determining optimal designs for active controlled trials with bivariate mean
outcomes has not yet been investigated. In this paper we address this problem in two steps. In § 3 we
provide new results about optimal designs for various models with efficacy and toxicity outcomes without
an active control. In particular we derive new upper bounds on the required number of doses and determine
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analytically the optimal designs with the minimum number of doses. Secondly, we show in § 4 how to obtain
locally optimal designs for active controlled dose-finding trials from the preceding results for uncontrolled
trials and demonstrate our approach in an example.

2. OPTIMAL DESIGNS FOR BIVARIATE OUTCOMES

Given a statistical model defined on a dose interval D = [L, R] ⊂ R
+
0 , the design problem is to determine

for a given design criterion the optimal number of doses, k , the dose levels d1, . . . , dk ∈ D, and the number
of patients assigned to each dose. That is, for a given total sample size n1, the optimal design needs to
specify the number of patients n1i at each dose level di subject to

∑k
i=1 n1i = n1. We use the index 1 here in

the notation, i.e., n1, n1i, . . ., since in later sections we use the index 2 for active controlled clinical trials.
Let Yij be the two-dimensional outcome variable at dose level di from subject j and assume that

Yij = (Y e
ij , Y t

ij)
T ∼ N2{η1(di, θ1), �1} (j = 1, . . . , n1i; i = 1, . . . , k). (1)

The mean response η1(d, θ1) = {ηe
1(d, θ e

1 ), η
t
1(d, θ t

1)}T ∈ R
2 describes the expected efficacy (ηe

1) and
toxicity (ηt

1) at dose level d ∈ D, where the (se
1 + 1)- and (st

1 + 1)-dimensional vectors θ e
1 and θ t

1 define the
parameters in the models ηe

1 and ηt
1, respectively. The parameter θ1 = {(θ e

1 )
T, (θ t

1)
T}T varies in a compact

parameter space, say �1 ⊂ R
s1 , where s1 = se

1 + st
1 + 2. The unknown covariance matrix is

�1 = cov(Y ) =
(

σ 2
e ρσeσt

ρσeσt σ 2
t

)
,

where −1 < ρ < 1 denotes the correlation between the two outcome variables and the variances of the
random variables Y e

ij and Y t
ij are given by σ 2

e and σ 2
t , respectively. The variables Y11, . . . , Ykn1k are assumed

to be independent.
We further assume that η1 is continuously differentiable with respect to the parameter θ1 and denote,

respectively, the gradients of the two mean responses with respect to θ e
1 and θ t

1 by

fe(d, θ e
1 ) = ∂

∂θ e
1

ηe
1(d, θ e

1 ) = {f e
0 (d), . . . , f e

se
1
(d)}T, ft(d, θ t

1) = ∂

∂θ t
1

ηt
1(d, θ t

1) = {f t
0 (d), . . . , f t

st
1
(d)}T.

Throughout, let 0q denote the q-dimensional vector with all entries equal to 0; sometimes the subscript
will be omitted for simplicity. The Fisher information matrix is given by the s1 × s1 matrix

I1(d, θ1) =
{

∂

∂θ1
η1(d, θ1)

∣∣∣∣
θ1=θ1

}T

�−1
1

{
∂

∂θ1
η1(d, θ1)

∣∣∣∣
θ1=θ1

}
=
(

fe(d) 0se
1+1

0st
1+1 ft(d)

)
�−1

1

(
f T
e (d) 0T

st
1+1

0T
se
1+1 f T

t (d)

)

= 1

σ 2
e σ 2

t (1 − ρ2)
F(d),

where

F(d) =
(

σ 2
t F1 −ρσeσtF2

−ρσeσtFT
2 σ 2

e F3

)
(2)

and the blocks in the matrix are defined by F1 = fe(d, θ e
1 )f

T
e (d, θ e

1 ) ∈ R
(se

1+1)×(se
1+1), F2 =

fe(d, θ e
1 )f

T
t (d, θ t

1) ∈ R
(se

1+1)×(st
1+1) and F3 = ft(d, θ t

1)f
T

t (d, θ t
1) ∈ R

(st
1+1)×(st

1+1). We have suppressed the
dependence of the matrices F , F1, F2 and F3 on the parameter θ1 in our notation.

