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Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction

between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis

study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publi-

cations (2019–2021). We gathered recent original QSP models and described the diversity of their applications based on

therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these pub-

lications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP

models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also

addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods

for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models

and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex

diseases and improve drug development.

Keywords Systems biology � Quantitative systems pharmacology � Predictive models � Machine learning �
Immuno-oncology � Immunotherapy

Introduction

QSP and its growing role in drug development

Human cell biology is governed by complex networks of

interactions between molecular structures, signaling path-

ways, and epigenetic remodeling in which the multiscale

system governs the cell’s functionality. However, these

networks and their inter-layer connections can become

corrupted due to perturbations, leading to various diseases

[1]. Drug development is indispensable to modern medi-

cine; however, bringing drugs to the market is often

compromised for several reasons, including lack of

understanding of drug behavior at the whole system level

and adverse side effects [2]. To understand the mechanism

of disease networks, identify novel drug targets, and

develop effective therapies requires studying individual

components such as genes, RNA, or proteins as dynamic

systems across scales [3]. Understanding these biological

processes has been revolutionized with the development of

high-throughput technologies and the accumulation of

biomedical data; however, these data types demand inte-

grative and dynamics-driven approaches to comprehend

dataset repositories and accelerate novel discoveries.

Another complexity to consider is drug-target and drug-

drug interactions and their consequences at the system

level.

Systems biology aims to address these complexities by

understanding biological processes at the molecular and

cellular system levels [3]. Quantitative systems pharma-

cology (QSP) stems from system biology and integrates

pharmacological aspects with systems modeling to identify

and design safer and more effective drug therapies. QSP

was defined in 2011 in a National Institutes of Health white

& Rada Amin

raminali2@unl.edu
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paper based on workshops and discussions with experts

from academia, government, and industry [4–8].

One of the challenges for drug development is the

increasing cost of drug developments and approvals—it

costs from $1.2 to $4 billion and requires upwards of

10 years to develop and introduce a new drug [9–11]. QSP

addresses some of these challenges by providing integra-

tive approaches to determine mechanisms of action of the

new and existing drugs, maximize therapeutic benefit,

minimize toxicity and implement a procedure to improve

individual patients’ health [7, 12]. QSP uses mechanistic

mathematical models to characterize dynamic interplays

between a drug and physiopathology to explore the system

at multiple scales of biological organization (molecular,

cellular, organ-level networks). Incorporating mechanistic

multi-scale systems aspects to classical pharmacometrics

through QSP can enable novel drug target predictions,

detailed studies of mechanisms of action and safety, bio-

marker identification, optimization of doses or regimens,

compound selection, decision making, and responses con-

sidering various treatment variables [12, 13]. QSP, while

relatively new, complements other modeling approaches

widely adopted for preclinical and clinical studies,

including the quantification of drug behavior in the body

[14]. These tools include:

Pharmacokinetics (PK) focuses on studying the time-

course of drugs’ absorption, distribution, metabolism, and

excretion (ADME; e.g., dose-concentration relationships).

Pharmacodynamics (PD) examines the biological

effects of drugs and their mechanisms of action (e.g.,

concentration-effect relationships) on humans, animals,

microorganisms, or combinations of organisms (e.g.,

infection) [15].

Pharmacokinetic/pharmacodynamic (PK/PD) modeling

connects PK and PD to facilitate the prediction of the time

course of drug effects that result from a specific dosing

regimen [14, 16–18]. Systems pharmacology is already

widely used in the pharmaceutical industry, focusing on

PK/PD modeling, predicting dose-exposure responses, and

evaluating market potential [19]. This modeling assists in

gaining mechanistic insights and facilitates early dose

selection. In addition, population PK/PD modeling can

help understand the critical PK characteristics and popu-

lation-level covariates [20].

Physiologically-based pharmacokinetic (PBPK) model-

ing presents the pharmacokinetic behavior of a compound

in the body and predicts the ADME of natural or synthetic

substances in humans and other species.

Physiologically based pharmacokinetic/pharmacody-

namic (PBPK/PD) models connect drug information with

prior knowledge of the physiology and biology at the

organism level to provide a mechanistic representation of

the drug in biological systems [21]. PBPK models consider

different organs and tissues, and assist in obtaining quan-

titative characterizations of concentration–time profiles in

the individual compartments [22]. This modeling approach

can be utilized to understand tissue-specific PK and PD and

estimate drug interaction risks [20].

According to a survey across 50 pharmaceutical com-

panies, the industry has a vague definition of QSP [13].

Although this survey showed that most pharmaceutical

companies used the QSP term to describe their modeling

approaches, a significant number of companies used other

terms for mentioning their modeling activities. Therefore,

to accelerate improvements in drug discoveries, one sug-

gestion can be to use fixed terminologies that assist in

studying and investigating QSP models. The aforemen-

tioned study also showed that the most common applica-

tions in this field are related to generating and testing

hypotheses, optimizing doses or regimens, predicting

clinical efficacy, and identifying biomarkers suggesting

that future opportunities in the industry can be related to

the usage of QSP modeling for evaluating safety and

decision-making [13].

QSP modeling approaches

Pharmaceutical companies and academia utilize various

approaches for drug target discovery [13, 23]. Several

modeling approaches for QSP have been developed,

including statistical (Bayesian), Boolean, temporal (ordi-

nary differential equations), spatio-temporal (partial dif-

ferential equations), agent-based, integrative, empirical

curve fitting, and machine learning that enable integrating

molecular pathways with clinical results and pharmacology

[24]. Incorporating quantitative temporal and spatial

information in QSP models can provide more accurate

predictions of drug discovery targets, PK/PD relationships,

and clinical results [24]. Many published QSP models are

constructed as multi-compartment nonlinear systems of

ordinary differential equations (ODE) [25].

Recently, a diversity of software platforms have been

employed to assist in developing QSP models [23, 26],

such as Simbiology and toolboxes in MATLAB [27]; The

R-based packages nlmixr [23], mrgsolve [28], RxODE

[29], nlme [30], and Cell Collective platform [31–33];

Based on our review across 51 models, we note that the

MATLAB environment and tools are more popular among

QSP modelers [34–47].

Studies of QSP methodologies show that developing,

testing, and documenting QSP models require standard-

ization to improve the reproducibility and reusability of

these models, which affect the potential impact of this

approach in academia and industry [48]. Because QSP is a

multidisciplinary field, the development of such models

demands teamwork and collaboration of different
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individuals such as modeling engineers, biologists and

clinicians, data programmers, statisticians, software engi-

neers, and PK/PD scientists [49].

While standard workflows utilizing QSP continue to

evolve [26], the general QSP workflow can be summarized

in three main steps [49]:

Model scope The first step is to define the therapeutic

field and objectives of the model by providing the physi-

ological pathway map, which presents the incorporation of

the biological and pharmacological processes associated

with the model’s scope [49].

Model development Since any modeling task requires

some form of data, this step starts with converting raw data

to a suitable format. In this step, a modeler collects prior

models, clinical and non-clinical data and develops math-

ematical descriptions of the processes and compartments

involved in the interplay between drugs and the patho-

physiology. Model development encompasses steps that

can be categorized into standardizing and exploring data,

parameter estimation, and simulation/analysis [26, 49, 50].

