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Abstract: Objective: This study aimed to systematically assess the characteristics and risk of bias of
previous studies that have investigated nonlinear machine learning algorithms for warfarin dose
prediction. Methods: We systematically searched PubMed, Embase, Cochrane Library, Chinese
National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), China Science and
Technology Journal Database (VIP), and Wanfang Database up to March 2022. We assessed the
general characteristics of the included studies with respect to the participants, predictors, model
development, and model evaluation. The methodological quality of the studies was determined, and
the risk of bias was evaluated using the Prediction model Risk of Bias Assessment Tool (PROBAST).
Results: From a total of 8996 studies, 23 were assessed in this study, of which 23 (100%) were
retrospective, and 11 studies focused on the Asian population. The most common demographic and
clinical predictors were age (21/23, 91%), weight (17/23, 74%), height (12/23, 52%), and amiodarone
combination (11/23, 48%), while CYP2C9 (14/23, 61%), VKORC1 (14/23, 61%), and CYP4F2 (5/23,
22%) were the most common genetic predictors. Of the included studies, the MAE ranged from 1.47
to 10.86 mg/week in model development studies, from 2.42 to 5.18 mg/week in model development
with external validation (same data) studies, from 12.07 to 17.59 mg/week in model development
with external validation (another data) studies, and from 4.40 to 4.84 mg/week in model external
validation studies. All studies were evaluated as having a high risk of bias. Factors contributing to
the risk of bias include inappropriate exclusion of participants (10/23, 43%), small sample size (15/23,
65%), poor handling of missing data (20/23, 87%), and incorrect method of selecting predictors (8/23,
35%). Conclusions: Most studies on nonlinear-machine-learning-based warfarin prediction models
show poor methodological quality and have a high risk of bias. The analysis domain is the major
contributor to the overall high risk of bias. External validity and model reproducibility are lacking in
most studies. Future studies should focus on external validity, diminish risk of bias, and enhance
real-world clinical relevance.

Keywords: warfarin; nonlinear machine learning; algorithms; model prediction; PROBAST

1. Introduction

Warfarin is an oral anticoagulant that is widely used in clinical practice for the treat-
ment of venous thromboembolism (VTE) and thromboembolic events associated with atrial
fibrillation (AF) or heart valve replacement (HVR) [1,2]. Despite its high effectiveness
and low price, its optimal use is limited by a narrow therapeutic window and the highly
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variable clinical response between individuals. Predicting optimal warfarin dose is in-
fluenced by many factors including demographic, clinical, environmental, and genetic
factors, and multiple drug interactions, such as age, weight, height, vitamin K epoxide
reductase complex subunit 1 (VKORC1) genotype, cytochrome P450 family 2 subfamily
C member 9 (CYP2C9) genotype, coadministration of antiplatelet drugs, antimicrobials,
nonsteroidal anti-inflammatory drugs (NSAIDs), and proton pump inhibitors, etc. [3–7].
Therefore, a tailored warfarin dose may help clinicians to select the appropriate dose for
individualized warfarin treatment.

Many pharmacogenetic algorithms integrating clinical, demographic, and genetic
variables, including linear regression (LR) models, physiologically based pharmacokinetic
(PBPK) models, and nonlinear machine learning (ML) models, have been developed to
predict the dose requirements of individual patients. The PBPK model can help decision
making in relation to dose selection and clinical study strategies by identifying pharmacoki-
netic (PK) liabilities, such as poor bioavailability, high clearance, potential for drug–drug
interactions (DDIs), or the need for dose adjustments in special populations [8–11]. How-
ever, due to the lack of in vivo data in patient populations, the distribution and absorption
parameters could not be validated, which brought uncertainty to model parameters and
outputs [8]. This hindered the practical application of the PBPK model. LR, a type of
ML algorithm [12], is the most commonly used method because of its high interpretabil-
ity [13]. However, the complex and nonlinear relationship between the factors mentioned
above, warfarin responses, and metabolism render LR possible unsuitable to appropriately
predict the warfarin maintenance dose [14,15]. Therefore, ML of nonlinear relationships
between variables, warfarin response, and metabolism has been recently applied to enhance
the model expression of the complicated relationship between the individual factors and
warfarin dose.

Numerous published algorithm studies on warfarin dose prediction provide a plethora
of information, and Asiimwe et al. have examined the methodology and the risk of bias of
warfarin dose prediction algorithms as of 20 May 2020 [13]. However, this article evaluated
all dose prediction algorithms and did not focus on nonlinear ML algorithms, and new
evidence may exist as of 2022.

