
Published online 20 August 2021 Nucleic Acids Research, 2021, Vol. 49, No. 20 e117
https://doi.org/10.1093/nar/gkab717

SWALO: scaffolding with assembly likelihood
optimization
Atif Rahman 1,3,* and Lior Pachter1,2,4,*

1Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA,
2Departments of Mathematics and Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA,
3Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology,
Dhaka 1205, Bangladesh and 4Departments of Biology and Computing & Mathematical Sciences, California Institute
of Technology, Pasadena, CA 91103, USA

Received December 22, 2020; Revised June 16, 2021; Editorial Decision August 05, 2021; Accepted August 16, 2021

ABSTRACT

Scaffolding, i.e. ordering and orienting contigs is an
important step in genome assembly. We present a
method for scaffolding using second generation se-
quencing reads based on likelihoods of genome as-
semblies. A generative model for sequencing is used
to obtain maximum likelihood estimates of gaps be-
tween contigs and to estimate whether linking con-
tigs into scaffolds would lead to an increase in the
likelihood of the assembly. We then link contigs if
they can be unambiguously joined or if the cor-
responding increase in likelihood is substantially
greater than that of other possible joins of those
contigs. The method is implemented in a tool called
SWALO with approximations to make it efficient and
applicable to large datasets. Analysis on real and
simulated datasets reveals that it consistently makes
more or similar number of correct joins as other scaf-
folders while linking very few contigs incorrectly,
thus outperforming other scaffolders and demon-
strating that substantial improvement in genome as-
sembly may be achieved through the use of statisti-
cal models. SWALO is freely available for download at
https://atifrahman.github.io/SWALO/.

INTRODUCTION

The development of second generation sequencing tech-
nologies (1–4) has led to development of various assays to
probe many aspects of interest in molecular and cell biol-
ogy due to the low cost and high throughput. However, a
prerequisite for running many of these assays, genome as-
sembly is yet to be solved adequately using second genera-
tion sequencing reads. Long reads from the third generation
sequencing technologies such as single molecule real time
(SMRT) (5) and nanopore sequencing (6) are transforming

genome assembly, and a number of tools have been devel-
oped to assemble genomes from long reads (7–10). How-
ever, the high cost, low sequencing coverage and high error
rates of these technologies mean that many of the genomes
are being assembled using reads from second generation
technologies, or through a combination of second and third
generation data. In addition, an extensive amount of sec-
ond generation data exists already that can be better uti-
lized. Furthermore, reference guided assembly tools such
as RACA (11), Ragout (12) and MeDuSa (13) require an
initial draft assembly which is often generated using second
generation reads. In this paper, we demonstrate that con-
siderable improvement in genome assembly using second-
generation sequencing can be achieved through the appli-
cation of statistical models for sequencing. The statistical
approach we introduce may also be applied to genome as-
sembly using long reads.

Genome assembly typically consists of two major steps.
The first step is to merge overlapping reads into contigs
which is commonly done using the de Bruijn or overlap
graphs. In the second step, known as ‘scaffolding’, de-
scribed in (14–16), contigs are oriented and ordered us-
ing various approaches such as paired-end or mate-pair
reads (we use the term read pair to refer to either). Re-
cently, methods have been developed to perform scaffolding
using linked reads (17–19), long reads (20–23), and chro-
mosomal conformation data from Hi-C (24–29) that lead
to scaffolds with substantially better contiguity compared
to scaffolds generated using read-pairs, and hence are the
recommended technologies for scaffolding. However, read-
pair information from second generation technologies is
still widely used for scaffolding (30) and remains a critical
part of the genome assembly process. It is hence built into
most assemblers (31–36) and a number of stand-alone scaf-
folders such as Bambus2 (37,38), MIP (39), Opera (40,41),
SCARPA (42), SOPRA (43), SSPACE (44), BESST (45)
have also been developed to better utilize read-pair infor-
mation and to resolve ambiguities due to repetitive regions.

*To whom correspondence should be addressed. Tel: +88 01752 872161; Email: atif@cse.buet.ac.bd
Correspondence may also be addressed to Lior Pachter. Tel: +1 626 395 4059; Email: lpachter@caltech.edu

C© The Author(s) 2021. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-1805-3971
https://atifrahman.github.io/SWALO/


e117 Nucleic Acids Research, 2021, Vol. 49, No. 20 PAGE 2 OF 10

Most of the scaffolding algorithms rely on heuristics or user
input to determine parameters such as minimum number
of read-pairs linking contigs to join them ignoring contig
lengths, sequencing depth and sequencing errors. In an in-
depth study, Hunt et al. evaluated scaffolding tools on real
and simulated data and observed that although many of the
scaffolders perform well on simulated datasets, they show
inconsistent performance across real datasets and mapping
tools (46). Their results demonstrate that SGA, SOPRA
and ABySS are conservative and make very few scaffold-
ing errors while SOAPdenovo identified more joins at the
expense of greater number of errors indicating a scaffold-
ing method achieving a better trade-off of the two may be
possible.

Here, we present a scaffolding method called ‘scaffolding
with assembly likelihood optimization (SWALO)’. SWALO
learns parameters automatically from the data and is largely
free of user parameters making it more consistent than
other scaffolders. It is also able to make use of multi-
mapped read pairs through probabilistic disambiguation
which most other scaffolding tools ignore. The method is
grounded in rigorous probabilistic models yet proper ap-
proximations make the implementation efficient and appli-
cable to practical datasets. We analyze the performance of
SWALO using datasets used by Hunt et al. and find that
SWALO makes more or similar number of correct joins as
other scaffolders while making very few incorrect joins. We
also compare SWALO with scaffolding modules built into
various assemblers using GAGE datasets (47) and observe
that final results obtained by applying SWALO on contigs
generated by assemblers are generally better than apply-
ing the in-built scaffolding modules of those assemblers. Fi-
nally, we apply SWALO to a large dataset from the budgeri-
gar genome and demonstrate that it scales to large datasets
without compromising performance.