Model Qualification The modeling engineer calibrates

the QSP model to relevant data from target patient popu-

lations. This step is related to collecting appropriate clini-

cal data in patient populations that will qualify the model

and calibrating the model at relevant scales of physiology

and time [49].

Methods

Literature search

We surveyed recent articles for QSP models available in

PubMed and published between 2019 and 2021 to identify

relevant studies, providing a repository for categorizing

and evaluating different research studies in this field.

PubMed search term ‘‘(‘‘Quantitative Systems Pharmacol-

ogy’’ OR ‘‘QSP’’) AND Model*’’ (in April 2021) resulted

in 148 publications.

For QSP models, we excluded reviews and methodol-

ogy-focused publications from the PubMed search results

during the manual literature mining process. We selected

original QSP studies that constructed QSP models utilizing

clinical and experimental data, resulting in a total of 50

publications. After reviewing these models, we associated

Medical Subject Headings (MeSH) terms and IDs [51] to

each model. We categorized them based on their thera-

peutic fields (Table 1) while including various properties of

the studied disease and model. We also explored the

application of machine learning (ML) methods in QSP

modeling and addressed modeling approaches that bene-

fited from ML applications.

Considering the Pubmed search term results and manual

literature mining to find relevant studies, for this review,

we were able to gather and analyze a resource addressing

recent original QSP researches and their applications in

different diseases, which provides an insight into potential

future directions of QSP studies.

Results

Categories of recently published original QSP
models

We categorized original QSP models based on different

properties after the PubMed literature search. Because the

biological questions motivating a study play a critical role

in selecting the methodology and other properties of the

project, we classified the corresponding publications from

the most to the least represented biological field that uti-

lized QSP models in the last three years. This analysis can

assist in summarizing domains that have been intensively

investigated in QSP and help find areas that need to be

explored by QSP approaches. Table 1 presents the litera-

ture mining results for recent QSP model original publi-

cations between 2019 and 2021, including the name,

PubMed ID, title, the year of publication, a MeSH term,

and a unique ID associated with each based on the

underlying biological question. We specifically utilized

MeSH terms and unique IDs, official words or phrases

selected to represent particular biomedical concepts.

We found that 24 different diseases categorized in nine

major disease areas are represented by the 51 identified

QSP model (Fig. 1). Below we describe several QSP

applications to different biological questions for the top

three categories: Immuno-oncology, nutritional and meta-

bolic diseases, and nervous system diseases. The models

described in these categories were identified with n#

referring to Table 1.

Immuno-oncology (IO)/neoplasms QSP models

According to the World Health Organization, cancer is

among the preeminent diseases worldwide, causing glob-

ally 10 million deaths in 2020. The most frequent cancer is

breast cancer (2.26 million cases), but the most lethal is

lung cancer, with 1.8 million deaths and nearly 2.21 mil-

lion cases in 2020. In the last decade, understanding the

cancer tumor microenvironment (TME) and immuno-

surveillance has led to promising strategies that can harness

immune cells to fight cancer [52]. Many immunotherapies

focus on the immune T cell population for their cytotoxic

function and anti-tumoral response. Current main

immunotherapies include immune checkpoint inhibitors
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Table 1 Summary of the literature mining results for recent QSP model original publications

Model

#

PubMed

ID

Title Field: MeSH term [MeSH unique ID] Year

1 33938166 Beyond the single average tumor: Understanding IO Combinations

using a clinical QSP model that incorporates heterogeneity in

patient response [72]

Neoplasms: melanoma [D008545] 2021

2 33389550 A quantitative systems pharmacological approach identified

activation of a JNK signaling pathway as a promising treatment

strategy for refractory HER2 positive breast cancer [68]

Neoplasms: breast neoplasms [D001943] 2021

3 33653032 Dynamical systems analysis as an additional tool to inform

treatment outcomes: the case study of a quantitative systems

pharmacology model of immuno-oncology [64]

Neoplasms [D009369] 2021

4 33579739 Quantitative systems pharmacology model predictions for the

efficacy of Atezolizumab and nab-paclitaxel in triple-negative

breast cancer [34]

Neoplasms: breast neoplasms [D001943] 2021

5 32681519 Model-informed drug development of the masked anti-PD-L1

antibody CX-072 [146]

Neoplasms [D009369] 2021

6 32533708 The timing of cyclic cytotoxic chemotherapy can worsen

neutropenia and neutrophilia [147]

Neoplasms [D009369] 2021

7 33797208 Quantitative systems pharmacology model of thrombopoiesis and

platelet life-cycle, and its application to thrombocytopenia based

on chronic liver disease [35]

Digestive system diseases: liver diseases

[D008107]

2021

8 32822108 A dynamic quantitative systems pharmacology model of

inflammatory bowel disease: part 1—model framework [36]

Digestive system diseases: inflammatory

bowel diseases [D015212]

2021

9 32822115 A dynamic quantitative systems pharmacology model of

inflammatory bowel disease: part 2—application to current

therapies in Crohn’s disease [37]

Digestive system diseases: inflammatory

bowel diseases [D015212]

2021

10 33368935 A model-based approach to investigating the relationship between

glucose-insulin dynamics and dapagliflozin treatment effect in

patients with type 2 diabetes [77]

Nutritional and metabolic diseases: diabetes

mellitus, type 2 [D003924]

2021

11 33938131 Systematic in silico analysis of clinically tested drugs for reducing

amyloid-beta plaque accumulation in Alzheimer’s disease [80]

Mental disorders: alzheimer disease

[D000544]

2021

12 33870137 Impact of sex and pathophysiology on optimal drug choice in

hypertensive rats: quantitative insights for precision medicine

[134]

Cardiovascular diseases: hypertension

[D006973]

2021

13 33128209 The influence of haemostatic system maturation on the dose–

response relationship of unfractionated heparin [148]

Cardiovascular diseases: myocardial

infarction [D009203]

2021

14 33091173 Predicted cardiac hemodynamic consequences of the renal actions

of SGLT2i in the DAPA-HF study population: a mathematical

modeling analysis [149]

Cardiovascular diseases: heart failure

[D006333]

2021

15 33894014 A mathematical model to identify optimal combinations of drug

targets for Dupilumab poor responders in atopic dermatitis [150]

Congenital, hereditary, and neonatal

diseases and abnormalities: dermatitis,

atopic [D003876]

2021

16 33205613 Investigational treatments for COVID-19 may increase ventricular

arrhythmia risk through drug interactions [38]

Infections: COVID-19 [D000086382] 2021

17 33308018 Development of a quantitative systems pharmacology model of

chronic kidney disease: metabolic bone disorder [20]

Male/female urogenital diseases-urologic

diseases: kidney diseases [D007674]

2021

18 33615174 Quantitative systems pharmacology modeling of PBMC-

humanized mouse to facilitate preclinical immuno-oncology drug

development [63]

Neoplasms [D009369] 2021

19 32859743 Combination therapy with T cell engager and PD-L1 blockade

enhances the antitumor potency of T cells as predicted by a QSP

model [39]