Our systematic review seeks to provide a contemporary overview of the dosing
algorithms for nonlinear ML research for clinical applications. We aimed to describe the
study characteristics, evaluate the methods and quality of nonlinear ML studies, discuss
the performance of nonlinear ML and LR algorithms, and account for the methodological
considerations of nonlinear ML.

2. Methods
2.1. Search Strategy and Selection Criteria

This manuscript has been prepared according to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines and the corresponding checklist
(Table S1). We performed a comprehensive search using medical subject headings and text
words related to “warfarin” and “algorithm” to identify eligible studies (Table S2). Several
electronic databases were searched from the inception to December 2021: PubMed, Embase,
Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), China Biology
Medicine (CBM), China Science and Technology Journal Database (VIP), and Wanfang
Database. Additional articles were retrieved by manually searching the reference lists of
relevant publications. A second search was conducted in March 2022 to identify the records
published after our first search.

We selected the publications for review if they fulfilled the following inclusion criteria:
(I) English or Chinese language; (II) observational or interventional studies that developed,
validated, or assessed the warfarin dosing algorithm modelling with at least two predictor
variables in any warfarin-treated population. The exclusion criteria included (I) LR algo-
rithm studies; (II) physiologically based pharmacokinetic (PBPK) models for predicting
the absorption, distribution, metabolism, and excretion (ADME) of synthetic or natural
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chemical substances in humans; (III) informal publication types (such as commentaries,
letters to the editor, editorials, and meeting abstracts). Warfarin dosing algorithms were
defined as computational models that are composed of predictor variables to predict the
weekly or daily dose of warfarin, including dose equations, nomograms, graphs, tables,
and computer programs, etc.

2.2. Study Selection and Extraction of Data

After excluding the records that were irrelevant to our study, two reviewers (F.Z. and
Y.L.) independently screened the abstracts for potentially eligible studies. The reports
were then assessed for eligibility, and any disagreements were resolved by consensus.
We designed a data extraction form based on four domains: participants, predictors, model
development, and model evaluation. These were adapted from the Checklist for Critical
Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies
(CHARMS) [16] and the Prediction model Risk Of Bias Assessment Tool (PROBAST) [17].
Two reviewers (F.Z. and Y.L.) extracted the data from the study reports independently and
in duplicate for each eligible study, and any disagreements were resolved by consensus or
a third reviewer (Z.G.). When a study reported multiple nonlinear ML algorithms, each
algorithm was extracted separately. When a study reported the same nonlinear machine
learning algorithm based on different variables, we extracted the best model evaluation.

2.3. Risk of Bias

We assessed the risk of bias in each included study by applying the PROBAST. Al-
though the above tools focus on prediction models that consider binary or time-to-event
outcomes, the author encourages the use of these tools for other outcomes and other ML
techniques. Additionally, many systematic reviews of ML algorithms also used PROBAST
for risk of bias assessment [18–21]. PROBAST contains 20 signaling questions from four
domains (participants, predictors, outcomes, and analyses), but we considered some prob-
lems to be less relevant to nonlinear ML studies (e.g., points that assigned weights in
the final model). Generally, the algorithm does not receive information regarding the
assigned weights. Therefore, we did not assess the questions regarding signaling (Table S3).
Two reviewers (F.Z. and Y.L.) independently assessed the signaling questions according to
the degree of compliance with the PROBAST recommendations. The disagreements were
discussed until a consensus was reached. The risk-of-bias judgment for each domain was
based on the answers to the signaling questions.

2.4. Data Synthesis

We did not conduct the formal quantitative syntheses because of the probable hetero-
geneity of specialties and outcomes. All extracted data were summarized and presented
descriptively. All analyses were performed by Excel (version 2020).

3. Results
3.1. Study Selection

We aimed to provide a contemporary overview of dosing algorithms used in nonlinear
ML research for warfarin. Figure 1 illustrates the literature search and selection process.
Our electronic search retrieved 8996 records. Of these, we excluded 6134 records based on
titles and abstracts. Of the 298 full-text records assessed for eligibility, 275 were excluded,
and 23 studies were related to nonlinear ML.
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and English.

3.2. General Characteristics

Table 1 summarizes the general characteristics of 23 studies. Of these, 22 studies were
retrospective.
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Table 1. Summary characteristics of studies.