MATERIALS AND METHODS

Overview of SWALO

Our scaffolding method called SWALO is based on a gen-
erative model for sequencing (48). Figure 1 illustrates the
main steps of SWALO. In the first step, reads are aligned
to contigs, the insert size distribution and error parame-
ters are learned using the reads that map uniquely and the
likelihood of the set of contigs is computed using a gen-
erative model. We then construct the bi-directed scaffold
graph which contains a vertex for each contig and there
is an edge between contigs if joining them would result
in an increase in the likelihood. It uses probabilistic mod-
els to estimate maximum likelihood gaps between contigs
correcting for the issue that we may not observe inserts
from the entire distribution of insert sizes due to gaps be-
tween contigs and lengths of contigs (Supplementary Fig-
ure S2) (49,50). It then approximates whether joining con-
tigs would result in an increase in the genome assembly like-
lihood. We use the EM (expectation maximization) (51,52)
algorithm to resolve multi-mapped read pairs. Contigs are
then joined if the increase in the likelihood is significantly
higher than that of all other conflicting joins as determined
by a heuristic. Thus, SWALO takes a step towards maxi-

mum likelihood genome assembly (53). Moreover, we se-
lect multiple joins consistent with one another using the
dynamic programming algorithm for the weighted inter-
val scheduling problem. Each of these steps is described
in more detail in the sections below and in Supplemen-
tary Notes 3.1-3.3. Our scaffolding method (i) learns pa-
rameters from the data making it largely parameter free
(Supplementary Note 3.4), (ii) makes use of multi-mapped
read pairs that are ignored in most scaffolders and (iii) is
able to accurately estimate gaps between contigs facilitating
gap-filling.

We present here a brief description of methods behind
SWALO. More details is available in Supplementary Notes
3.1-3.4.

Learning parameters and computing likelihood of contigs

The first step in SWALO is to estimate parameters and com-
pute likelihood of contigs using the approach presented
in (48) (Supplementary Note 3.1). The model incorporates
insert size distribution, sequencing errors as well as ran-
domness in read generation. We map reads to contigs and
learn insert size distribution and error parameters using
reads that map uniquely. The likelihood of contigs are com-
puted with respect to a generative model using the learned
parameters.

Given an assembly A and a set of reads pairs R =
{r1, r2 . . . rN}, assuming reads are generated independently
the likelihood is given by

L(A;R) =
N∏

i=1

p(ri |A)

If Mi is the number of times the read ri is mapped to the
assembly by an aligner, the probability that the read ri is
generated from the assembly is approximated by

p(ri |A) ≈
Mi∑
j=1

pF (li, j )pS(si, j )pE(ri |ai, j )

where li, j, si, j and ai, j are fragment length, start site and
assembly subsequence corresponding to jth mapping of ith
read respectively. Therefore, the log likelihood is given by

l(A;R) ≈
N∑

i=1

log
Mi∑
j=1

pF (li, j )pS(si, j )pE(ri |ai, j ). (1)

Here, pF, pS and pE are fragment length, start site and
error distributions respectively, as in (48). However, we use
a smoothed and truncated version of the insert size distri-
bution for scaffolding (Supplementary Figure S1, Supple-
mentary Note 3.1). The probability that an insert of length
l starts at s is

pS(s) = 1

T̃(l)
= 1∑

c∈{contigs}(lc − l + 1)

where T̃(l) is the total effective length, i.e. number of possi-
ble start sites for insert size l and lc is the length of contig c.



PAGE 3 OF 10 Nucleic Acids Research, 2021, Vol. 49, No. 20 e117

Figure 1. Overview of SWALO. 1. Reads are aligned to contigs, uniquely mapped reads are used to learn the insert size distribution and error parameters,
and then the likelihood of the set of contigs is computed (Supplementary Note 3.1, Supplementary Figure S1). 2. The scaffold graph is constructed by first
estimating maximum likelihood gaps, g between contigs using the EM algorithm to resolve multimapped read-pairs taking into account that only inserts of
sizes between lmin and lmax will be observed due to gaps between contigs and lengths of contigs (Supplementary Figure S2), and then approximating whether
changes in number of possible start sites of reads (the regions shaded in grey) lead to an increase or decrease in the assembly likelihood (Supplementary
Note 3.2). 3. Finally, we make the joins that are unambiguous or correspond to likelihood increase significantly higher than that of other conflicting joins.
If there are multiple contigs (grey) that fit into the gap between contigs being joined we select from them using the dynamic programming algorithm for
the weighted interval scheduling problem in following steps. i. Remove contigs (red) with inconsistent edges to other contigs. ii. Select consistent set of
contigs (blue) that optimizes likelihood. iii. Remove selected contigs (red) with likelihood increase not significantly higher than conflicting ones not selected
(purple). iv. Merge them into scaffolds (Supplementary Note 3.3).

Scaffold graph construction

We then construct the scaffold graph which is a bi-directed
graph with a vertex for each contig and there is an edge
between contigs if joining the contigs would lead to an
increase in the assembly likelihood (Supplementary Note
3.2). The edges are weighted using this increase in likeli-
hood. Edge weights are computed for each pair of con-
tigs such that there are read pairs with two ends map-
ping to different contigs in the pair. This is done in two
steps.

