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ABSTRACT
The secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor
which plays important role in bacterial infection, inflammation, wound healing and
epithelial proliferation. Dysregulation of SLPI has been reported in a variety of human
cancers including glioblastoma, lung, breast, ovarian and colorectal carcinomas and is
associatedwith tumor aggressiveness andmetastatic potential. However, the pathogenic
role of SLPI in colorectal cancer is still unclear. Here we showed that SLPI mRNA level
was significantly upregulated in colorectal cancer tissues compared to adjacent normal
controls. Targeting SLPI by siRNA inhibited proliferation, migration and invasion of
colorectal cancer cells lines HT29 and HT116 in vitro. Mechanistically, blockage of
cancer cell growth and metastasis after SLPI knockdown was associated with down-
regulation of AKT signaling. In conclusion, SLPI regulated colorectal cell growth and
metastasis via AKT signaling. SLPI may be a novel biomarker and therapeutic target
for colorectal cancer. Targeting AKT signaling may be effective for colorectal cancer
treatment.
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INTRODUCTION
Colorectal cancer (CRC) is one of the most widespread malignancies and is the second
leading cause of cancer-related mortality (Parkin, 2001; Caravati-Jouvenceaux et al., 2011).
Although the survival rate for colorectal cancer patients have risen over the last few years,
approximately 40%± 10% of patients suffered from disease relapse or metastasis (Matsuda
et al., 2016; Pedrazzani et al., 2016).

The secretory leukocyte protease inhibitor (SLPI) is a ∼11.7-kDa, non-glycosylated,
single-chain protein, which is expressed by a wealth of cell types, including secretory
cells of the salivary glands, lung epithelial cells, and multiple host inflammatory and
some immune cells (Camper et al., 2016; Habgood et al., 2016; Klimenkova et al., 2014;
Majchrzak-Gorecka et al., 2016; Weldon et al., 2007). Recent studies showed that SLPI is
also upregulated in several human cancers including lung, cervix, ovarian, pancreas and
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head/neck cancers (Treda et al., 2014; Cordes et al., 2011), and is associated with cancer
progression, metastasis and invasion (Rasool et al., 2010). Besides that, it has been reported
that SLPI was up-regulated in colon cancer tissues when comparing to normal mucosa (Gu
et al., 2013), and correlated with differentiation grade, TNM (tumor, node, metastasis)
stages, lymph node metastasis and distant metastasis.

The phosphatidylinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway is critical
in the development of various solid tumors (Barra et al., 2018; Lei et al., 2018; Sun et al.,
2015; Papadimitrakopoulou, 2012). Of note, activation of the PI3K/AKT pathway correlated
with prognosis in stage II colon cancer (Malinowsky et al., 2014). However, the regulation
between SLPI and AKT pathway has not been reported.

In the present study, SLPI was found to be highly expressed at the mRNA level in
colorectal cancer tissues. SLPI knockdown by siRNA effectively reduced the proliferation
and metastasis of colorectal cancer cells in vitro. The reduction of cancer growth was
associated with the downregulation of AKT. Indeed, targeting AKT signaling by siRNA also
significantly inhibited tumor cell growth, migration and invasion, suggesting that AKT is
the downstream of SPLI and may be a promising therapeutic target in colorectal cancer
with high SLPI expression.

MATERIAL AND METHODS
Cell culture and primary samples
The American Type Culture Collection (ATCC) (Manassas, VA) provided the human
CRC cell lines (HT29 and HT116). Cells were cultured in DMEM/F-12 containing 2.2 g/L
sodium bicarbonate, 0.2 g/L BSA, 50 mL/L FBS and 10 mL/L 100 units/ml penicillin, 100
µg/ml streptomycin antibiotic and antimycotic solution under the condition of 5% CO2

at 37 ◦C. After 2 months, all cell lines were discarded, and new lines were propagated from
the freezer. CRC cancer tissues and matched juxtacancerous normal colorectal tissues were
obtained from 60 patients with a median age of 65 years (range 40–90 years) and no history
of radiation and chemotherapy at our hospital. All these tissues were histologically verified
with hematoxylin and eosin staining by a pathologist. Liquid nitrogen was applied for all
tissues to snap-freeze for further use. Verbal informed consent was obtained in all cases. All
clinical data were analyzed anonymously. The CangZhou Central Hospital granted Ethical
approval to carry out the study within its facilities.