Study Year Study Type

Participants Predictors Model Development Model
Evaluation

Source Patients Indication Target INR * Features Features
Selection

Missing
Data
Handling

Model Type
Machine
Learning
Algorithms #

Performance
Measures

Solomon [22] 2004 Retrospective Israel 148 NA NA clinical Univariate
analysis NA Development NNM r

Cosgun [23] 2011 Retrospective USA 290 NA 2.0–3.0 clinical +
genetic

Univariate
analysis

single
imputation Development

DT, SV,
Ensemble
learning

R2

Hu [24] 2012 Retrospective China 587 NA 1.0–3.0 clinical
Expert opinion
and literature
review

NA Development
DT, SV, KNN,
Ensemble
learning

MAE

Grossi [25] 2014 Retrospective Italy 377
PE, DVT, AF,
AHV, CM,
Stroke, Others

2.0–4.0 clinical +
genetic

Machine learning
algorithm
(TWIST system)

NA Development NNM R2, MAE,
ideal dose

Saleh [26] 2014 Retrospective IWPC sites 4271
PE, DVT, AF,
AHV, CM,
Stroke, Others

2.0–3.0 clinical +
genetic

Backward
Variable Selection Excluded Development NNM R2, MAE,

ideal dose

Zhou [27] 2014 Retrospective China 1093 HVR 1.5–2.5 clinical

Univariate
analysis,
Stepwise
regression

NA Development NNM MAE, ideal
dose

Li [28] 2015 Retrospective China;
IWPC sites 1511 HVR 1.7–3.0;

2.0–3.0
clinical +
genetic

Stepwise
regression Excluded External

validation

DT, SV, NNM,
Ensemble
learning, Other

MAE, ideal
dose

Liu [29] 2015 Retrospective IWPC sites 4797
PE, DVT, AF,
AHV, CM,
Stroke, Others

2.0–3.0 clinical +
genetic

Stepwise
regression Excluded Development

DT, SV, NNM,
Ensemble
learning, Other

MAE, ideal
dose

Alzubiedi
[30] 2016 Retrospective IWPC sites 163 PE, DVT, AF,

Stroke, Others 2.0–3.0 clinical +
genetic

Backward
Variable Selection NA Development NNM R2, MAE,

ideal dose

Pavani [31] 2016 NR India 240 PE, AF, HVR No limitation clinical +
genetic NA NA Development NNM R2, MAE

Li [32] 2018 Retrospective China 15,694 HVR 1.5–2.5 clinical

Covariance
analysis, expert
opinion, and
literature review

NA

Development
with external
validation
(same data)

NNM MAE, RMSE,
ideal dose
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Table 1. Cont.

Study Year Study Type

Participants Predictors Model Development Model
Evaluation

Source Patients Indication Target INR * Features Features
Selection

Missing
Data
Handling

Model Type
Machine
Learning
Algorithms #

Performance
Measures

Ma [33] 2018 Retrospective IWPC sites 5743
PE, DVT, AF,
AHV, CM,
Stroke, Others

1.7–3.3 clinical +
genetic

Expert opinion
and literature
review

single
imputation Development

SV, NNM,
Ensemble
learning, KNN

MAE, ideal
dose

Tao [34] 2018 Retrospective China 13,639 HVR 1.5–2.5 clinical Univariate
analysis NA

Development
with external
validation
(same data)

NNM MAE, MSE,
ideal dose

Li [35] 2019 Retrospective China 13,639 HVR 1.5–2.5 clinical Univariate
analysis NA

Development
with external
validation
(same data)

NNM
MAE, MSE,
RMSE, ideal
dose

Tao [36] 2019 Retrospective China 289 NR 2.0–3.0 clinical +
genetic NA NA Development

NNM, SV, GP,
Ensemble
learning

R2, MAE,
MSE, ideal
dose

Tao [37] 2019 Retrospective China;
IWPC sites 617

PE, DVT, AF,
VR, ICT, EVE,
stroke

2.0–3.0;
2.0–2.5

clinical +
genetic

Expert opinion
and literature
review

NA Development
DT, SV,
Ensemble
learning

R2, MAE,
MSE, ideal
dose

Roche-Lima
[38] 2020 Retrospective USA 190

PE, DVT, AF,
VR, DM2, CHF,
Stroke, Others

2.0–3.0 clinical +
genetic NA Excluded Development

DT, SV, NNM,
KNN,
Ensemble
learning, Other

MAE, ideal
dose

Asiimwe [39] 2021 Retrospective
Uganda,
South
Africa

634 AF, VT, VHT 2.5–3.5;
2.0–3.0 clinical

Expert opinion
and literature
review

multivariate
imputation

Development
with external
validation
(another data)

DT, SV, KNN,
NNM,
Ensemble
learning, Other

MAE, MAPE,
ideal dose

Gu [40] 2021 Retrospective China 15,108 HVR 1.5–2.5 clinical Univariate
analysis Excluded

Development
with external
validation
(same data)

NNM MAE, MSE,
ideal dose
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Table 1. Cont.