We consider approximate designs in the sense of Kiefer (1974), which are defined as probability measures
with finite support on the design space D. If an approximate design ξ has k support points, say d1, . . . , dk ,
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with corresponding positive weights ω1, . . . , ωk such that
∑k

i=1 ωi = 1, and n1 observations can be taken,
a rounding procedure is applied to obtain integers n1i (i = 1, . . . , k) from the possibly rational numbers
ωin1. The information matrix M1(ξ , θ1) of a design ξ is defined by the s1 × s1 matrix

M1(ξ , θ1) =
∫

D
I1(d, θ1) dξ(d) =

k∑
i=1

ωi

σ 2
e σ 2

t (1 − ρ2)
F(di),

where the matrix F(d) is defined in (2).
Under standard regularity conditions, the maximum likelihood estimator θ̂1 is asymptotically normally

distributed, that is, n1
1/2(θ̂1 − θ1) tends in distribution to Ns1{0, M −1

1 (ξ , θ1)} as n1 tends to infinity. Con-
sequently, we search for designs that maximize the information matrix M1(ξ , θ1) in an appropriate sense.
To be precise, let p ∈ [−∞, 1) and let K ∈ R

s1×m be a given matrix of full column rank. A design ξ ∗ is
called locally φp-optimal for estimating the linear combination KTθ1 if it maximizes the concave functional
φp(ξ) = [tr{KTM −

1 (ξ , θ1)K}−p/m]1/p among all designs ξ satisfying Range(K) ⊂ Range{M1(ξ , θ1)}, i.e.,
KTθ1 is estimable by the design ξ (Kiefer, 1974). Here, tr(A) and A− denote the trace and a generalized
inverse of the matrix A, respectively.

One key advantage of working with approximate designs is that convex optimization theory can be
applied and a general equivalence theorem is available to verify whether a design is optimal among all
designs. Its proof is a direct application of Theorem 7.14 in Pukelsheim (2006).

THEOREM 1. Let K be a s1 ×m matrix of full column rank. If p ∈ (−∞, 1), a design ξ ∗ with Range(K) ⊂
Range{M1(ξ

∗, θ1)} is locally φp-optimal for estimating the linear combination KTθ1 if and only if there
exists a generalized inverse G of the information matrix M1(ξ

∗, θ1) such that

τ(d, ξ ∗) = tr
{I1(d, θ1)GK{CK(ξ ∗)}p+1KTGT

}− tr{CK(ξ ∗)}p � 0 (3)

holds for all d ∈ D, where CK(ξ ∗) = {KTM −
1 (ξ ∗, θ1)K}−1. If p = −∞, a design ξ ∗ with Range(K) ⊂

Range{M1(ξ
∗, θ1)} is locally φ−∞-optimal for estimating the linear combination KTθ1 if and only if there

exists a generalized inverse G of the information matrix M1(ξ
∗, θ1) and a nonnegative-definite matrix

E ∈ R
m×m with tr(E) = 1 such that

tr
{I1(d, θ1)GKCK(ξ ∗)ECK(ξ ∗)KTGT

}− λmin{CK(ξ ∗)} � 0

holds for all d ∈ D, where λmin{CK(ξ ∗)} denotes the minimum eigenvalue of CK(ξ ∗). Moreover, at the
support points of any φp-optimal design there is equality in the above inequalities.

The sensitivity function on the left-hand side of (3) can be used to provide a lower bound on the φp-
efficiency of any design for p > −∞ (Dette, 1996), that is,

effp(ξ) = φp(ξ)

supν φp(ν)
� tr{CK(ξ)}p

maxd∈D tr[I1(d, θ1)GK{CK(ξ)}p+1KTGT] .

Characterizations of the type (3) are also useful for finding optimal designs analytically if the model is
not too complicated. However, regression models with a multivariate outcome are complex and in practice
optimal designs have to be found numerically (Chang, 1997; Sagnol, 2011). For such calculations, sharp
bounds on the number of support points of the optimal designs reduce the complexity of the optimization
problem substantially and will be derived in the following section.