siRNA-mediated gene knockdown
Cell Signaling Technology provided siAkt (No. 6211). The siRNAs for SLPI was designed by
online software (http://rnaidesigner.invitrogen.com/) and shown in Table 1. SLPI siRNA
and control siRNA fragments were synthesized by Shanghai Sangon (Shanghai, China).
Briefly, CRC cells were transfected with these siRNAs at the concentration of 300 pmol
each well according to the instructions of Lipofectamine 2000 (Invitrogen). Media was
exchanged 4 h after transfection and replaced with DMEDmedium supplemented withFBS.
Media was again exchanged with fresh media at 36 h and cells were counted at 72 h.
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Table 1 The sequences of four siRNAs for SLPI knockdown assay.

Gene siRNA number Sequences

SLPI S1 5′-AAGCTGGAGTCTGTCCTCCTAAGAA-3′

SLPI S2 5′-CAGTGCAAGCGGTGACTTGAAGTCTT-3′

SLPI S3 5′-TCAAAGCTGGAGTCTGTCCTCCTAA-3′

SLPI S4 5′-CAAAGCTGGAG TCTGTCCTCCTAAG-3′

MTT assay
MTT assay was performed to measure cell viability. Briefly, cell suspension was prepared at
a density of 5 × 105 cells/mL and seeded into a 96-well plate. After culturing at 37 ◦C with
5% CO2 for 12 h, MTT (20 µL/well) was added to each well and incubated for another
4 h. Subsequently, 150 µL dimethylsulfoxide (DMSO) was added to dissolve the crystals
sufficiently for scrolling 30 min at 37 ◦C. The OD value was quantified at 570 nm using a
Universal Microplate Spectrophotometer (Infinite F50; Tecan, Männedorf, Switzerland).

Migration assay
The transfected cells were collected and prepared at a density of 4 × 105 cells/mL. Then,
100 µL cell suspension (4 × 105 cells/well) was added to upper wells. Growth media were
placed into lower wells and cells were incubated at 37 ◦C for 6 h. Migrated cells were
fixed with methanol for 10 min and stained with Mayer’s hematoxylin (DakoCytomation,
Glostrup, Denmark). Photomicrographs of five random fields were taken (Olympus CK2;
X100), and cells were then counted using a NIH image J program (NIH Image; Bethesda,
MD).

Invasion assay
Cell invasion was determined using the Boyden Chamber assay described by Ishizu (Huynh
et al., 2010) with the following modifications. Chamber inserts were pre-coated with BD
Matrigel (BD Biosciences, San Jose, CA, USA) and medium for overnight under sterile
conditions. Cells (5 × 105 cells/mL) were plated into the upper chambers and cultured for
24 h at the atmosphere of 37 ◦C and 5% CO2. Cells in the upper chambers were removed
before the membranes were fixed and stained with Quick-Dip (Fronine, Sydney, Australia).
The migrated cells were counted from 24 random fields at a 40X magnification using a
NIKON Coolscope (Coherent Scientific, Adelaide, Australia).

Quantitative real-time PCR (qRT-PCR)
RNA was extracted from colorectal cancer tissues, matched juxtacancerous normal
colorectal tissues, cultured SLPI, and control siRNA cells using TRIzol regent. The RNA
purity was determined by ultraviolet spectrophotometer. Total RNA (1.0µg) was converted
into cDNA using a reverse transcription kit (Fermentas China Co., Ltd, Beijing, China).
The qPCR reaction was performed using a SYBR Green master kit (Applied Biosystems,
USA). 1 µl cDNA was used as template in a 10 µl system. The primers of SLPI and GAPDH
were shown in Table 2. The thermocycler condition is: 95 ◦C pre-denaturing for 30 s,
followed by 40 cycles of 95 ◦C for 30 s, annealing temperature of 60 ◦C for 30 s. The
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Table 2 The sequences of primers for the SLPI and GAPDH qRT-PCR analysis.