Study Year Study Type

Participants Predictors Model Development Model
Evaluation

Source Patients Indication Target INR * Features Features
Selection

Missing
Data
Handling

Model Type
Machine
Learning
Algorithms #

Performance
Measures

Liu [41] 2021 Retrospective China 377
PE, DVT, AF,
HF, PAH,
Stroke

1.5–3.0 clinical +
genetic

Univariate
analysis Not imputed Development Ensemble

learning

R2, MAE,
MSE, RMSE,
ideal dose

Ma [42] 2021 Retrospective China 19,060 HVR 1.5–2.5 clinical Univariate
analysis NA

Development
with external
validation
(same data)

NNM MAE, MSE,
ideal dose

Nguyen [43] 2021 Retrospective Korean 650

PE, DVT, HVR,
VHD, Stroke,
Arrhythmia,
others

1.5–3.0 clinical +
genetic

Recursive feature
elimination

Single
imputation Development Ensemble

learning

r, MAE,
RMSE, ideal
dose

Steiner [44] 2021 Retrospective

IWPC sites,
North and
South
America

7030 PE, DVT, TIA,
Others

2.0–3.0; No
limitation

clinical +
genetic NA multivariate

imputation Development DT, SV, Other MAE, ideal
dose

AF—atrial fibrillation; AHV—artificial heart valves; PE—pulmonary embolism; DVT—deep vein thrombosis; CM—cardiomyopathy; ICT—intracardiac thrombus; EVE—endovascular
exclusion of aortic dissection; DM2—type 2 diabetes mellitus; CHF—congestive heart failure; HF—heart failure; VT—venous thromboembolism; VHT—valvular heart disease;
PAH—pulmonary arterial hypertension; TIA—transient attack; HVR—heart valve replacement; INR—the international normalized ratio; NNM—neural network model; DT—decision
tree; SV—support vector; KNN—K-nearest neighbor; GP—genetic programming; Other—other nonlinear regression model; r—coefficient of correlation; R2—coefficient of determination;
MAE—mean absolute error; MSE—mean square error; RMSE—root mean square error. * In the article, there were different target INRs based on different indications in the same dataset,
we took the minimum and maximum value of the target INRs. There were different target INRs in different datasets, we took the target INRs separately. # The nonlinear machine
learning algorithms were divided into 6 categories (DT, SV, NNM, KNN, GP, ensemble learning, other nonlinear regression) based on the algorithms involved in the studies. When a
study reported many subcategories in a large category, the large category was reported in the table.
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3.2.1. Participants

The Asian and the International Warfarin Pharmacogenetics Consortium (IWPC) sites
accounted for 78% of studies, with the top two countries being China (9/23, 39%) and the
USA (2/23, 9%). The median sample size for these studies was 650 (range 148–19,060).
A total of 19 (83%) studies clarified the indications. Of 23 studies, 20 (87%) studies described
the target international normalized ratio (INR), which is a parameter that quantifies the
coagulation activity using the prothrombin time and is used for the regular monitoring of
warfarin therapy.

3.2.2. Predictors

All studies explored the demographic and clinical predictors, and 14 of the 23 (61%)
studies explored the genetic factors. The predictors that included at least four factors
are shown in Figure 2. Age (21/23, 91%), weight (17/23, 74%), height (12/23, 52%),
and amiodarone combination (11/23, 48%) were the four most common demographic
and clinical predictors. CYP2C9 (14/23, 61%), VKORC1(14/23, 61%), and CYP4F2 (5/23,
22%) were the three most common genetic predictors. With respect to features selection,
the top three methods were as follows: univariate analysis (8/23, 35%), expert opinion
and literature review (5/23, 22%), and stepwise regression (3/23, 22%). For missing data
handling, a majority of the studies (17/23, 74%) did not report or deleted directly.
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heart failure.