• First we estimate the maximum likelihood gap between
the contigs using a generative model correcting for the
issue that we may not observe inserts from the entire dis-
tribution (Supplementary Figure S2).
Consider two contigs separated by a gap g. If the 5′ end
of an insert is at s, then we will not observe inserts smaller
than lmin and greater than lmax. The probability that a read
r is generated is then given by

p(r ) ≈
∑

p′
S(s)p′

F (l)pE(r |a)



e117 Nucleic Acids Research, 2021, Vol. 49, No. 20 PAGE 4 OF 10

where p′
F and p′

S are the corrected insert size and start
site distributions respectively. p′

F is given by

p′
F (l) = pF (l)∑lmax

k=lmin
pF (k)

and p′
S is approximated by

p′
S(s) ≈ p{fragment starting at s and ending at t}

p{fragment starting in A and ending at t} .

We then find the gap g that maximizes likelihood of link-
ing reads, max g

∏
r ∈ {linking}p(r) for every pair of contigs

with read pairs linking them.
If there are read pairs that map to multiple pairs of con-
tigs, we resolve them using the expectation-maximization
(EM) (51) algorithm.

• Then we check whether linking the contigs would result
in an increase in the likelihood by computing probability
of linking reads and adjusting probabilities of all other
reads.
Adjusting the probabilities because of the change in ef-
fective length using Equation (1) would require iterating
over all multi-mapped reads. In order to make this step
practical we make the following approximation.

l(A;R) ≈
N∑

i=1

log
1

T̃(l̂i )

Mi∑
j=1

pF (li, j )pE(ri |ai, j )

=
N∑

i=1

log
1

T̃(l̂i )

+
N∑

i=1

log
Mi∑
j=1

pF (li, j )pE(ri |ai, j )

where l̂i is insert size corresponding to most probable
mapping of read i. This allows us to count the number
of reads corresponding to a particular insert size and ef-
ficiently calculate the new likelihood. If nl̂ is the number
of reads with insert size l̂, then

lnew(A;R) ≈ lold (A;R)

−
∑

l̂

nl̂

(
log

1

T̃old (l̂)
− log

1

T̃new(l̂)

)

where T̃new(l) = T̃old (l) + l − 1 + g is the new effective
length if both contigs are sufficiently large compared to
insert sizes and can be precomputed for various gap sizes.
The adjustments for cases where contigs are small can
also be precomputed.
The likelihood of linking reads and likelihood adjust-
ments of all other reads are combined to estimate the edge
weight. We retain the edge and assign it the computed
weight if it is positive and delete the edge otherwise.

Selecting joins

Once the scaffold graph is constructed, we first make unam-
biguous joins, i.e. join contigs connected by an edge with an

increase in likelihood and such that one vertex has outde-
gree one and the other has indegree one. The other possible
joins are sorted according to the estimated increase in the
likelihood and contigs are joined if likelihood increase of
the candidate join is significantly higher than other conflict-
ing joins as determined by a heuristic (Supplementary Note
3.3). If there are other joins consistent with the candidate
join, i.e. one or more contigs fit into the gap between the pair
of contigs, we select from them using the dynamic program-
ming algorithm for the weighted interval scheduling prob-
lem and remove conflicting ones. We choose a conservative
approach during joining as unlinked contigs may later be
merged using other datasets but incorrect joins would usu-
ally remain undetected for de novo assembly and might lead
to errors in downstream analysis.

Implementation

The methods have been implemented in a tool called ‘scaf-
folding with assembly likelihood optimization (SWALO)’
using C/C++. The read alignement and gap estimation
phases are parallelized to speed up computation. SWALO is
available for download freely at http://atifrahman.github.io/
SWALO/.

Data availability

We use the data and analysis scripts used in (46,47) and (54).
Scripts to install tools, download data and generate the re-
sults used in this paper are available at https://github.com/
atifrahman/SWALO/tree/scripts.

The scaffolds generated are also available at the same url.
There may be minor variations in results due to thread race
during mapping of reads unaligned by Bowtie as random
subsets of unaligned reads are mapped.

RESULTS AND DISCUSSION

Comparison with stand-alone scaffolders

To compare performance of SWALO with other stand-alone
scaffolders, we use the datasets used by Hunt et al. to eval-
uate scaffolding tools (46). In addition to the scaffolders
considered in the study, we include subsequently published
versions of Opera (Opera-LG (41)) and BESST (55). The
datasets include four simulated datasets from S. aureus and
six real datasets from Staphylococcus aureus, Rhodobacter
sphaeroides, Plasmodium falciparum and human chromo-
some 14 (Supplementary Table S1). Among these the S. au-
reus, R. sphaeroides and human chromosome 14 datasets
were also part of the GAGE project (47). The contigs were
generated using Velvet (31) which were then aligned to the
reference and split at locations of error to ensure misas-
sembly free contigs. Please see (46) for more details on the
datasets. We use Bowtie (56) and Bowtie 2 (57) for mapping
reads, analyze results using the scripts provided in (46) and
when applicable use the same parameter values for mapping
and scaffolding as used in the paper by Hunt et al. (all pa-
rameters used are given in Supplementary Table S2). Similar
to their paper, we use number of correct joins and number of
incorrect joins for comparison as contiguity statistics such
as N50 scaffold length biases evaluation towards scaffolders

http://atifrahman.github.io/SWALO/
https://github.com/atifrahman/SWALO/tree/scripts


PAGE 5 OF 10 Nucleic Acids Research, 2021, Vol. 49, No. 20 e117

making more joins regardless of whether they are correct or
incorrect while corrected N50 scaffold length leads to favor-
able assessment of scaffolders with more correct joins even
if that is at the expense of many more incorrect joins com-
pared to other scaffolders.