Neoplasms: colorectal neoplasms

[D015179]

2020

20 32701980 An in vitro quantitative systems pharmacology approach for

deconvolving mechanisms of drug-induced, multilineage

cytopenias [40]

Neoplasms [D009369] 2020
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Table 1 (continued)

Model

#

PubMed

ID

Title Field: MeSH term [MeSH unique ID] Year

21 32618119 QSP-IO: a quantitative systems pharmacology toolbox for

mechanistic multiscale modeling for immuno-oncology

applications [41]

Neoplasms [D009369] 2020

22 32533270 A quantitative systems pharmacology model of T cell engager

applied to solid tumor [42]

Neoplasms: lung neoplasms [D008175] 2020

23 32493951 A QSP model of prostate cancer immunotherapy to identify

effective combination therapies [43]

Neoplasms: prostatic neoplasms [D011471] 2020

24 32158754 Conducting a virtual clinical trial in HER2-negative breast cancer

using a quantitative systems pharmacology model with an

epigenetic modulator and immune checkpoint inhibitors [44]

Neoplasms: breast neoplasms [D001943] 2020

25 31729169 Predicting in vivo efficacy from in vitro data: quantitative systems

pharmacology modeling for an epigenetic modifier drug in

cancer [45]

Neoplasms [D009369] 2020

26 31822515 A quantitative systems pharmacology model for the key

interleukins involved in Crohn’s disease [46]

Digestive system diseases: crohn disease

[D003424]

2020

27 33085977 Mechanistic evaluation of the effect of sodium-dependent glucose

transporter 2 inhibitors on delayed glucose absorption in patients

with type 2 diabetes mellitus using a quantitative systems

pharmacology model of human systemic glucose dynamics [75]

Nutritional and metabolic diseases: diabetes

mellitus, type 2 [D003924]

2020

28 32543789 A physiologically-based quantitative systems pharmacology model

of the incretin hormones GLP-1 and GIP and the DPP4 inhibitor

sitagliptin [78]

Nutritional and metabolic diseases: diabetes

mellitus, type 2 [D003924]

2020

29 32064793 Differentiating the sodium-glucose cotransporter 1 inhibition

capacity of canagliflozin vs. dapagliflozin and empagliflozin

using quantitative systems pharmacology modeling [73]

Nutritional and metabolic diseases: diabetes

mellitus, type 2 [D003924]

2020

30 32419339 Leveraging quantitative systems pharmacology approach into

development of human recombinant follistatin fusion protein for

Duchenne muscular dystrophy [151]

Nervous system diseases: muscular

dystrophy, Duchenne [D020388]

2020

31 32558397 A quantitative systems pharmacology model of Gaucher disease

type 1 provides mechanistic insight into the response to substrate

reduction therapy with eliglustat [152]

Nervous system diseases: Gaucher disease

[D005776]

2020

32 33016912 Simulating the effects of common comedications and genotypes on

Alzheimer’s cognitive trajectory using a quantitative systems

pharmacology approach [82]

Mental disorders: Alzheimer disease

[D000544]

2020

33 32255562 Learning from amyloid trials in Alzheimer’s disease. A virtual

patient analysis using a quantitative systems pharmacology

approach [81]

Mental disorders: Alzheimer disease

[D000544]

2020

34 32765265 Quantitative systems pharmacology model-based predictions of

clinical endpoints to optimize warfarin and rivaroxaban anti-

thrombosis therapy [153]

Cardiovascular diseases: thrombosis

[D013927]

2020

35 32991627 Correction: higher naloxone dosing in a quantitative systems

pharmacology model that predicts naloxone-fentanyl competition

at the opioid mu receptor level [154]

Chemically-induced disorders: opiate

overdose [D000083682]

2020

36 32511528 Investigational treatments for COVID-19 may increase ventricular

arrhythmia risk through drug interactions [155]

Infections: COVID-19 [D000086382] 2020

37 31236847 A computational model of neoadjuvant PD-1 inhibition in non-

small cell lung cancer [70]

Neoplasms: lung neoplasms [D008175] 2019

38 31375756 A QSP model for predicting clinical responses to monotherapy,

combination and sequential therapy following CTLA-4, PD-1,

and PD-L1 checkpoint blockade [47]

Neoplasms: melanoma [D008545] 2019

39 31250966 Quantitative systems pharmacology model of a masked, tumor-

activated antibody [62]

Neoplasms [D009369] 2019

40 31165304 Correction to: a translational quantitative systems pharmacology

model for CD3 bispecific molecules: application to quantify T

cell-mediated tumor cell killing by p-cadherin LP DART [61]

Neoplasms [D009369] 2019
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Table 1 (continued)

Model

#

PubMed

ID

Title Field: MeSH term [MeSH unique ID] Year

41 30990958 Quantitative systems pharmacology model of chimeric antigen

receptor T-cell therapy [59]

Neoplasms [D009369] 2019

42 31299262 PBPK modeling-based optimization of site-specific chemo-

photodynamic therapy with far-red light-activatable paclitaxel

prodrug [156]

Neoplasms [D009369] 2019

43 31,218,069 In silico simulation of a clinical trial with anti-CTLA-4 and anti-

PD-L1 immunotherapies in metastatic breast cancer using a

systems pharmacology model [157]

Neoplasms: Breast Neoplasms [D001943] 2019

44 30,898,866 Combining multiscale experimental and computational systems

pharmacological approaches to overcome resistance to HER2-

targeted therapy in breast cancer [158]

Neoplasms: breast neoplasms [D001943] 2019

45 30,759,154 Quantitative systems pharmacology of interferon-alpha

administration: a multi-scale approach [159]

Digestive system diseases: liver diseases

[D006505]

2019

46 31,292,220 Comparative quantitative systems pharmacology modeling of anti-

PCSK9 therapeutic modalities in hypercholesterolemia [160]

Nutritional and metabolic diseases:

hypercholesterolemia [D006937]

2019

47 31,423,699 Comparison of the urinary glucose excretion contributions of

SGLT2 and SGLT1: a quantitative systems pharmacology

analysis in healthy individuals and patients with type 2 diabetes

treated with SGLT2 inhibitors [76]

Nutritional and metabolic diseases: diabetes

mellitus, type 2 [D003924]

2019

48 30,443,840 Benchmarking renin suppression and blood pressure reduction of

direct renin inhibitor Imarikiren through quantitative systems

pharmacology modeling [161]

Cardiovascular diseases: hypertension

[D006973]

2019

49 31,494,805 A physiologically motivated model of cystic fibrosis liquid and

solute transport dynamics across primary human nasal epithelia

[162]

Respiratory tract diseases: cystic fibrosis

[D003550]

2019

50 30,869,201 Translational assessment of drug-induced proximal tubule injury

using a kidney microphysiological system [163]

Male/female urogenital diseases-urologic

diseases: kidney diseases [D007674]

2019

Fig. 1 The recently published

QSP models and their disease

areas. The bar chart presents the

number of articles published

between 2019 and 2021 for

developing original QSP

models. Categorizing these

articles based on the biological

questions they focused on

(presented by their MeSH

terms), revealed that most

models are related to neoplasms
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(CPIs) and chimeric antigen receptor T cells (CAR-T) [53].