Gene Sequences

SLPI Forward 5′-CCCTTCCTGGTGCTGCTT-3′

SLPI Reverse 5′-CCTCCTTGTTGGGTTTGG-3′

GAPDH Forward 5′-AGGCTGTGGGCAAGGTCA-3′

GAPDH Reverse 5′-CGTCAAAGGTGGAGGAGTGG-3′

melting curve was made after the amplification. Each sample was repeated in triplicate.
The relative expression of SLPI was calculated by 11Ct method, and the expression level
was calculated as 2-11Ct. Each value was normalized against that of GAPDH mRNA.

Western =blotting
Total protein was extracted form CRC tumor tissues, corresponding adjacent normal
tissues and cultured cells. The protein concentration was determined by the BCA method.
40µg total proteins were separated by SDS-PAGE, followed by transferring to a PVDF
membrane (GE Healthcare). Then the membranes were blocked with 5% skimmed milk in
Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBS-T), for 1 h and subsequently
incubated overnight at 4 ◦Cwith the primary antibodies, including SLPI (#sc373802, 1:200,
Santa Cruz biotechnology, Santa Cruz, CA), Phospho-AKT (#9271, 1:1000, Cell Signaling
Technology) and AKT (#9272, 1:1000, Cell Signaling Technology), and GAPDH (1:1000,
#sc32233, Santa Cruz Biotechnology, Santa Cruz, CA). After that, the membrane was
incubated with horseradish peroxidase-conjugated secondary antibodies IgG (Sigma, 1:
5,000) for 2 h at room temperature. The protein bands were visualized with Amersham
ECL substrates and analyzed by Multigauge computer software (Berthold, Bundoora,
Australia).

Statistical analysis
All data was shown as mean ± SD and analyzed with SPSS 13.0 (SPSS, Chicago, IL).
One-way ANOVA with Bonferroni’s correction was used to compare the difference among
three ormore groups. The comparison between groups using LSD test. For all comparisons,
differences were considered as statistically significant when p< 0.05. The serum markers
for CRC was evaluated by the empirical receiver operating characteristic (ROC) curve.

RESULTS
SLPI was upregulated in colorectal cancers compared to adjacent
normal tissues
SLPI has been reported to be upregulated in a variety of cancers and plays important
role in metastasis of cancer cells. However, the expression and pathogenetic role of SLPI
in colorectal cancer remains elusive. Here we showed that SLPI transcript level was
significantly increased in our archived primary colorectal cancer samples when comparing
to normal tissues (Fig. 1A).

Further, ROC curves were utilized to evaluate the performance of SLPI in discriminating
colorectal tissue from adjacent normal tissues. The area under the curve (AUC) was
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Figure 1 SLPI is upregulated in colorectal cancers. (A) ROC curve analysis of the expression of SLPI in
colorectal cancers. (B) Detection of SLPI mRNA expression by qRT-PCR in normal and colorectal cancer
tissues.

Full-size DOI: 10.7717/peerj.9400/fig-1

95.77% for colorectal cancer detection (Fig. 1B). Sensitivity ranged from 86.5 to 100% and
specificity was 100%, indicating a statistically significant correlation between SLPI and
colorectal cancers (p< 0.0001).

SLPI knockdown by siRNA suppressed the proliferation, migration
and invasion of colorectal cancer cells
As SLPI was significantly upregulated in colorectal cancer tissues, we sought to determine
whether SLPI was essential for the survival of colorectal cancer cells. Here, SLPI was
knocked down by siRNA in colorectal cancer cell lines HT29 and HT16. Four different
siRNAs were designed and one of them showed the strongest knockdown effect by qRT-
PCR. Consistently, SLPI expression was significantly decreased in HT29 and HT116 cells
after SLPI knockdown compared to control siRNA transfected cells (Fig. 2A). In addition,
proliferation (Fig. 2D), migration (Figs. 2B and 2E), and invasion (Figs. 2C and 2F) were
also significantly reduced after SLPI knockdown in HT29 and HT116 cells compared to
the control siRNA group. These data revealed that SLPI may play important roles in the
survival, migration and invasion of colorectal cancer cell in vitro.