Supplementary Table S3 summarizes performance of
scaffolding tools on simulated datasets. We find that SWALO
makes no incorrect joins for any of the datasets. For 100kb
contigs SWALO was able to make 100% of the correct joins
using either library and all aligners. When the insert size
library of mean 500 bp was used to scaffold 3 kb contigs,
SWALO made 99.0%, 99.3% and 99.0% correct joins using
Bowtie 2, Bowtie with 0 (-v 0) and 3 (-v 3) mismatches re-
spectively. The only scaffolder that makes more than 99.3%
correct joins is Opera at 99.8% when used in conjunction
with BWA but this is at the cost of making 0.2% incorrect
joins. For 3 kb contigs and 3 kb insert size library, SWALO
made 99.6%, 99.8% and 99.6% correct joins for three map-
ping modes. No other scaffolder made more than 99.6%
correct joins. It is worth pointing out that SWALO was able
to make more correct joins when used with Bowtie -v 0 com-
pared to Bowtie -v 3 and Bowtie 2 which may be due to reads
not being mapped to some regions for the latter two.

Performance of SWALO in comparison to other scaffold-
ers for real datasets is illustrated in Figure 2, Supplemen-
tary Figure S2 and Tables S4–S7. For the S. aureus dataset
from GAGE, we find that SWALO made more correct joins
than all other scaffolders while making 1, 1 and 2 incorrect
joins in the three runs corresponding to the three ways of
mapping reads. However, closer inspection reveals that one
join labeled incorrect in each case is in fact a join from the
end to the start of a circular sequence and is actually cor-
rect. Similarly for the R. sphaeroides dataset, more correct
joins are made by SWALO than all other scaffolders when
used in conjunction with Bowtie 2. Again three joins that
are marked as incorrect are joins linking the ends to the
starts of circular chromosomes or plasmids. we observe that
the sequencing error rate for this dataset is high compared
to the S. aureus dataset. So, number of reads mapped by
Bowtie is quite low (46) resulting in lesser number of joins
made by SWALO and other scaffolders when Bowtie is used
compared to Bowtie 2.

The P. falciparum genome is known to be hard to assem-
ble due its low GC content. In this case although SWALO
does not make more correct joins than all other scaffold-
ers as in other cases, the numbers of correct joins made are
only slightly less than that of SOPRA, MIP and SCARPA
while number of incorrect joins is less than or similar to
what SOPRA made and much less than the numbers for
SCARPA and MIP. We observe that many of the contigs
have strings of consecutive ‘A’s or ‘T’s where very few reads
are mapped to by aligners leading to poor gap estimates
which may explain the comparatively smaller numbers of
links by SWALO.

Finally, for the combined human chromosome 14
dataset, SWALO makes more correct joins than all other
scaffolders except SOAP2 and Opera-LG both of which
make more than three times incorrect joins compared to the
highest number of incorrect links by SWALO and more than
six times the best result by SWALO. Supplementary Figure
S1 shows that the long jumping library is in fact a mixture

of inserts of two sizes. When they are mapped and used to
estimate gaps separately before scaffolding, and the fosmid
library is applied on the output, the results improve both in
terms of increase in the number of correct joins and decrease
in the number of incorrect joins.

Comparison with other scaffolding modules

While Hunt et al. performed a comprehensive evaluation
of stand-alone scaffolding tools, scaffolding modules built
into some assemblers such as ALLPATHS-LG (33,58), Ma-
SuRCA (59), CABOG (60) were left out as they cannot
be run independently. In order to assess performance of
SWALO in comparison to scaffolding modules of these as-
semblers, we ran SWALO on the contigs generated by the
assemblers obtained from the GAGE project and compared
the results with final results of contig assembly and scaffold-
ing by each of these assemblers. We also include two widely
used assemblers SPAdes (36) and Megahit (61) published
after the GAGE study.

The results are shown in Table 1. It reveals that SWALO
makes fewest number of incorrect joins in all cases ex-
cept for SPAdes while making more or similar number of
correct joins as ALLPATHS-LG and CABOG. For the
human chromosome 14 dataset, there are 17 more joins
in scaffolds generated by ALLPATHS-LG compared to
SWALO output. However, nine more incorrect joins are
made by ALLPATHS-LG than SWALO. Although Ma-
SuRCA makes more correct joins than SWALO, this is at the
expense of more incorrect joins which is drastically high for
human chromosome 14. We observe that SWALO is able to
make more correct joins than SPAdes while retaining simi-
lar incorrect to correct join ratio overall. Since the Megahit
assembler does not have a scaffolding module, the result
cannot be compared with SWALO results. However, we find
that the contigs generated by Megahit can be reliably scaf-
folded using SWALO.

It may be noted that information such as actual position
of reads in contigs and distance between contigs in assembly
graph that were available to the assemblers could only be
inferred by SWALO by mapping the reads back to the contigs
using a short aligner such as Bowtie. We believe that if this
information were made available by assemblers, the results
could be further improved.

Time and memory requirements

SWALO uses statistical models to estimate gaps between
contigs and the change in genome assembly likelihood
achieved if contigs are joined. As a result it is more com-
putationally intensive than some other scaffolders. How-
ever, we make necessary approximations to make SWALO
fast, memory efficient and scalable to large datasets. Fig-
ure 3 and Supplementary Table S8 show running times and
memory usage of SWALO using 32 cores on a machine with
Intel Xeon E5 2.70 GHz processors to scaffold Hunt et al.
datasets.