These immunotherapies used in several clinical trials show

tremendous response to a wide range of solid and blood

neoplasms.

Immune checkpoints regulate the immune system and

are principal targets for cancer immunotherapy in different

cancer types [54, 55]. FDA-approved CPIs target CTLA-4,

PD-1, and PD-L1 to prevent T cell inhibition by cancer

cells. Blocking these receptors increases the activation and

proliferation of effector cells following stimulation and

antigen recognition, and consequently, is more effective to

remove cancer cells [47]. CAR-T, however, is a cellular

therapy that employs genetic modifications of autologous T

cells to maximize tumor antigen recognition and intracel-

lular signaling pathways in T cell activation. Despite the

enthusiasm around these strategies, they have been asso-

ciated with unique side effects, such as autoimmune reac-

tions, lethal cytokine release, immune cell dysfunction, and

organ failures [56]. In addition to immunotherapies, other

strategies focus more on the cancer side, such as identi-

fying tumor antigens or neoantigens expressed solely by

cancer cells or developing small molecules that target the

signaling landscape for more personalized approaches with

minimal side effects. Nevertheless, these therapies exhibit

several challenges (e.g., efficacy, heterogeneity in

response, drug resistance, etc. [57]) that need to be

addressed to maximize immune response and minimize

lethal side effects. We first describe immunotherapies aided

with QSP models, and we later categorize studies based on

cancer type.

Immunotherapies

In the case of cellular therapy, model #41 addresses the

complex relationships between CAR-T cell doses and the

magnitude of cytokine release syndrome (CRS), one of the

side effects following CAR-T cell therapy [58]. Interest-

ingly, this quantitative model indicates that CAR-T injec-

tion does not cause severe CRS; however, the magnitude of

cytokines at the baseline operates as an auspicious accel-

erator of CRS after CAR-T administration. Thus, this tool

may serve as a personalized model of CAR-T cell therapy

to interrogate dosing and clinical toxicity [59].

Bispecific antibodies, a new generation of engineered

antibodies that can simultaneously bind two different

antigens—one side to a tumor antigen and the other side to

immune cells—has emerged as a promising novel therapy

for cancer treatment [60]. Because T cells are key effector

cells in immune response, a potent procedure used CD3,

the main marker on the T cell population, to engineer a

bispecific T cell engager (TCEs) promoting cytolytic

synapse with cancer cells [61]. The crosslinking of the

different protagonists through CD3 bispecific targeting

tumor antigen, P-cadherin (PF-06671008), has been

investigated by a QSP model #40 to quantify the rela-

tionship of the tripartite partners (drugs-T cells-tumor

cells) in vivo. The model predicted that the number of T

cells and P-cadherin expression are crucial for clinical

efficiency as the half-life of PF-06671008 only lasts one

day. Therefore, such a model can predict and optimize the

CD3 bispecific technology into the clinics for human PB/

PK prediction.

Model #25 investigated molecular cancer therapy; this

PK/PD model describes the efficiency of ORY-1001, a

small molecule inhibitor of LSD1—lysine-specific histone

demethylase that acts as an epigenetic regulator in cancer.

This predictive model examined the ORY-1001 pharma-

codynamic response and response durability associated

with tumor growth across multiple doses. The model was

able to predict in vivo drug efficacy extrapolated exclu-

sively from in vitro data. Such a mechanistic approach

could reduce the use of animal models, the cost and time in

drug development [45]. In another study that addresses

drug therapies, Stroh et al. model the activatable antibody,

Probody therapeutic (Pb-Tx), designed to keep the antigen-

binding site of engineered antibody masks until local pro-

teolytic activation in disease tissue. Model #39 integrated

the in vitro and in vivo PK/PD effects of both prodrug

CD166 and pharmacological properties for rational design

and clinical translation. The QSP model predictions pro-

posed a greater absorption of Pb-Tx than parental antibody

and emphasized that the antibody masking strength can

modulate the molecule’s absorption in desired sites, such as

the tissue or the peripheral circulation. As a result, this

study utilized interesting approaches to customize Pb-Tx

infiltration to desired sites of tumor niches instead of a

healthy environment [62].

Another study presents a QSP model #18 of humanized

mice [63]. Here, the authors modeled the interactions

between tumor growth, T cells, cytokine secretion, immune

checkpoint expression, and drug inoculation using experi-

mental data from a xenograft mouse model. The critical

aspect of such a model is that it can aid in extrapolating

dose conversion between animals to humans, where often

therapeutic dose translation from the rodent system to

human fails [63].

The tumor microenvironment (TME) is an essential

aspect of cancer development as it participates in survival

needs, drug resistance and installs an auspicious immuno-

suppressive environment [8]. Several studies investigated

the dynamic interplay between immune-mediated TME

and immunotherapy treatment. Model #20 examines cel-

lular communication and TME crosstalk by studying

myelosuppression, a severe side-effect of anti-cancer

therapies. To improve the understanding of drug-induced

myelosuppression, Wilson et al. produced a QSP model of
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hematopoiesis in vitro to quantify the effects of anti-cancer

agents on multiple hematopoietic cell lineages [40]. Model

#21 is an open-source and expandable modeling IO plat-

form that integrates tumor-T cell crosstalk in response to

different combinatorial immunotherapy. The QSP tool

integrates several critical modules of TME: a cancer

module (tumor size and tumor antigen), dendritic cell as

antigen-presenting cells, a T cell module (immunosup-

pressive regulatory T cell, cytotoxic and non-cytotoxic T

cells), checkpoint module, and a pharmacokinetics module

illustrating TME behavior upon therapeutic strategies [41].

Also, the model #3 utilized a QSP model to reproduce the

main component of interaction between tumor and immune

system to model TME response upon combination of

radiation and immunotherapy [64]. These complex QSP

frameworks can be utilized as clinical platforms to evaluate

the dynamics of therapy responses at a larger scale than at

the individual level.

Breast neoplasms

In breast cancer (BC), human epidermal growth factor

receptor 2 (HER2) is a neoantigen protein that can promote

the growth of cancer cells [65]. HER2-positive BC is an

aggressive cancer subtype prevalent in 20% of cases.

Despite improvements in anti-HER2 therapies, treatment

resistance remains a clinical challenge [66].

Wang et al. proposed two different dynamical models

(#24 and #2) of the TME to address the efficacy of existing

therapies in different types of BC. For HER2-negative BC,

they proposed a QSP model (#24) for a virtual clinical trial

with immune checkpoint therapy in association with an

epigenetic modulator. The authors integrated different

modules describing immune activation, suppression, and

trafficking into four separate compartments (lymph node,

central, peripheral, and tumor site) and PK/PD of two

therapeutic agents [44]. Their second (similarly con-

structed) model (#4) focuses on triple-negative breast

cancer. This BC type is defined by the lack of three

receptors (estrogen, progesterone receptors, and low HER2

expression). It classifies as highly invasive with limited

treatment and poor outcomes [67]. The authors developed a

virtual patient cohort of atezolizumab (anti-PD-L1) and

nab-paclitaxel treatments for this cancer to identify

immune biomarkers and optimal treatment for clinical tri-

als [34].