3.2.3. Model Development

The prediction model studies included were categorized into four types: development
(with internal validation), development with external validation (same data), development
with external validation (another data), and external validation only. Regarding the model
type, 16 of the 23 (70%) studies were development studies, 5 of the 23 (22%) studies were
development with external validation (same data) studies, 1 was a development with
external validation (another data) study, and 1 was an external validation study. The single
neural network model (NNM) algorithm was used for model development in 6/11 (55%)
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studies and was used for development with external validation (same data) in 5/11 (45%)
studies. Algorithms (2 or more) (e.g., DT (decision tree), SVR (support vector regression),
KNN (K-nearest neighbor), ensemble learning, and other nonlinear regression model) were
used for development in 10/12 (83%) studies; 1 was used for development with external
validation (another data) and 1 was used for external validation.

3.2.4. Model Evaluation

Of the 23 studies, 8 (35%) studies described the R2 (the coefficient of determination),
which is a parameter fit for accuracy measurement that represents the proportion of total
interpatient variability in warfarin dose requirements, accounted for by the variables
included in the algorithm. Regarding the precision (predictive accuracy), the most reported
measures were MAE (the mean absolute error) in 21/23 (91%) and RMSE (the root mean
square error) or the mean square error (MSE) were used in 9/23 (39%). Of the 23 studies,
19 (83%) studies described the ideal dose (the absolute prediction error between predicted
dose and the actual dose was within 20% of the actual dose).

Of the included studies, the MAE ranged from 1.47 to 10.86 mg/week in development
studies, from 2.42 to 5.18 mg/week in development with external validation (same data),
from 12.07 to 17.59 mg/week in development with external validation (another data), and
from 4.40 to 4.84 mg/week in external validation (Table 2).

Table 2. Performance evaluation of the included nonlinear machine learning algorithms studies.

Studies NO. Models Models NO. Patients NO. Features MAE (mg/Week)

Development

Solomon 2004 1 NNM 148 3 NR
Cosgun 2011 3 DT, SV, Ensemble learning 290 11 NR

Hu 2012 9 DT, SV, KNN, Ensemble
learning 587 7 (1.47, 1.55)

Grossi 2014 1 NNM 377 14 5.72
Saleh 2014 1 NNM 4271 9 9
Zhou 2014 1 NNM 1093 11 0.08 *

Liu 2015 7 DT, SV, NNM, Ensemble
learning, Other 4797 9 (8.84, 9.82)

Alzubiedi 2016 1 NNM 163 7 11.2
Pavani 2016 1 NNM 240 9 −1.97 *

Ma 2018 8 SV, NNM, KNN,
Ensemble learning 5743 13 (8.31, 10.86)

Tao 2019 6 NNM, SV, GP, Ensemble
learning 289 7 NR

Tao 2019 4 DT, SV, Ensemble learning 617 11 (4.73,5.36)

Roche-Lima 2020 9 DT, SV, NNM, KNN,
Ensemble learning, Other 190 24 (4.73, 9.87)

Liu 2021 3 Ensemble learning 377 11 (2.98, 4.54)
Nguyen 2021 1 Ensemble learning 650 17 4.48
Steiner 2021 3 DT, SV, Other 7030 13 (8.11, 8.18)

Development with external validation (same data)

Li 2018 IV 1 NNM 15,694 12 2.59
Li 2018 EV 1 NNM 15,694 12 2.68
Tao 2018 IV 1 NNM 13,639 9 4.07
Tao 2018 EV 1 NNM 13,639 9 4.22
Li 2019 IV 1 NNM 13,639 10 4.82
Li 2019 EV 1 NNM 13,639 10 5.18
Gu 2021 IV 1 NNM 15,108 8 2.58
Gu 2021 EV 1 NNM 15,108 8 2.59
Ma 2021 IV 2 NNM 19,060 8 (2.28, 3.04)
Ma 2021 EV 2 NNM 19,060 8 (2.42, 2.88)
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Table 2. Cont.

Studies NO. Models Models NO. Patients NO. Features MAE (mg/Week)

Development with external validation (another data)

Asiimwe 2021 13 DT, SV, KNN, NNM,
Ensemble learning, Other 270 7 (12.07, 17.59)

External validation

Li 2015 6 DT, SV, NNM, Ensemble
learning, Other 1295 10 (4.41, 4.76)

Li 2015 6 DT, SV, NNM, Ensemble
learning, Other 216 10 (4.40, 4.84)

NNM—neural network model; DT—decision tree; SV—support vector; KNN—K-nearest neighbor; GP—genetic
programming. * The value provided in literature was not clear, and it was impossible to distinguish whether it
was derived from the training set or the test set.