SLPI knockdown reduced the phosphorylation of AKT
AKT kinases are involved in a variety of cellular processes including cell proliferation,
survival, and metastasis. Next, we sought to investigate the potential crosstalk between
SLPI expression and AKT activation in colorectal cancers. Total AKT was not affected after
SLPI knockdown in HT-29 and HT-116 cells (Fig. 3A). Whereas, the phosphorylated AKT,
an active form of AKT, was markedly decreased compared to the control siRNA-transfected
cells (Figs. 3A and 3B). These data suggested that the activation of AKT was regulated by
SLPI in colorectal cancer cell lines.
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Figure 2 Effects of SLPI knockdown on the proliferation, migration and invasion of colorectal cancer
cells. (A) Detection and quantitative analysis of SLPI protein expression after siRNA knockdown in col-
orectal cancer cell lines HT-29 and HCT116 by Western blotting. The untransfected (normal) and con-
trol siRNA-transfected cells were used as controls. Proliferation (D), migration (B,E) and invasion (C,F) of
both cell lines were significantly inhibited by siRNA-mediated SLPI knockdown.

Full-size DOI: 10.7717/peerj.9400/fig-2

AKT as a promising therapeutic target for colorectal cancers
As shown above, SLPI knockdown suppressed the survival and invasive potential of
colorectal cancer cells via downregulation of AKT. It will be interesting to test whether
targeting AKT could be promising therapeutics for colorectal cancer. We showed that AKT
was effectively knocked down at the protein level by siRNA as demonstrated by Western
blotting (Figs. 4A and 4B). Importantly, proliferation (Fig. 5A), migration (Figs. 5B and
5D) and invasion (Figs. 5C and 5E) of HT29 and HT116 cells were significantly reduced
following siRNA-mediated AKT knockdown, suggesting that targeting AKT may be
effective for treatment of colorectal cancers with high SLPI expression. Collectively, these
data demonstrated that the AKT pathway was regulated by SLPI and targeting AKT may
be effective for the treatment of colorectal cancer.

DISCUSSION
In the present study, we first demonstrated that SLPIwas significantly increased in colorectal
cancers. SLPI was originally isolated from respiratory secretions from patients with
chronic obstructive pulmonary disease (COPD) and downregulation of SLPI was strongly
associated with the incidence of COPD (Nukiwa et al., 2008). It has been reported that SLPI
is upregulated in non-small cell lung cancer (NSCLC), and cancers of the cervix, ovary, and
pancreas, but not in those of the kidney, intestinal tract, breast, or nasopharynx (Bouchard
et al., 2006). Upregulation of SLPI is associated with the progression of gastric cancer
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Figure 3 Effect of SLPI knockdown on the activation of AKT in colorectal cancer cells. (A) Total and
phosphorylated AKT were detected by Western blotting after SLPI knockdown in HT-29 and HCT116
cells, respectively. (B) The relative expression of total and phosphorylated AKT was quantified by the in-
tensity of the bands by ImageJ.

Full-size DOI: 10.7717/peerj.9400/fig-3

and development of pancreatic ductal adenocarcinoma (PDAC) (Cheng et al., 2008).
Targeting SLPI by siRNA induced apoptosis, and inhibited the migration and invasion of
PDAC cells (Zhang et al., 2015). SLPI was increased in ovarian cancer and enhances the
invasiveness of ovarian cancer cells via modulating MMP-9 release (Hoskins et al., 2011;
Tsukishiro et al., 2005). In the previous study, SLPI was found overexpressed in colorectal
cancer tissues of 296 CRC patients (Liu et al., 2014). Upregulation of SLPI is associated
with tumor grade and TNM stage (tumor, node, metastasis), but not with patients’ sex or
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Figure 4 Detection of AKT protein expression after siRNA knockdown in colorectal cancer cell lines
HT-29 and HCT116 byWestern blotting. (A) Expression of AKT and GAPDH (loading control) in HT-
29 AKT knockdown and control cells. (B) Expression of AKT and GAPDH (loading control) in HCT116
AKT knockdown and control cells.