The QSP model #2 addresses drug resistance by evalu-

ating the efficacy of lapatinib (LAP), abemaciclib (ABE),

and 5-fluorouracil individually and in combination using

trastuzumab-resistant HER2-positive BC cell line. Their

findings suggest synergistic effects between ABE and LAP

while showing the impact of the triple combination therapy

on tumor cell viability [68]. Overall, both models address

the dynamics of tumor-immune-drug interaction for a vir-

tual clinical trial to provide guidelines in drug development

and clinical regiment design.

Colorectal neoplasms

Previous studies on bispecific TCE cited above led to the

construction of a QSP model, combining TCE and immune

checkpoint inhibitor, anti-PD-L1, with similar modules

described in the Breast neoplasm section [34, 44]. They

predict that the efficacy of treatment is dictated by the

patient’s variability and unique characteristics. This model

not only aids TCEs and immune checkpoint strategies but

also is an interesting tool for precision medicine initiatives

[39].

Lung neoplasms

In lung cancer, anti-PD-1 treatments show promising

results in the survival rate of patients with advanced non-

small-cell lung cancer [69]. The QSP model #37 integrated

dynamic modules of tumor growth, antigen processing and

presentation, T cell activation and trafficking, anti-PD-1,

and antibody kinetic responses. The model predicted that

the density of anti-tumoral effector T cells in the blood

correlated with a better response to therapy than the density

of pro-tumoral regulatory T cells [70]. Later Ma et al.

extended this model to TCEs as a single therapy to explore

the dynamic of inter-cellular interactions in the tumor

microenvironment and identify immune biomarkers. This

study predicted that indicators of responders versus non-

responders to TCE therapies depend highly on the patient’s

response and stage of disease (e.g., Non-responders, partial

or complete response, stable or progressive disease condi-

tions) [42].

Melanoma

This is a severe skin cancer derived from melanocytes,

melanin-producing cells. Located in the bottom layer of the

skin, cancerous melanocytes are likely to metastasize to

any part of the body [71]. Two models address CPIs in

melanoma cancer. Model #38 simulates CTLA-4, PD-1,

and PD-L1 therapies with varying modes of treatment

administration (single, dual, or sequential) to evaluate the

optimal parameter for melanoma treatment. The dynamic

response of their virtual patient model reproduced data

from real clinical trials. The model also predicted the

median response of each therapy and defined the physio-

logical range of virtual responders for each combination

[47]. Milberg et al. address the efficacy of a combination

checkpoint therapy consisting of pembrolizumab (anti-

PDL1) and ipilimumab (anti-CTLA4) in metastatic
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melanoma while taking into account lesions used for

melanoma immunogenicity diagnosis. The model showed

that combination therapy is significantly more efficient for

intermediate lesions than non- or high metastatic lesions

[72].

Prostatic neoplasms

The ODE-based model #23 explores castration-resistant

prostate cancer, for which therapies are still non-conclusive

[43]. This study presents a QSP model of prostate cancer

immunotherapy, integrating different immune cells, tumor

compartments, and seven treatments. Among numerous

treatment combinations, the authors found that dual asso-

ciation of cancer vaccine and immune checkpoint blockade

are the most effective combinatorial immunotherapy for

subjects associated with androgen-deprivation therapy

resistance.

Nutritional and metabolic diseases

Diabetes mellitus, type 2

Type 2 diabetes mellitus (T2DM), commonly known as

type 2 diabetes, is a metabolic disorder translated by an

aberrant accumulation of glucose in the blood due to a

defect of insulin function and expression [73]. Different

T2DM QSP models described below focused on drugs that

could lower plasma glucose and filter it through other

organs.

A recently approved class of antidiabetic medications

includes gliflozins that target sodium-glucose co-trans-

porter (SGLT), a class of receptors expressed in the kidney

and small intestine and responsible for more than 80% of

glucose reabsorption [74]. These drugs decrease glucose by

increasing urine secretion and blocking renal re-consump-

tion [8]. In the first model (#27), Mori-Anai et al. addressed

the inhibitory action of three different SGLT2 inhibitors

after food consumption with a model called human sys-

temic glucose dynamics (HSGD) integrating glucose

metabolism, intestinal uptake, and renal reabsorption. The

model provided a quantitative estimation of drugs’ effect

on dynamic glucose absorption after food consumption

[75]. In another study, a QSP model (#47) investigated

SGLT1 and SGLT2 activity in renal glucose circuits and

estimated the PK/PD of SGLT2 inhibitors using clinical

data of healthy and T2DM patients. Interestingly, the

model showed that under SGLT2 inhibition, SGLT1 action

increased, indicating compensatory relationships between

SGLT receptors and an adverse effect of the drug selection

[76]. Later, Sokolov et al. utilized this model (#29) to

address SGLT1 inhibition in response to SGLT2 gliflozins

inhibitors (dapagliflozin, empagliflozin, and canagliflozin).

The QSP model indicated that only canagliflozin could

inhibit renal SGLT1, resulting in identifying a critical

therapy design to maximize the SGLT2 inhibitory effect

[73]. Because glucose accumulation depends on insulin,

model #10 considers glucose-insulin dynamics in the short

and long-term under dapagliflozin treatment. According to

this model, dapagliflozin is more beneficial to patients with

more inadequate glycemic control by insulin [77]. Another

model (#28) focuses on several protagonists in glucose

levels after food consumption [78]. The incretin hormones,

glucagon-like peptide-1 (GLP-1), glucose-dependent insu-

linotropic polypeptide (GIP) catalyzed by enzyme dipep-

tidyl-peptidase 4 (DPP4), and the neutral endopeptidase

(NEP) stimulate insulin release to lower glucose. By

modeling GLP-1 and GIP dynamics, and PK/PD of DPP4

inhibitors, model #28 showed that inhibition of DPP4

occurs in a dose-dependent manner. Still, the highest dose

of DDP4 inhibitor stimulated a high GLP-1 secretion,

suggesting the triggering of alternative pathways upon

DPP4 inhibition [78].

Nervous system diseases

Alzheimer’s disease (AD) is a slow and irreversible

degenerative disorder that leads to progressive neurocog-

nitive dysfunction. One of the histological characteristics

of AD is the formation of amyloid plaque due to the

accumulation of insoluble extracellular amyloid-beta (Ab)

that causes inflammation and neurotoxicity [79]. Targeting

the Ab pathways is one of the main therapeutic strategies to

slow down degenerescence; however, many clinical trials

fail due to several reasons, including patient heterogeneity,

disease stage, treatment timing, ineffective drug penetra-

tion, and mechanism of action. To explore Ab therapy

failures, Madrasi et al. constructed a QSP model of the Ab
pathways with three relevant drugs (elenbecestat, verube-

cestat, and semagacestat) and four anti-Ab monoclonal

antibodies (aducanumab, crenezumab, solanezumab, bap-

ineuzumab). Their model (#11) predicted that among the

different monoclonal therapies, aducanumab and bap-

ineuzumab could induce the fastest plaque reduction, while

drug molecules promote slow reduction and their efficiency

depends on plaque turnover formation [80].