3.3. Methods and Risk of Bias

The overall and detailed risk of bias are presented in Figure 3 and Table S4. Specifically,
8 (35%) studies were rated to have a high risk of bias in the participant domain. The major
issue in this domain is the inappropriate exclusion of participants (43%); 1 (4%) study was
considered as having high risk of bias in the predictor domain; 8 (35%) studies had high
risk of bias in the outcome domain; and 22 (96%) studies were judged as high risk of bias in
the analysis domain (Table 3).
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Table 3. PROBAST signaling questions in 23 included studies.

Signaling
Question No.

Signaling Question
Included Studies (n = 23)

Yes or Probably Yes No or Probably No No Information

Participant domain number (percentage, 95% confidence interval)

1.1
Were appropriate data sources used,
e.g., cohort, RCT, or nested
case–control study data?

23 (100, 100 to 100) 0 0

1.2 Were all inclusions and exclusions of
participants appropriate? 13 (57, 36 to 77) 8 (35, 15 to 54) 2 (8, 3 to 20)

Predictor domain

2.1 Were predictors defined and assessed
in a similar way for all participants? 23 (100, 100 to 100) 0 0

2.2 Were predictor assessments made
without knowledge of outcome data? 22 (96, 87 to 100) 1 (4, 4 to 13) 0

2.3 Are all predictors available at the time
the model is intended to be used? 22 (96, 87 to 100) 1 (4, 4 to 13) 0

Outcome domain

3.1 Was the outcome determined
appropriately? 16 (70, 51 to 89) 7 (30, 12 to 49) 0

3.3 Were predictors excluded from the
outcome definition? 22 (96, 87 to 100) 1 (4, 4 to 13) 0

3.4
Was the outcome defined and
determined in a similar way for all
participants?

21 (91, 80 to 100) 0 2 (9, 3 to 20)

3.5 Was the outcome determined without
knowledge of predictor information? 22 (96, 87 to 100) 1 (4, 4 to 13) 0

3.6
Was the time interval between
predictor assessment and outcome
determination?

23 (100, 100 to 100) 0 0

Analysis domain

4.1 Were there a reasonable number of
participants with the outcome? 8 (35, 15 to 54) 12 (52, 32 to 73) 3 (13, 1 to 27)

4.3 Were all enrolled participants included
in the analysis? 23 (100, 100 to 100) 0 0

4.4 Were participants with missing data
handled appropriately? 3 (13, 1 to 27) 20 (87, 73 to 100) 0

4.5 Was selection of predictors based on
univariable analysis avoided? 11 (48, 27 to 68) 8 (35, 15 to 54) 4 (17, 2 to 33)

4.7 Were relevant model performance
measures evaluated appropriately? 21 (91, 80 to 100) 2 (9, 3 to 20) 0

4.8 Were model overfitting and optimism
in model performance accounted for? 19 (90, 78 to 100) 2 (10, 3 to 22) 0

Signaling questions 3.2, 4.2, 4.6, and 4.9 were not included (Table S3). The risk of bias judgment for each domain
was based on the answers to the signaling questions. If the answer to all signaling questions was yes or probably
yes, then the domain was judged as low risk of bias. If reported information was insufficient to answer the
signaling questions, these were judged as no information. If more than half of the answer to all signaling questions
were judged as no information, then the domain was judged as high risk of bias, otherwise the domain was
judged as unclear risk of bias. If one answer to all signaling question was answered as no or probably no, then the
domain was judged as high risk of bias. After judging all the domains, we performed an overall assessment for
each application of PROBAST. This tool recommends rating the study as low risk of bias if all domains had low
risk of bias. If at least one domain had a high risk of bias, overall judgment was rated as high risk of bias. If the
risk of bias was unclear in at least one domain and all other domains had a low risk of bias, then an unclear risk of
bias was assigned.

Thus, the analysis domain was major contributor to the overall high risk of bias.
In detail, the number of participants with the outcome was unreasonable or unclear in
15 (65%) studies; 20 (87%) studies were inappropriate regarding the handling of missing
data (missing data were omitted or excluded); 8 (35%) studies used univariable analyses to
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select the predictors. Given above, the factors contributing to the risk of bias include the
inappropriate exclusion of participants (10/23, 43%), small sample size (15/23, 65%), poor
handling of missing data (20/23, 87%), and incorrect method of selecting predictors (8/23,
35%) (Table 3).