Although a comparison of running times is not appro-
priate since SWALO was run on a different machine to
other scaffolding tools, we would like to note that SWALO
took from approximately a minute for S. aureus datasets to



e117 Nucleic Acids Research, 2021, Vol. 49, No. 20 PAGE 6 OF 10

Figure 2. Performance of scaffolders. Scatter plots showing number of correct joins vs incorrect joins made by SWALO and other scaffolders on (A) S.
aureus data, (B) R. sphaeroides data, (C) P. falciparum combined short and long insert data, and (D) human chromosome 14 combined long insert and
fosmid library data. Up to 1 and 3 joins in (A) and (B), respectively made by SWALO (and possibly other scaffolders) labeled incorrect are joins from ends
to starts of circular sequences and are therefore correct. Values for all scaffolders except SWALO, Opera-LG and BESST are from (46).

around 70 minutes for combined human chromosome 14
dataset to run (excluding the time required for mapping).
The memory usage ranges from around 40MB for S. aureus
to 437MB for combined human chromosome 14 dataset.
We find that SWALO can scaffold 19936 contigs from hu-
man chromosome 14 using 25.1 million reads in about 70
min and using 437MB of memory.

Application to a large dataset

Finally, we apply SWALO to a large dataset from a bird
genome, the budgerigar (Melopsittacus undulatus) dataset
from Assemblathon 2 (54). We selected the contigs gener-
ated by SOAPdenovo and scaffolded them using the mate-
pair libraries. The SOAPdenovo contig file provided in-

cluded 245 857 contigs with a total length of ∼1.1 Gb and
the five mate-pair libraries had more than 730 million read
pairs in total. We chose the SOAPdenovo contigs as it is
widely used for assembling large genomes including the
original assembly of the budgerigar genome by Ganapathy
et al. (62). SOAPdenovo has been observed to make large
numbers of joins. Although the aggressive scaffolding often
leads to many incorrect joins, this allows us to compare the
number of joins made by SWALO to that of SOAPdenovo
along with their accuracy in absence of a complete reference
genome.

Table 2 shows a summary of the mate-pair libraries and
the performance of SWALO on this dataset as well as the
time and memory usage. We observe that SWALO makes a
total of 80 669 joins in comparison to 94 464 joins made



PAGE 7 OF 10 Nucleic Acids Research, 2021, Vol. 49, No. 20 e117

Table 1. Comparison of performance of SWALO with scaffolding modules built into assemblers using GAGE datasets. Comparison of results obtained
by running SWALO on contigs generated by various assemblers with final results obtained by those assemblers after scaffolding

Dataset Contig stats Original scaffold stats SWALO stats

Assembler Number Error Correct Incorrect Correct Incorrect

S. aureus
ALLPATHS-LG 60 15 48 0 49 0
MSR-CA 94 25 74 3 64 2
SPAdes 106 11 50 2 69 3
Megahit 91 31 - - 30 1
R. sphaeroides
ALLPATHS-LG 204 41 170 0 186 0
MSR-CA 395 17 347 5 228 3
CABOG 322 33 187 5 239 1
SPAdes 592 33 334 2 444 3
Megahit 605 45 - - 309 2
Human chromosome 14
ALLPATHS-LG 4529 2706 4259 45 4242 36
MSR-CA 30091 1901 27521 1145 20242 167
CABOG 3361 3076 2845 37 2980 32
SPAdes 27583 1876 9662 165 18465 253
Megahit 13150 3770 - - 8326 193

Figure 3. Running time and memory usage of SWALO. Barplots showing (A) running times and (B) memory usage of SWALO using 32 cores on a machine
with Intel Xeon E5 2.70 GHz processors to scaffold Hunt et al. datasets.

by SOAPdenovo. We find that that SWALO automatically
switches to a conservative mode (Supplementary Note 3.4)
on libraries with insert size means of 10k, 20k and 40k, to
keep the number of incorrect joins low.

We also find that SWALO takes less than 44 hours using
32 threads and a peak memory of 5.09 GB to scaffold 245
857 contigs using more than 730 million read pairs. It is
worth noting that the times shown in Table 2 exclude the
time taken by Bowtie 2 to map the reads which takes sub-
stantially more time than the time needed by SWALO to scaf-
fold. This shows that SWALO is efficient and scalable, and
thus applicable to scaffolding large genomes.

To assess the correctness of the scaffolds generated by
SWALO in comparison to those by SOAPdenovo, we used
the chromosome-level assembly of the budgerigar (Melop-
sittacus undulatus) genome by O’Connor et al. (63) gener-
ated through computational and lab-based approaches. The

quality of the scaffolds as well as the original SOAPden-
ovo contigs were assessed using the quality assessment tool
QUAST (64). Table 3 summarizes the numbers of correct
joins and mis-assemblies made by SWALO and SOAPden-
ovo. We observe that SWALO makes 78 501 and 2168 cor-
rect and incorrect joins respectively in comparison to 90 389
and 4075 by SOAPdenovo i.e. SWALO makes only 13% less
correct joins while making 47% less mis-assemblies than
SOAPdenovo.