Model #33 was used to simulate a clinical trial using

aducanumab combined with different genotypes of com-

mon variants affecting cognitive function (apolipoprotein

E, Catechol -O -methyl Transferase, and 5-HT transporter

genotypes). This study highlighted the variability of clini-

cal response between phase II and III, determined mainly

by the different variants and baseline Ab peptide accu-

mulation [81]. Similarly, another study focused on the

same variants under benzodiazepines, antidepressants, and

antipsychotics drug treatments [82]. Model simulations
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indicated, once again, variability of response between

baseline and mild stage of AD under different regiments.

In summary, we reviewed examples of recent QSP

models across major disease areas. Notably, many of these

studies focus on maximizing drug design, therapeutic

strategies, understanding the dynamic of drug-target

interaction at the system, finding optimal dosage,

addressing toxicity and potential adverse side effects.

Altogether, QSP is a growing platform in drug develop-

ment with much potential as an integral approach to rec-

onciling drug safety and clinical patients’ response to

therapy.

Machine learning applications in QSP modeling

The staggering amount of data generated with recent

technologies demands integrative approaches to address

the pharmacological challenges more efficiently. The ‘‘big

data’’ field aims to analyze information from datasets

containing complex or extensive amounts of information

[83]. An example of big data used for drug discovery is

observational data such as Electronic Health Records

(EHR), which encompasses patients’ unique medical

characteristics such as laboratory results, comorbidities,

treatments, and observed effects [84]. In drug development,

machine learning has been used as part of automated

pipelines to guide and accelerate preclinical wet-lab

experiments, drug discovery, and clinical trials [83, 85]. In

fact, there are opportunities to apply ML methods in nearly

all stages of drug discovery and development [85]. For

example, we can utilize ML to identify and validate novel

targets [86, 87], predict treatment responses [88], discover

biomarkers [89], predict disease progression [90] degen-

eration [91], and risk factors [92, 93], design and optimize

small-molecule components [94], and improve analyses of

high-throughput imaging in computational pathology [85]

89. ML can also optimize the drug candidate discovery

field by predicting desirable physicochemical characteris-

tics, pharmacokinetics, safety, and efficacy

[20, 83, 95–100].

In this section, first, we briefly explain the basis of ML;

we refer readers to the recent publications on ML methods

[83, 101] for detailed information and additional relevant

studies. Second, we review recent applications of ML in

drug discovery and development. Finally, we provide some

examples of recent QSP efforts that benefited from

machine learning methods.

Machine learning

ML methods can be categorized into two groups: Super-

vised learning, which uses labeled data (the goal is to

‘‘predict’’), and unsupervised learning, which deals with

unlabeled data (the goal is to ‘‘explore’’) [102].

Supervised ML algorithms require input data sets to be

split into a ‘‘training’’ and a ‘‘test’’ data set. Model training

fits the model to the training data set, and the trained ML

model can then be validated using the test data set. The

validated ML model can then be utilized to make predic-

tions or decisions based on the new data set covariates

[103]. Several algorithms have been developed in this field,

such as linear and logistic regression, ridge regression,

decision trees, random forest, gradient boosting, neural

networks, and genetic algorithms [104–106]. Data sets that

contain both covariates and outcomes are ‘‘labeled’’ and

used in supervised ML.

Different studies approach drug discovery with super-

vised learning techniques such as regression analysis

methods (e.g., disease and target druggability from multi-

dimensional data [87], targets for Huntington disease [107],

identify potential cancer biomarkers [108, 109], drug sen-

sitivity prediction [110], image-based diagnosis [111]), and

classifier methods (e.g., tissue-specific biomarkers from

gene expression signatures [89], target druggability based

on PK properties and protein structure [112, 113]).

Supervised learning methods also enable the modeling

of response surfaces for estimating individualized patient

outcomes. One way to accomplish this is to fit a single-

output model with the treatment as an input feature, mak-

ing it less flexible and providing the same outcome model

for treated and untreated patients. Another approach is to fit

two separate supervised models for different treatments,

which provides more flexibility in estimating patient out-

comes [114].

Unsupervised ML includes the covariates but not the

outcomes. This technique is used to identify patterns and

associations between data points. K-means and hierarchical

clustering are examples of the algorithms widely used in

unsupervised ML [83]. Unsupervised clustering methods

also have been used for drug discoveries such as de novo

molecular design [115], deep feature selection for

biomarkers [116], feature reduction in single-cell data to

identify cell types [117], and biomarkers [118].

ML-facilitated causal inference can estimate the effects

of single/multiple or time-dependent treatments on patient

outcomes. Various types of data can be used for training

ML models to evaluate treatment effects such as clinical

data (e.g., age, sex, genetic information, laboratory mea-

surement), type of treatment (e.g., binary treatment, single

treatment, or multiple treatments), patient outcomes (e.g.,

survival probability, multiple outcomes), and treatment

decisions (e.g., optimal single/combinatorial treatment,

optimal dosage). As a result, causal inference methods can

assist physicians in decisions about the treatment benefit,

treatment options, and dosages [114].
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Integration of QSP and ML

Developing methodologies to integrate clinical data such as

EHR or biological data sets (e.g., human genetic infor-

mation in large populations, omics profiling of healthy and

not healthy individuals) with QSP models provide the

opportunity for additional progress in the QSP field. Below,

we provide examples of efforts that integrated QSP models

with ML methods.

Recent studies illustrate the benefits of integrating ML

approaches with mechanistic modeling in curation, opti-

mization, parameter estimation, and simulations of QSP

models that can be computationally costly [114, 119]. For

example, Hartmann et al. presented a predictive ML model

to assist in optimizing antithrombotic therapy [120]. For

this study, routine clinical data were gathered from 479

patients during therapeutic antithrombotic drug monitoring.

A QSP model of coagulation network was developed based

on a humoral coagulation model [121] to observe the effect

of rivaroxaban, warfarin, and enoxaparin treatment on

clotting factors levels. The authors estimated the parame-

ters (factor rate constants, and production rates of coagu-

lation factors) using a nonlinear programming solver. A

stiff ODE solver (a variable-step, variable-order solver

based on the numerical differentiation formulas of orders 1

to 5) was utilized for model simulation. The QSP model

predicted the steady-state effects of the rivaroxaban, war-

farin, and enoxaparin treatment on clotting factor levels.

For example, the model predicted that rivaroxaban did not

affect the inactivated coagulation factor levels (such as

prothrombin, protein C, protein S). Due to the variability in

individuals responding to drugs, estimating the interindi-

vidual variability is important [122]. ML methods were

used to evaluate the importance of interindividual vari-

ability. Monte Carlo simulations [123] were performed for

interindividual variability by adding 20% variability on

estimated production rates. Sobol sensitivity analysis [124]

was performed to recognize the parameters with a higher

impact on the activation of clot-dissolution under different

treatments. The model-generated predictions suggest sup-

pressing protein C and protein S (components that regulate

blood clot formation) under treatment with warfarin com-

pared to enoxaparin and rivaroxaban.