4. Discussion
4.1. Major Finding

In this study, we summarized the warfarin dosing algorithms for nonlinear ML based
on their general characteristics and risk of bias. The major findings were as follows:
(I) Most studies on nonlinear-machine-learning-based warfarin prediction models show
poor methodological quality and are at high risk of bias, mainly as a result of inappropriate
exclusions, small sample size, inappropriate handling of participants with missing data,
and incorrect predictor selection; (II) About 50% of the involved studies focused on the
Asian population, and the included clinical variables (age, weight, height, amiodarone
combination) and genetic variables (CYP2C9, VKORC1) were recognized by most studies;
(III) Most studies were limited to model internal validation, and external validation was
rarely used to further illustrate the generalization ability of the predictive model.

4.2. Risk of Bias

Overall, most studies show poor methodological quality and are at a high risk of
bias. Without a rigorous evidence base, these research results may not be applicable to
the clinical use and should rather guide their efforts towards improving the design and
quality [45]. The following key improvements were established from our methodological
review.

First, inappropriately excluding participants may result in the target population not
being represented. The exclusion criteria of 7/23 (30%) studies included complications
that occurred during anticoagulant therapy (thrombosis, embolism, bleeding, death result)
or severe liver and kidney dysfunction after the operation, which may introduce a bias
because the final study population represented a selected, lower-risk sample of the original
population. This may produce biased estimates of the predictive performance of the model.
Therefore, reasonable inclusion and exclusion criteria should be adopted.

Second, since EPV (the number of events per candidate predictor variable) may not be
the best method for nonlinear ML in warfarin dose prediction, we applied more stringent
criteria for signal identification (EPV > 200 [46]). We also found that the training set size of
studies with EPV rated “N” was small, ranging from 108 to 587. This size is small for ML,
making it impossible for us to judge the potential biases. Although no studies have been
conducted regarding the sample size calculations for developing prediction models using
nonlinear ML techniques, these studies usually require more participants than conventional
statistical approaches do [47].

Third, with respect to missing data, most studies deleted or failed to provide the
methods. Multiple imputation is generally preferred because it prevents biased model
performance as a result of deletion or single imputation of participants’ missing data. How-
ever, in warfarin prediction models with nonlinear ML techniques, multiple imputations
remain a minority. Therefore, it would be useful if algorithm developers could improve the
imputation methods in their models when possible.

Forth, univariate analysis to select the predictors may be an incorrect method of
predictor selection because predictors are chosen on the basis of their statistical significance
as a single predictor rather than in context with other predictors [48]. Well-established
predictors should be included and retained in the model, regardless of any statistical
significance. Therefore, we recommend that researchers avoid the use of univariable
analysis to select the candidate predictors and choose nonstatistical methods (without
any statistical univariable pretesting of the associations between candidate predictors
and outcome) or other methods (for example, principal component analysis and lasso
regression).
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4.3. Performance Measures

We originally aimed to evaluate all the measurement parameters of the algorithms.
As reported previously, the coefficient of determination (R2) was the most common pa-
rameter fit for accuracy measurement, and MAE, MSE, and RMSE were the most common
parameters for predictive accuracy measurement. However, as a measure of the degree
of association between actual and predicted doses, R2 may be misleading in terms of the
actual closeness of predictions to the true values. Hence, it is not a good measure of the
predictive accuracy [49,50]. As the proximity distance measures between the actual and
predicted doses, accuracy measure parameters (MAE, MSE, RMSE) have the following
issue: 1 mg/d may be clinically more important in a small value than a similar error in a
large value. For example, numerous studies have shown that the Asian populations display
higher sensitivity to the anticoagulant effects of warfarin, and the overall stable dose is
relatively small compared with Caucasian populations. The MAE made by the model is
correspondingly smaller than that of the other races. However, this does not mean that the
model is better. These values should be interpreted cautiously.