CONCLUSION

The results show that SWALO performs well consistently and
is able to identify many correct joins while keeping the num-
ber of incorrect joins very low. It also shows pareto-optimal
performance in the datasets we have analyzed, i.e. there is a
run of SWALO such that no other scaffolder in any of their



e117 Nucleic Acids Research, 2021, Vol. 49, No. 20 PAGE 8 OF 10

Table 2. Performance of SWALO on a large dataset from a bird genome. Description of five mate-pair libraries from the budgerigar (Melopsittacus un-
dulatus) dataset from Assemblathon 2 (54), time and memory requirements of SWALO, and the number of joins made by it. The first two libraries were
used in the combined mode. For the last three libraries, SWALO switches to a conservative mode automatically and so the hierarchical approach is used as
recommended

Accessions # read pairs Orientation
Insert
size Mode

Scaffolding
Time

(hh:mm:ss)

Peak
memory

(GB) # joins

ERR244148-150 264 708 963 Mate-pair 2000 Combined 27:36:12 5.09 70 634
ERR244151-152 194 240 419 Mate-pair 5000
ERR244153 94 282 287 Mate-pair 10 000 Hierarchical, Conservative

(auto)
5:02:57 2.09 5372

ERR244154 89 722 180 Mate-pair 20 000 Hierarchical, Conservative
(auto)

5:26:47 2.14 2957

ERR244155 87 489 651 Mate-pair 40 000 Hierarchical, Conservative
(auto)

5:48:02 2.41 1706

Total 730 443 500 43:53:58 5.09 80 669

Table 3. Comparison of results of SWALO and SOAPdenovo on the bird
genome dataset. Comparison of number of scaffolds, total number of joins,
and number of mis-assemblies introduced while scaffolding by SWALO and
SOAPdenovo using five mate-pair libraries from the budgerigar (Melopsit-
tacus undulatus) dataset from Assemblathon 2 (54). In addition, the orig-
inal numbers of contigs and mis-assemblies in the contigs generated by
SOAPdenovo are also shown

Assembly

Number of
contigs/
scaffolds

Number of
correct
joins

Number of
mis-assemblies

(additional)

SOAPdenovo contigs 245 857 - 5658
SOAPdenovo scaffolds 151 393 90 389 4075
SWALO scaffolds 166 894 78 501 2168

runs was able to make more correct joins while making less
than the number of incorrect links by SWALO. We observe
that consistent results are achieved when SWALO is used
with Bowtie 2. However, when reads are largely error free
results achieved using Bowtie with no mismatches can be
better possibly due to reads being mapped to more regions
compared to Bowtie 2.

Overall we find that SWALO outperforms all other scaf-
folders on real and simulated datasets. This indicates that
genome assembly may be substantially improved through
the use of statistical models. The method may further be
improved by modifying the heuristic used to select among
multiple candidate joins and by considering global prop-
erties of the scaffold graph. The methods may also be ex-
tended to scaffolding with long reads generated by SMRT
and nanopore sequencing. The improvement in scaffolding
achieved by a practical method based on assembly likeli-
hoods opens up the possibility that other problems related
to genome assembly such as reference guided assembly, mis-
assembly correction, copy number estimation, gap-filling
may also be amenable to this approach.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dan Rokhsar, Páll Melsted, Harold Pimentel,
Shannon McCurdy and Nicolas Bray for helpful conversa-
tions during the development of SWALO.

FUNDING

NIH [R01 HG006129 to L.P., in part]; Fulbright Science &
Technology Fellowship [15093630 to A.R., in part]. Fund-
ing for open access charge: NIH [R01 HG006129].
Conflict of interest statement. None declared.

REFERENCES
1. Margulies,M., Egholm,M., Altman,W.E., Attiya,S., Bader,J.S.,

Bemben,L.A., Berka,J., Braverman,M.S., Chen,Y.-J., Chen,Z. et al.
(2005) Genome sequencing in microfabricated high-density picolitre
reactors. Nature, 437, 376–380.

2. Harris,T.D., Buzby,P.R., Babcock,H., Beer,E., Bowers,J.,
Braslavsky,I., Causey,M., Colonell,J., Dimeo,J., Efcavitch,J.W. et al.
(2008) Single-molecule DNA sequencing of a viral genome. Science,
320, 106–109.

3. Valouev,A., Ichikawa,J., Tonthat,T., Stuart,J., Ranade,S.,
Peckham,H., Zeng,K., Malek,J.A., Costa,G., McKernan,K. et al.
(2008) A high-resolution, nucleosome position map of C. elegans
reveals a lack of universal sequence-dictated positioning. Genome
Res., 18, 1051–1063.

4. Rothberg,J.M., Hinz,W., Rearick,T.M., Schultz,J., Mileski,W.,
Davey,M., Leamon,J.H., Johnson,K., Milgrew,M.J., Edwards,M.
et al. (2011) An integrated semiconductor device enabling non-optical
genome sequencing. Nature, 475, 348–352.

5. Eid,J., Fehr,A., Gray,J., Luong,K., Lyle,J., Otto,G., Peluso,P.,
Rank,D., Baybayan,P., Bettman,B. et al. (2009) Real-time DNA
sequencing from single polymerase molecules. Science, 323, 133–138.

6. Branton,D., Deamer,D.W., Marziali,A., Bayley,H., Benner,S.A.,
Butler,T., Di Ventra,M., Garaj,S., Hibbs,A., Huang,X. et al. (2008)
The potential and challenges of nanopore sequencing. Nat.
Biotechnol., 26, 1146–1153.

7. Koren,S., Walenz,B.P., Berlin,K., Miller,J.R., Bergman,N.H. and
Phillippy,A.M. (2017) Canu: scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation.
Genome Res., 27, 722–736.

8. Chin,C.-S., Peluso,P., Sedlazeck,F.J., Nattestad,M., Concepcion,G.T.,
Clum,A., Dunn,C., O’Malley,R., Figueroa-Balderas,R.,
Morales-Cruz,A. et al. (2016) Phased diploid genome assembly with
single-molecule real-time sequencing. Nat. Methods, 13, 1050–1054.