Illustrating the benefits of using ML to analyze infor-

mation from databases and predict drug targets, Pei et al.

utilized QSP methods to provide a comprehensive study of

cellular pathways involved in 50 drugs of abuse [125]. For

this study, 50 drugs of abuse and their relative pharmaco-

logical actions were gathered. Utilizing the DrugBank

[126], the STITCH database [127] (drug/ligand-target

interaction databases), 142 known targets of these drugs

were identified. Probabilistic matrix factorization (PMF)

[128, 129] based machine learning methodology was sub-

sequently applied to identify 48 new targets. Studies show

that the PMF model, which scales linearly with the number

of observations, can perform well on large, sparse, and

imbalanced datasets [128]. The PMF models were trained

on 11,681 drug-target interactions and 8,579,843 chemical-

target interactions. The study evaluated and associated a

confidence score to each predicted drug-target interaction

and selected high confidence predictions, leading to the

identification of 161 novel interactions between 27 out of

the 50 input drugs and 89 targets. The authors also iden-

tified and categorized 173 human molecular pathways

associated with the drug targets from the KEGG database.

Finally, the authors examined the involvement of these

targets and pathways in predicting drug addiction. Using

ML methods, this study provided novel target predictions

and detected critical signaling modules sensing the effects

of drugs of abuse.

Another study focused on the modulation of autophagy,

an important process with cellular functions such as cell

death/survival [130]. The authors used QSP models to

investigate the mechanism of action of autophagy modu-

lators by predicting novel drug-target reactions and

studying the drug effects using pathway/network analysis

tools. Two hundred twenty-five autophagy modulators

were collected, including various drugs such as fostama-

tinib, olanzapine, melatonin, and artenimol. Data collection

was performed using the DrugBank database, and the

selected modulators were manually classified into inhibi-

tors, activators, and dual-modulators. ML was subse-

quently used to predict the drug-target interaction applying

the PMF algorithm [129]. Using the DrugBank database,

the PMF model was trained by 14,983 interactions between

5,494 drugs and 2,807 targets. A confidence score was

evaluated for each predicted interaction, and the predicted

interactions with high scores were selected for each drug.

This ML approach led to 368 novel drug-target interac-

tions. Functional analysis was performed using the pre-

dicted targets to present the enriched pathways involved in

the regulation of autophagy. The study assists in new

investigations related to the mechanism of action of

autophagy modulators [130].

Coletti et al. developed the QSP model #23 of prostate

cancer immunotherapy to identify the effective drug

combinations for prostate cancer treatment [43]. The model

was calibrated, and the numerical optimization method

[131] was used for parameter estimation. The model was

used to compute the synergistic effects and predict the

percentage of tumor inhibition. A decision tree was built to

integrate the results for making predictions about potential

causality that facilitate obtaining a more comprehensive

view of the system’s behavior. They set the androgen

deprivation therapy as the root of the decision tree to

Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:19–37 29

123



identify efficacious treatments for castration-resistant

prostate cancer. The decision tree edges were annotated

with Bliss Combination Index value, a commonly used

correlation measure for evaluating the synergistic effects of

the therapies. The position of the nodes along the decision

tree indicated the efficacy of the possible combined ther-

apies. The results suggest that adding immune checkpoint

blockade to cancer vaccines is the most effective combi-

natorial immunotherapy to inhibit tumor growth in castra-

tion-resistant prostate cancer.

Gaweda et al. presented QSP model #17 for chronic

kidney disease mineral bone disorder (CKD-MBD) [20],

where ML methods were utilized to estimate model

parameters of the differential equations representing the

CKD-MBD compartments. A better understanding of

CKD-MBD and the variability of individuals’ CKD-MBD

indications can facilitate achieving the therapeutic inten-

tions for reducing mortality and morbidity [132]. The

CKD-MBD model was constructed by applying modifica-

tions to a previously published model [133]. The modifi-

cations include adding new components to the model and

using ML methods to estimate the parameters related to

CKD-MBD model (such as parameters in the parathyroid

gland compartment, renal phosphate reabsorption, and

smooth muscle cell compartments of model #17). The

CKD-MD model contains individual functions with

parameters that require to be estimated. Utilizing data from

5496 CKD patients, they estimated 23 parameters associ-

ated with components of the modified model. The model

fitting was performed using nonlinear least-squares

regression with the trust-region reflective algorithm. The

resulting model was validated by ten-fold cross-validation

(each fold included 30,106 training vectors and 3345

testing vectors).

Another study integrated mechanistic models with ML

to predict treatment response [134]. The authors developed

a QSP model (#12) for blood pressure regulation. High

blood pressure enhances the risk for various cardiovascular

diseases [135]. Studying the treatment response in hyper-

tensive patients is essential since about half of the patients

do not reach adequate blood pressure control after treat-

ment [136]. The QSP model of blood pressure regulation

was constructed to provide insight into utilizing precision

medicine in hypertension. A sex-specific virtual population

was built to consider the heterogeneity between the sexes

and within hypertension physiopathology. After con-

structing the sex-specific QSP model and creating the vir-

tual population, ML methods integrated with the

mechanistic model evaluated the response to antihyper-

tensive therapies. The authors constructed a decision tree to

identify the optimal drug class. This decision tree was

trained to predict which drug class causes the optimal

reduction in mean arterial pressure across the virtual

population. Several variables can influence hypertension

physiopathology and the mean arterial pressure. The fea-

tures of the virtual individuals include antidiuretic hormone

secretion rate, arterial resistance, renin secretion rate, the

strength of the myogenic response, aldosterone secretion

rate, renal sympathetic nerve activity, afferent arteriolar

resistance, and venous resistance, which are pathophysio-

logical variables. The model was validated using five-fold

cross-validation [134].

Mathematical modeling can be helpful in order to esti-

mate risks versus potential benefits when quick decision-

making is required. For example, several proposed drugs

for coronavirus disease 2019 (COVID-19) patients were

associated with cardiac adverse events [137]. Model #16

presented cardiac risks of COVID-19 therapies using a

combination of PK and QSP modeling [38]. For this pur-

pose, the authors investigated the potential effects of azi-

thromycin, lopinavir, chloroquine, and ritonavir on cardiac

electrophysiology. In order to predict cardiac adverse

events, PK with the QSP model of ventricular myocytes

has been utilized. A QSP model developed by O’Hara et al.

was applied to simulate the effects of the drugs on ven-

tricular action potentials [138]. Then, the QSP simulations’

drug concentrations were linked with patients’ free plasma

drug concentrations using PK models to simulate drug

disposition. This study predicted a greater action potential

prolongation by using the combination therapy involving

these drugs compared with drugs given in isolation. In

order to study the influence of sex and pre-existing heart

failure, models for different patient groups were developed,

and virtual populations were generated to simulate the

individual’s physiological variability. A logistic regression

analysis was performed on population outcomes to evalu-

ate why individual cells were resistant or susceptible to

arrhythmias. Modeled ventricular myocytes were labeled

as 1 (arrhythmic dynamics) and 0 (no arrhythmic dynam-

ics) in the simulated population. The developed logistic

model predicted the probability of arrhythmia from the

parameter values in each cell. The simulations of patient

groups suggest that women with pre-existing heart failure

are particularly susceptible to drug-induced arrhythmias.