3. OPTIMAL DESIGNS FOR DOSE-FINDING TRIALS WITHOUT AN ACTIVE CONTROL

3·1. Introduction

A design ξ1 is called admissible if there does not exist a design ξ2 such that M1(ξ1, θ1) |= M1(ξ2, θ1)

and M1(ξ1, θ1)�LM1(ξ2, θ1) with respect to the Loewner ordering (Karlin & Studden, 1966). Recently, the
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characterization of the number of support points of admissible designs has received considerable attention
(Yang & Stufken, 2009; Yang, 2010; Dette & Melas, 2011; Yang & Stufken, 2012; Dette & Schorning,
2013), leading to substantially smaller bounds than provided by the classical approach using Caratheodory’s
theorem (Pukelsheim, 2006). We show in TheoremA.1 of the Supplementary Material that these results can
be proved under weaker assumptions than usually made in the literature using the theory of Tchebycheff
systems (Karlin & Studden, 1966). More specifically, in Theorem A.1 we provide a characterization of
admissible designs that generalizes Theorem 3.1 in Dette & Melas (2011) and can be used to derive new
bounds on the number of support points of admissible designs for the commonly used nonlinear regression
models in dose-finding trials without an active control for joint efficacy-toxicity outcomes.

3·2. Bounds on the number of support points

The function which maps the matrix M to (KTM −K)−1 is increasing with respect to the Loewner ordering
on the set of all s1 ×s1 matrices satisfying Range(K) ⊂ Range(M ) (Pukelsheim, 2006). That is, if M1�LM2

then (KTM −
1 K)−1�L(KTM −

2 K)−1 for all matrices M1 and M2 satisfying the range inclusion. Because the
φp-criteria are monotone, we have φp(ξ) � φp(ξ

∗) for any designs ξ and ξ ∗, where M1(ξ , θ)�LM1(ξ
∗, θ).

The following results give upper bounds on the number of support points of such designs. For a precise
formulation, we define the index I (ξ) of a design ξ on the interval [L, R] as the number of support points,
where each interior support point is counted as one and each support point at the boundary of the interval
[L, R] is counted as one half. The following results are proved in the Supplementary Material, where one
can also find additional results for exponential models. For the following two statements let ξ denote an
arbitrary design on the dose interval D = [L, R].

THEOREM 2. Assume that the model for efficacy is given by ηe
1(d, θ e

1 ) = ϑ e
0 + ϑ e

1 d + ϑ e
2 d2.

(a) If ηt
1(d, θ t

1) = ϑ t
0 + ϑ t

1d + ϑ t
2d2, there exists a design ξ ∗ with at most three support points such that

M1(ξ
∗, θ1)�LM1(ξ , θ1). If I (ξ) � 2, ξ ∗ can be chosen such that its support contains L and R.

(b) If ηt
1(d, θ t

1) = ϑ t
1d(ϑ t

2 + d)−1 or ηt
1(d, θ t

1) = ϑ t
0 + ϑ t

1d(ϑ t
2 + d)−1, there exists a design ξ ∗ with at

most five support points such that M1(ξ
∗, θ1)�LM1(ξ , θ1). If I (ξ) � 4, ξ ∗ can be chosen such that

its support contains L and R.

THEOREM 3. Assume that both the model for efficacy and the model for toxicity are given by η(d, θ) =
ϑ0 + ϑ1d(ϑ2 + d)−1 or η(d, θ) = ϑ1d(ϑ2 + d)−1. Then there exists a design ξ ∗ with at most five support
points such that M1(ξ

∗, θ1)�LM1(ξ , θ1). If I (ξ) � 4, ξ ∗ can be chosen such that its support contains L
and R.

Remark 1. The remaining cases can be obtained by swapping the roles of ηe and ηt in Theorems 2
and 3. For example, if ηe

1(d, θ1) = ϑ e
0 + ϑ e

1 d(ϑ e
2 + d)−1 and ηt

1(d, θ1) = ϑ t
0 + ϑ t

1d + ϑ t
2d2, then it follows

from Theorem 2(b) that for any design ξ there exists a design ξ ∗ with at most five support points such that
M1(ξ

∗, θ1)�LM1(ξ , θ1). Moreover, if I (ξ) � 4, then ξ ∗ can be chosen such that its support contains L and
R. The other cases are obtained similarly.