4.4. Linear Regression vs. Nonlinear ML in Warfarin

As a traditional and widely used oral anticoagulant, warfarin dose prediction models
have been studies for a long time [13]. LR was originally used to develop a warfarin predic-
tive model because of its simple development process and high interpretability. Gage et al.
and the International Warfarin Pharmacogenetics Consortium (IWPC) have developed two
representative linear warfarin prediction models based on pharmacogenomic information
and clinical factors [4,51]. However, the LR method presents certain irreconcilable issues,
such as poor behaviour of the nonlinear relationship between variables, which makes the
LR model an inappropriate method [14,15]. With the development of science and technol-
ogy, nonlinear ML has gradually emerged as a powerful technique for analysing complex
analytic problems and could use nonlinear, highly interactive combinations of predictors to
uncover novel patterns that may improve the predictive performance [52–54]. Therefore,
an increasing number of researchers are beginning to develop warfarin predictive models
using nonlinear ML methods to explore new possibilities.

However, identifying which algorithm performs better (either LR or nonlinear ML) is
difficult, because these algorithms are derived from different racial backgrounds. Therefore,
we compared nonlinear ML with LR in the same population and variables (Table S5).
Overall, the results of these studies still cannot determine which algorithm performs better.
In some studies, the ML had a lower MAE than the LR, and vice versa. With these points in
mind, further development and validation of warfarin dose prediction models based on
nonlinear ML, and a more thorough comparison with LR, are recommended.

4.5. Clinical Relevance

In the included literature, we also extracted the suggestion in clinical practice (sugges-
tion in discussion that algorithm can now be used clinically). Unfortunately, few studies
underwent the description of the practical application using the developed model. There-
fore, a simple guide process aiming at the population of anticoagulant therapy using
warfarin might be necessary. First, surgeons should conduct a comprehensive assessment
of patient conditions for the risk factors before and after procedure. Patients who are
older, more fragile, and have the VKORC1 or CYP2C9 gene carrier might be at high risk of
bleeding [55]. In addition, concomitant drugs to warfarin therapy may also increase the
risk of bleeding, such as amiodarone, coadministration of antiplatelet drugs, antimicrobials,
etc. [56]. Second, when determining warfarin doses during treatment, we suggest using
externally validated dosing algorithms over an internal validated dosing algorithms or
an ad hoc approach. Certainly, the dosing algorithms that have been externally validated
across races, which focuses on a certain race and extends to different races via appropriate
weighting or modifications, are more suitable for clinical application. Third, patients with
extremely high or low doses determined by the algorithm should receive more frequent
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INR testing and bleeding risk assessment after surgery. Forth, we suggest enrolling patients
with warfarin in a structured care process, which may include sophisticated patient tracking
systems, comprehensive patient education, outcome evaluation, and quality improvement
activities.

4.6. Study Limitations

The main limitations of this study are as follows: first, the nomenclature in the field is
sometimes used in a non-standardized manner, and thus some potentially eligible studies
might have included terminologies that were not captured by our search strategy. Although
comprehensive, our search might have missed some studies that could have been included.
Second, the benchmark that we adopted to evaluate the risk of bias (PROBAST) was
designed for conventional prediction modelling studies, this has certain limitations. Third,
the risk of bias entails some subjective judgment, and people with different experiences
may have varying perceptions.

4.7. Future Research

The number of warfarin dose prediction models based on nonlinear ML is increasing
every year; thus, their identification, reporting, and assessment have become even more
relevant. We believe that researchers should consider the following points: first, researchers
should consider the impact of different populations, indications, and valve types on the
range of INR treatment range, whether the inclusion and exclusion criteria of the included
participants can accurately represent the target population or not, appropriate handling
of participants with missing data, and correct predictor selection methods. Second, with
respect to model development, we recommend that the researchers report detailed infor-
mation about modelling methods and encourage code sharing to enhance the possibility of
reproducibility. Third, for the better judgement of studies, we recommend that researchers
should adhere to the transparent reporting of a multivariable prediction model for individ-
ual prognosis or diagnosis (TRIPOD) statement [57]. Although TRIPOD was not explicitly
developed for machine learning prediction models, all items were applicable.

5. Conclusions

Most warfarin dosing algorithms for nonlinear ML have been developed in Asian
populations, and few algorithms have been externally validated. Most studies show poor
methodological quality and are at a high risk of bias, which makes them unreliable for
clinical use. Factors contributing to the risk of bias include the inappropriate exclusion
of participants, small sample size, poor handling of missing data, and incorrect method
of selecting predictors. Efforts to improve the design, conduct, reporting, and validation
studies of warfarin dosing algorithms of nonlinear ML are necessary to boost its application
in clinical practice.
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