In this section, we presented examples of applying ML

methods in different steps of QSP modeling, such as pre-

dicting treatment response, evaluating risks versus poten-

tial benefits for clinical decision-making, estimating the

model parameters, model simulation, analyzing the infor-

mation from databases, and predicting drug targets. Fig-

ure 2 summarizes the potential areas in which QSP

modeling can benefit from ML methods. However, we note

that substantial opportunities exist for the integration of

QSP models with ML to further fuel pharmacometrics and

drug development in general. Hence, there is a need for

collaboration between statisticians, clinical
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pharmacologists, QSP modelers, and ML engineers to

benefit from the full potential of using integrative approa-

ches and extensive data resources.

Discussion

In this review, we present recent efforts utilizing mecha-

nistic QSP models in drug development and clinical

strategies across various pathologies. Given the multidis-

ciplinary potential of QSP methodologies, we considered

ML as a complementary tool to be used soon along with

QSP to improve empiric simulation and predictions for

drug development.

QSP is a quantitative framework that mimics the

mechanistic knowledge of biological systems. QSP

approaches can provide several advantages. First, QSP

provides a platform to assess preclinical and clinical out-

comes during drug development. Second, QSP can para-

metrize complex molecular and cellular interactions to

evaluate the overall behavior of drug-target and drug-drug

interaction under any biological system. For example,

some I-O trials faced an increased therapy failure because

of the complex dynamic interaction between TME, drug,

and cancer cells, indicating the relevance of the develop-

ment of virtual systems to comprehend such complex

cross-interaction [8]. Third, QSP can model patient cohorts

using individual patient clinical data and optimize the

clinical trial design. Fourth, the personalization of QSP

models can maximize the clinical trial design calibrated to

patients’ background variability. Finally, QSP models can

reduce the time and the cost during the drug development

during the decision-making process.

Challenges and opportunities

Despite the wide range of applications, QSP approaches

also exhibit certain limitations and challenges. With the

expansion of omics technologies, QSP rarely integrates

omics data into the framework, possibly due to the amount

of information needed to combine during model construc-

tion. Notably, the confidence of the QSP model largely

depends on experimental data available at the biological

scale of interest to parametrize the model. However,

quantitative data are often missing. The gaps can be filled

using various experimental resources that may or may not

be fully compatible with each other (e.g., by simultane-

ously considering data from in vitro and in vivo studies or

different animal models). Thus, integrating omics data with

QSP models will provide additional biological knowledge

to fill mechanistic and clinical data gaps during model

construction [13].

As indicated in Fig. 1, QSP approaches have focused on

a limited number of diseases. While I-O appears to lever-

age QSP models recently most widely, other areas of

medicine, such as transplantation management and rare

diseases, have also begun applying QSP-informed

approaches in drug discovery, clinical strategies, charac-

terization of side effects, and set up a virtual patient cohort

to support more personalized design therapies.

Another challenge is that QSP mainly focuses on the

prominent cells or molecules and does not integrate all

biological interactions of the environment. For example,

TME supports cancer cells through direct and indirect

effects that influence drug infiltration and resistance [8].

Nevertheless, this limitation can be addressed by using

computational platforms such as Cell Collective to analyze

large-scale biological systems to predict biomarkers of

biological interactions. In addition, the Systems Biology

Fig. 2 Application of Machine

learning in supporting

challenges and limitations of

quantitative system

pharmacology
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Markup Language (SBML) is the most adopted standard-

ized file format that is developed for storing computational

models in a form that various modeling platforms can

exchange [139]. However, based on a survey published in

2019, using SBML has not become a dominant approach in

QSP modeling [140]. Utilizing a standard format for QSP

models would enable the exchange and reusability of QSP

models and their collection in online repositories and

modeling platforms of mathematical models such as Cell

Collective [31] and BioModels [141]. For example, Balbas-

Martinez et al. illustrated the benefits of such model-

sharing cyberinfrastructure by constructing and sharing

their model for inflammatory bowel diseases in the Cell

Collective platform [33].

Given their mechanistic nature, QSP models can also be

utilized to understand the normal physiological behavior of

molecules and cells in non-disease conditions. For exam-

ple, Puniya et al. developed a mechanistic logical model of

T cell plasticity and discovered the potential of a hybrid T

cell population upon external cytokine stimulation [142].

Knowing the complexity of T cell biology, a recent study

integrated four different modeling approaches to build

three different scales (e.g. signaling, metabolism and cel-

lular) capturing the essential biological phenomena of T

cell biology [143]. Understanding the importance of dif-

ferent T cell populations in disease, QSP models can

address the dynamic of cell development to predict

biomarkers and conditions where the cellular balance is

disrupted.

Notably, the QSP approach is often mentioned by many

modeling approaches such as PBPK and PK/PD models,

creating disparate communication between models and

corporations. Therefore, defining a clear consensus for QSP

among academia and pharmaceutical companies will

facilitate interaction between fields and accelerate drug

development strategies.

ML benefits in QSP methodologies

Mechanistic QSP models can integrate multi-layered data

and characterize mechanisms that explain the emergence of

biological function, phenomenon, or disease. However, as

QSP models grow in scope and depth, their simulations and

analyses become computationally too expensive [144]. ML

models can be highly predictive and integrate multi-modal,

multi-fidelity data relatively easily to reveal correlations

between intertwined phenomena. However, ML models

alone ignore the fundamental mechanisms behind their

predictions. The integration of these approaches can result

in a computationally efficient approach that can generate

predictions with high accuracy and identify the underlying

mechanism of the disease or its treatment [145]. With the

expansion of multi-dimensional biomedical data,

integrative strategies are developed to exploit and process

these data to sustain a rich platform of information and

support research and development. ML provides a power-

ful computational approach to handle and leverage big data

to make intelligent decisions. The potential of ML in

processing big data can transform the QSP platform into

larger complex modeling systems. For example, QSP

models are built as ‘‘horizontal integration’’ systems

including structural networks (e.g., receptors, signaling

pathways, metabolic pathways, or cell types); however,

vertical integrations such as multiscale modeling (e.g.,

molecule, cells, tissue, and organs) are more challenging to

conceptualize [7]. In addition, QSP modeling requires a

human intervention to curate biological networks and lit-

erature review manually; therefore, adding ML in QSP can

reduce bias in manual curation and allow automated data

mining. Another benefit of ML to consider is parameter

estimation during the development of the QSP model. The

lack of prior knowledge and heterogeneity of data used

during QSP model development can cause modeling

uncertainty beyond the scope of biological knowledge.

Therefore, ML algorithms can calibrate an interval for

parameter estimation using robust statistical analysis to

minimize prediction uncertainties [26, 49]. ML is broadly

utilized in several fields; however, it is only now being

considered as a companion to QSP models.

Conclusion

Quantitative systems pharmacology is increasingly soli-

cited in drug development and clinical areas. QSP has

demonstrated a positive impact in modern medicine

through understanding mechanistic pathways of drug-target

interactions, absorption, trafficking, metabolism, and side

effects. QSP can help decrease the time and cost of drug

development by systematically evaluating drug targets’

safety and efficacy. QSP can further increase its impact by

integrating with ML and expanding to many other diseases.
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