3·3. Minimally supported D-optimal designs

Let # supp(ξ) denote the number of support points of a design ξ and let m∗ = min{# supp(ξ) |
det{M1(ξ , θ1)} > 0, ξ is a design on D} be the minimal number of support points of a design with a non-
singular information matrix in model (1). A design ξ is called minimally supported if det{M1(ξ , θ1)} > 0
and the number of support points is given by m∗. In general, optimal designs have to be determined numeri-
cally for complex models, and even then many current algorithms may not work well. However, restricting
the search to minimally supported designs can greatly simplify the optimization problem, which may then
allow us to determine locally D-optimal designs.
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THEOREM 4. If the number of parameters in the mean function for the efficacy model is the same as
for the toxicity model, i.e., se

1 = st
1, the minimally supported locally D-optimal design for model (1) is a

uniform design. Moreover, its support points do not depend on the entries in the covariance matrix �1.

The following result provides minimally supported D-optimal designs for some dose-response models.
Its proof uses Theorem 4, which reduces the optimization problem to the determination of the support
points. Here and elsewhere, we let a ∨ b denote the maximum of the two numbers in the set {a, b}.

THEOREM 5. Assume the user-selected dose interval is D = [L, R].
(a) Assume that the model for efficacy is given by ηe

1(d, θ e
1 ) = ϑ e

0 + ϑ e
1 d + ϑ e

2 d2.

(i) If ηt
1(d, θ t

1) = ϑ t
0 +ϑ t

1d +ϑ t
2d2, the minimally supported D-optimal design is a three-point design

with equal masses at the points L, (L + R)/2 and R.
(ii) If ηt

1(d, θ t
1) = ϑ t

0 + ϑ t
1d(ϑ t

2 + d)−1, the minimally supported D-optimal design is a three-point
design with equal masses at the points L, {(L + ϑ t

2)(R + ϑ t
2)}1/2 − ϑ t

2 and R.

(b) Assume that the model for efficacy is given by ηe
1(d, θ e

1 ) = ϑ e
1 d(ϑ e

2 + d)−1. If ηt
1(d, θ t

1) = ϑ t
1d(ϑ t

2 +
d)−1, the minimally supported D-optimal design is a two-point design with equal masses at the
optimal points L ∨ [{Rϑ e

2ϑ
t
2(R + ϑ e

2 + ϑ t
2) + (ϑ e

2ϑ
t
2)

2}1/2 − ϑ e
2ϑ

t
2](R + ϑ e

2 + ϑ t
2)

−1 and R.
(c) Assume that the model for efficacy is given by ηe

1(d, θ e
1 ) = ϑ e

0 + ϑ e
1 d(ϑ e

2 + d)−1. If ηt
1(d, θ t

1) =
ϑ t

0 + ϑ t
1d(ϑ t

2 + d)−1, the minimally supported D-optimal design is a three-point design with equal
masses at the points L, [{(L + ϑ e

2 )(L + ϑ t
2)(R + ϑ e

2 )(R + ϑ t
2)}1/2 + LR − ϑ e

2ϑ
t
2](L + R + ϑ e

2 + ϑ t
2)

−1

and R.

4. OPTIMAL DESIGNS FOR ACTIVE CONTROLLED DOSE-FINDING TRIALS

We now extend the preceding results to active controlled dose-finding trials with a predetermined total
number of patients N by determining the optimal number k of different dose levels for the new drug, their
individual dose levels d1, . . . , dk , and the optimal number n1 of patients to be assigned to the new drug,
along with the allocation scheme across the recommended doses. The remaining number n2 = N − n1 of
the patients are assigned to the active control, usually a marketed drug administered at a fixed dose level
C. Thus, we have designs of the form

ξ̃ =
(

(d1, 0) . . . (dk , 0) (C, 1)