Full-size DOI: 10.7717/peerj.9400/fig-4

Figure 5 Effect of siRNA-mediated AKT knockdown on the survival, migration and invasion of col-
orectal cancer cell lines HT29 and HCT116 Proliferation. (A) Migration (B, D) and invasion (C, E) of
both cell lines were measured and quantified after SLPI or AKT knockdown, respectively.

Full-size DOI: 10.7717/peerj.9400/fig-5

age (Cordes et al., 2011; Liu et al., 2014). In line with these findings, we showed that SLPI
was consistently increased at the transcription level in public databases and our archived
primary colorectal cancer samples. It is important to further investigate whether SLPI is
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also overexpressed the protein level by either western blotting or immunohistochemistry
in our cohort, which may provide solid underpinnings for downstream functional studies.

Second, we showed that AKT was involved in SLPI-mediated pathogenesis in colorectal
cancer. The exact mechanism by which SLPI promotes malignancy is still elusive. It has
been proposed that SLPI inhibited elastase to promoted angiogenesis via suppression of
endostatin, a potent antiangiogenic factor (Oreilly et al., 1997; Wen et al., 1999; Wright
et al., 1999; Eisenberg et al., 1990; Sugino et al., 2007). SLPI also plays an important role
in the regulation of cell cycle progression by promoting the expression of cyclin D1
and IGFBP-3 in tumor cells (Cheng et al., 2008;Wen et al., 2011). However, the underlying
mechanism of SLPI-mediated tumor cell invasiveness remains largely unknown. It has been
shown that the expression and activation of AKT are critical for cancer cell growth and
proliferation (Deng et al., 2010). In this study, we showed that SLPI knockdown reduced
the phosphorylation of AKT in CRC cancer cells, unveiling the potential mechanism of
SLPI-mediated pathogenesis in colorectal cancers.

Last but not least, we propose that AKT may be a novel therapeutic target for colorectal
cancer with high SLPI expression. Hyperactivation of AKT has been detected in human
tumors with acquired chemoresistance (Yu et al., 2008; Fan et al., 2015), including
colorectal cancers resistant to cisplatin (Bellacosa et al., 2005). These observations highlight
AKT as an emerging target for chemoresistance in colorectal cancer. In the present study,
our data showed the AKT knockdown was more effective to suppress the migration and
invasion of CRC cancer cells than those of SLPI knockdown, suggesting that AKT may
be a promising and direct therapeutic target in colorectal cancers. More importantly, our
present investigation unequivocally demonstrated a previously undescribed association
between SLPI and AKT in the pathogenesis of colorectal cancer cells. The association
between SLPI expression and disease progression should be further studied. Moreover,
application of small-molecule drugs targeting AKT signal pathway should be also explored
for treatment of colorectal cancers.

CONCLUSIONS
Together, we found that SLPI transcript level was highly expressed in colorectal cancers
compared to their normal counterparts. SLPI knockdown effectively reduced colorectal
cancer cell growth, migration and invasion in vitro. Phosphorylation of AKT was
significantly reduced after SLPI knockdown in colorectal cancer cells. Further, targeting
AKT also considerably inhibited tumor cell growth, migration and invasion similar to the
effects of SLPI knockdown, which indicates that AKT is the downstream of SPLI and might
be a novel therapeutic target for colorectal cancer treatment with high SPLI expression.
Our data will not only provide novel insights into the role of SLPI during the pathogenesis
of colorectal cancer but also shed light into the potential therapeutics for colorectal cancer
treatment.
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