ω̃1 . . . ω̃k ω̃k+1

)
, (4)

where ω̃i and ω̃k+1 denote the proportion of patients treated at the ith dose level of the new drug (i = 1, . . . , k)

and with the active control, respectively; thus, n2 ≈ ω̃k+1N . The second component of the design points in
(4) specifies whether patients receive the new drug, 0, or the active control, 1. Note that the approximate
design ξ̃ induces an approximate design of the form

ξ =
(

d1 . . . dk

ω1 . . . ωk

)
(5)

for the new drug by defining ωi = ω̃i/(1 − ω̃k+1). Extending the statistical model from Dette et al. (2014)
to the efficacy-toxicity outcomes considered here, we have

Yij = (Y e
ij , Y t

ij)
T ∼ N2{η1(di, θ1), �1} (j = 1, . . . , n1i), (6)

Zj = (Ze
j , Zt

j )
T ∼ N2{η2(θ2), �2} (j = 1, . . . , n2), (7)

where Yij denotes the outcome of the jth patient treated with the new drug at dose level di, and Zj the
outcome from the jth patient treated with the active control.

The two-dimensional vector η2(θ2) is the expected outcome, where the parameter θ2 varies in a compact
parameter space, say �2 ⊂ R

2, and �2 is a 2 × 2 covariance matrix. The function η2 that maps �2 to R
2 is
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assumed to be continuously differentiable. Assuming that all observations are independent, the information
matrix of a design ξ̃ defined in (4) has a block structure of the form

M (ξ̃ , θ) =
(

(1 − ω̃k+1)M1(ξ , θ1) 0
0 ω̃k+1I2(θ2)

)
, (8)

where θ = (θT
1 , θT

2 )T and

I2(θ2) =
{

∂

∂θ2
η2(θ2)

}T

�−1
2

{
∂

∂θ2
η2(θ2)

}

is the 2 × 2 Fisher information matrix corresponding to the active control. Following Dette et al. (2015),
locally optimal designs for active controlled dose-finding trials can be obtained from locally optimal designs
for dose-finding trials without an active control. We extend this result to the class of admissible designs
introduced in the preceding sections.

THEOREM 6. If ξ is an admissible design of the form (5) in model (1) and ω̃k+1 ∈ (0, 1), the design ξ̃

defined in (4) is an admissible design for the model (6) with an active control (7).

In a similar way, φp-optimal designs for active controlled trials with efficacy-toxicity outcomes can be
obtained. For this purpose we state the following result, which can be proved in a similar way to Theorem 1
in Dette et al. (2015) using the block structure of the matrix M (ξ̃ , θ) in (8).

THEOREM 7. Let ξ ∗ denote the locally φp-optimal design of the form (5) in the dose-response
model (6) with masses ω∗

1, . . . , ω∗
k at the points d∗

1 , . . . , d∗
k , respectively. The design ξ̃ ∗ with masses

ω̃∗
1 = ρp(1 + ρp)

−1ω∗
1, . . . , ω̃∗

k = ρp(1 + ρp)
−1ω∗

k and ω̃∗
k+1 = (1 + ρp)

−1 at the points (d∗
1 , 0), . . . , (d∗

k , 0)

and (C, 1), respectively, is locally φp-optimal in the dose-response model (6) with an active control (7),
where

ρp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(tr[{I−1
2 (θ2)}−p])1/(p−1)

(tr[{M −1
1 (ξ̃ ∗, θ1)}−p])1/(p−1)

, p ∈ (−∞, 1) \ {0},
s1

2
, p = 0,

λmin{I2(θ2)}
λmin{M1(ξ̃ ∗, θ1)}

, p = −∞.

Theorem 7 can be extended to construct minimally supported designs. In particular, any minimally
supported φp-optimal design of the form (5) for the dose-response model (6) yields a minimally supported
φp-optimal design for the dose-response model (6) with an active control (7) by the transformation described
in Theorem 7.

Example 1. Assume that efficacy and toxicity are described over D = [0, 7] by a quadratic model with
parameter θ e

1 = (0·5, 0·01, 0·1)T and an Emax model with parameter θ t
1 = (0·1, 2·4, 1·2)T, respectively;

see Jin & Barker (2016) and Thomas & Roy (2017) for the choice of dose-response models in clinical
trials. Assume further that σe = 0·1 and σt = 0·4. It follows from Theorem 2(b) and Theorem 6 that
only designs with at most six support points have to be considered for the corresponding model with an
active control. We first used a metaheuristic particle swarm optimization algorithm to generate the locally
D-optimal design for model (1); see Wong et al. (2015) for an explanation of the algorithm. We then applied
Theorem 7 to determine the locally optimal design for the model with an active control. The results for
the locally D-optimal designs are listed in the left part of Table 1 for ρ = 0·1, 0·5, 0·9. The D-optimal
designs are not minimally supported and the support points and weights depend on the correlation. The
minimally supported D-optimal designs can be found by an application of Theorem 5 and are presented
in the right part of Table 1. Note that these designs do not depend on ρ since they are equally weighted
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Table 1. Locally and minimally supported D-optimal designs for the models in Example 1
and for various values of the correlation coefficient ρ

ρ Locally D-optimal design Minimally supported D-optimal design

0·1 (0, 0) (0·86, 0) (3·58, 0) (7, 0) (C, 1) (0, 0) (1·94, 0) (7, 0) (C, 1)

0·225 0·15 0·15 0·225 0·25 0·25 0·25 0·25 0·25
0·5 (0, 0) (0·8, 0) (3·73, 0) (7, 0) (C, 1) (0, 0) (1·94, 0) (7, 0) (C, 1)

0·2175 0·1575 0·1575 0·2175 0·25 0·25 0·25 0·25 0·25
0·9 (0, 0) (0·7, 0) (3·99, 0) (7, 0) (C, 1) (0, 0) (1·94, 0) (7, 0) (C, 1)

0·21 0·165 0·165 0·21 0·25 0·25 0·25 0·25 0·25

0 1 2 3 4 5 6 7

−1·4

−1·0

−0·6

−0·2

(a) (b) (c)

Design space

t(
d,

 x
)

0 1 2 3 4 5 6 7

−1·4

−1·0

−0·6

−0·2

Design space
0 1 2 3 4 5 6 7

−1·4

−1·0

−0·6

−0·2

Design space

t(
d,

 x
)

t(
d,

 x
)

Fig. 1. Sensitivity functions of the locally D-optimal designs in Table 1 for (a) ρ = 0·1, (b) ρ = 0·5 and (c) ρ = 0·9.

by Theorem 4. The optimality of the numerically calculated locally D-optimal designs was checked by
Theorem 1 and the corresponding sensitivity functions are displayed in Fig. 1 for different values of the
correlation. All designs calculated by the particle swarm optimization algorithm are in fact D-optimal.
Moreover, the minimally supported designs are not optimal and their D-efficiencies are given by 0·97,
0·95 and 0·82 for the cases ρ = 0·1, 0·5 and 0·9, respectively. This indicates that minimally supported
designs are only efficient if the bivariate outcomes are weakly correlated. For a strong correlation between
efficacy and toxicity, minimally supported designs cannot be recommended. A direct calculation shows the
uniform design with dose levels 0·00, 0·35, 1·40, 2·80, 4·20, 5·60, 7·00 has D-efficiencies 0·89, 0·89, 0·88
when ρ = 0·1, 0·5 and 0·9, respectively.

5. CONCLUSIONS

There are several lines of future research. First, the results of this paper on locally optimal designs
require a priori information about the unknown model parameters and an interesting direction is to further
develop the methodology to accommodate more sophisticated optimality criteria, which are robust against
a misspecification of the unknown parameters. Second, while the mentioned applications typically consider
bivariate outcomes, it is also of interest to extend these results to multivariate responses. The results of
Mukhopadhyay & Khuri (2008) indicate that such an extension is very challenging. Finally, this paper
considers models with additive normally distributed random errors. This assumption is mainly made for
the sake of transparent notation, and using similar techniques to those described by Dette et al. (2015)
the results can be extended to more general models involving exponential families. On the other hand, a
further important and very challenging direction of future research is the development of a corresponding
methodology which is applicable in random effect models.
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