9. Li,H. (2016) Minimap and miniasm: fast mapping and de novo
assembly for noisy long sequences. Bioinformatics, 32, 2103–2110.

10. Kolmogorov,M., Yuan,J., Lin,Y. and Pevzner,P.A. (2019) Assembly
of long, error-prone reads using repeat graphs. Nat. Biotechnol., 37,
540–546.

11. Kim,J., Larkin,D.M., Cai,Q., Zhang,Y., Ge,R.-L., Auvil,L.,
Capitanu,B., Zhang,G., Lewin,H.A., Ma,J. et al. (2013)
Reference-assisted chromosome assembly. Proc. Natl. Acad. Sci.
U.S.A., 110, 1785–1790.

12. Kolmogorov,M., Raney,B., Paten,B. and Pham,S. (2014) Ragout––a
reference-assisted assembly tool for bacterial genomes.
Bioinformatics, 30, i302–i309.

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkab717#supplementary-data


PAGE 9 OF 10 Nucleic Acids Research, 2021, Vol. 49, No. 20 e117

13. Bosi,E., Donati,B., Galardini,M., Brunetti,S., Sagot,M.-F., Lió,P.,
Crescenzi,P., Fani,R. and Fondi,M. (2015) MeDuSa: a multi-draft
based scaffolder. Bioinformatics, 31, 2443–2451.

14. Fleischmann,R.D., Adams,M.D., White,O., Clayton,R.A.,
Kirkness,E.F., Kerlavage,A.R., Bult,C.J., Tomb,J.-F.,
Dougherty,B.A., Merrick,J.M. et al. (1995) Whole-genome random
sequencing and assembly of Haemophilus influenzae Rd. Science,
269, 496–512.

15. Weber,J.L. and Myers,E.W. (1997) Human whole-genome shotgun
sequencing. Genome Res., 7, 401–409.

16. Huson,D.H., Reinert,K. and Myers,E.W. (2002) The greedy
path-merging algorithm for contig scaffolding. J. ACM, 49, 603–615.

17. Yeo,S., Coombe,L., Warren,R.L., Chu,J. and Birol,I. (2018) ARCS:
scaffolding genome drafts with linked reads. Bioinformatics, 34,
725–731.

18. Coombe,L., Zhang,J., Vandervalk,B.P., Chu,J., Jackman,S.D., Birol,I.
and Warren,R.L. (2018) ARKS: chromosome-scale scaffolding of
human genome drafts with linked read kmers. BMC Bioinformatics,
19, 234.

19. Weisenfeld,N.I., Kumar,V., Shah,P., Church,D.M. and Jaffe,D.B.
(2017) Direct determination of diploid genome sequences. Genome
Res., 27, 757–767.

20. Boetzer,M. and Pirovano,W. (2014) SSPACE-LongRead: scaffolding
bacterial draft genomes using long read sequence information. BMC
Bioinformatics, 15, 211.

21. Warren,R.L., Yang,C., Vandervalk,B.P., Behsaz,B., Lagman,A.,
Jones,S.J. and Birol,I. (2015) LINKS: scalable, alignment-free
scaffolding of draft genomes with long reads. GigaScience, 4, 35.

22. Wick,R.R., Judd,L.M., Gorrie,C.L. and Holt,K.E. (2017) Unicycler:
resolving bacterial genome assemblies from short and long
sequencing reads. PLoS Comput. Biol., 13, e1005595.

23. Cao,M.D., Nguyen,S.H., Ganesamoorthy,D., Elliott,A.G.,
Cooper,M.A. and Coin,L.J. (2017) Scaffolding and completing
genome assemblies in real-time with nanopore sequencing. Nat.
Commun., 8, 14515.

24. Dudchenko,O., Batra,S.S., Omer,A.D., Nyquist,S.K., Hoeger,M.,
Durand,N.C., Shamim,M.S., Machol,I., Lander,E.S., Aiden,A.P.
et al. (2017) De novo assembly of the Aedes aegypti genome using
Hi-C yields chromosome-length scaffolds. Science, 356, 92–95.

25. Burton,J.N., Adey,A., Patwardhan,R.P., Qiu,R., Kitzman,J.O. and
Shendure,J. (2013) Chromosome-scale scaffolding of de novo genome
assemblies based on chromatin interactions. Nat. Biotechnol., 31,
1119–1125.

26. Kaplan,N. and Dekker,J. (2013) High-throughput genome scaffolding
from in vivo DNA interaction frequency. Nat. Biotechnol., 31,
1143–1147.

27. Putnam,N.H., O’Connell,B.L., Stites,J.C., Rice,B.J., Blanchette,M.,
Calef,R., Troll,C.J., Fields,A., Hartley,P.D., Sugnet,C.W. et al. (2016)
Chromosome-scale shotgun assembly using an in vitro method for
long-range linkage. Genome Res., 26, 342–350.

28. Ghurye,J., Pop,M., Koren,S., Bickhart,D. and Chin,C.-S. (2017)
Scaffolding of long read assemblies using long range contact
information. BMC Genomics, 18, 527.

29. Ghurye,J., Rhie,A., Walenz,B.P., Schmitt,A., Selvaraj,S., Pop,M.,
Phillippy,A.M. and Koren,S. (2019) Integrating Hi-C links with
assembly graphs for chromosome-scale assembly. PLoS Comput.
Biol., 15, e1007273.

30. Ghurye,J. and Pop,M. (2019) Modern technologies and algorithms
for scaffolding assembled genomes. PLoS Comput. Biol., 15,
e1006994.

31. Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo
short read assembly using de Bruijn graphs. Genome Res., 18,
821–829.

32. Simpson,J.T., Wong,K., Jackman,S.D., Schein,J.E., Jones,S.J. and
Birol,I. (2009) ABySS: a parallel assembler for short read sequence
data. Genome Res., 19, 1117–1123.

33. Butler,J., MacCallum,I., Kleber,M., Shlyakhter,I.A.,
Belmonte,M.K., Lander,E.S., Nusbaum,C. and Jaffe,D.B. (2008)
ALLPATHS: de novo assembly of whole-genome shotgun
microreads. Genome Res., 18, 810–820.

34. Luo,R., Liu,B., Xie,Y., Li,Z., Huang,W., Yuan,J., He,G., Chen,Y.,
Pan,Q., Liu,Y. et al. (2012) SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler. Gigascience, 1, 18.

35. Simpson,J. and Durbin,R. (2012) Efficient de novo assembly of large
genomes using compressed data structures. Genome Res, 22, 549–556.

36. Bankevich,A., Nurk,S., Antipov,D., Gurevich,A.A., Dvorkin,M.,
Kulikov,A.S., Lesin,V.M., Nikolenko,S.I., Pham,S., Prjibelski,A.D.
et al. (2012) SPAdes: a new genome assembly algorithm and its
applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

37. Pop,M., Kosack,D. and Salzberg,S. (2004) Hierarchical scaffolding
with Bambus. Genome Res, 14, 149–159.

38. Koren,S., Treangen,T. and Pop,M. (2011) Bambus 2: scaffolding
metagenomes. Bioinformatics, 27, 2964–2971.

39. Salmela,L., Makinen,V., Valimaki,N., Ylinen,J. and Ukkonen,E.
(2011) Fast scaffolding with small independent mixed integer
programs. Bioinformatics, 27, 3259–3265.

40. Gao,S., Sung,W.-K. and Nagarajan,N. (2011) Opera: reconstructing
optimal genomic scaffolds with high-throughput paired-end
sequences. J. Comput. Biol., 18, 1681–1691.

41. Gao,S., Bertrand,D., Chia,B.K. and Nagarajan,N. (2016)
OPERA-LG: efficient and exact scaffolding of large, repeat-rich
eukaryotic genomes with performance guarantees. Genome Biol., 17,
1.

42. Donmez,N. and Brudno,M. (2013) SCARPA: scaffolding reads with
practical algorithms. Bioinformatics, 29, 428–434.

43. Dayarian,A., Michael,T. and Sengupta,A. (2010) SOPRA:
scaffolding algorithm for paired reads via statistical optimization.
BMC Bioinformatics, 11, 345.

44. Boetzer,M., Henkel,C., Jansen,H., Butler,D. and Pirovano,W. (2011)
Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27,
578–579.

45. Sahlin,K., Vezzi,F., Nystedt,B., Lundeberg,J. and Arvestad,L. (2014)
BESST-efficient scaffolding of large fragmented assemblies. BMC
bioinformatics, 15, 1.

46. Hunt,M., Newbold,C., Berriman,M. and Otto,T. (2014) A
comprehensive evaluation of assembly scaffolding tools. Genome
Biol., 15, R42.

47. Salzberg,S.L., Phillippy,A.M., Zimin,A., Puiu,D., Magoc,T.,
Koren,S., Treangen,T.J., Schatz,M.C., Delcher,A.L., Roberts,M. et al.
(2011) GAGE: a critical evaluation of genome assemblies and
assembly algorithms. Genome Res., 22, 557–567.

48. Rahman,A. and Pachter,L. (2013) CGAL: computing genome
assembly likelihoods. Genome Biol., 14, R8.

49. Chapman,J.A., Ho,I., Sunkara,S., Luo,S., Schroth,G.P. and
Rokhsar,D.S. (2011) Meraculous: De Novo genome assembly with
short paired-end reads. PLoS ONE, 6, e23501.

50. Sahlin,K., Street,N., Lundeberg,J. and Arvestad,L. (2012) Improved
gap size estimation for scaffolding algorithms. Bioinformatics, 28,
2215–2222.

51. Dempster,A.P., Laird,N.M. and Rubin,D.B. (1977) Maximum
likelihood from incomplete data via the EM algorithm. J. Roy. Stat.
Soc. B (Methodological), 39, 1–38.

52. Trapnell,C., Williams,B.A., Pertea,G., Mortazavi,A., Kwan,G., Van
Baren,M.J., Salzberg,S.L., Wold,B.J. and Pachter,L. (2010) Transcript
assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat.
Biotechnol., 28, 511–515.

53. Medvedev,P. and Brudno,M. (2009) Maximum likelihood genome
assembly. J. Computat. Biol., 16, 1101–1116.

54. Bradnam,K., Fass,J., Alexandrov,A., Baranay,P., Bechner,M.,
Birol,I., Boisvert,S., Chapman,J., Chapuis,G., Chikhi,R. et al. (2013)
Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. Gigascience, 2, 10.

55. Sahlin,K., Chikhi,R. and Arvestad,L. (2016) Assembly scaffolding
with PE-contaminated mate-pair libraries. Bioinformatics, 32,
1925–1932.

56. Langmead,B., Trapnell,C., Pop,M. and Salzberg,S. (2009) Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome. Genome Biol., 10, R25.

57. Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment
with Bowtie 2. Nat. Methods, 9, 357–359.

58. Gnerre,S., MacCallum,I., Przybylski,D., Ribeiro,F.J., Burton,J.N.,
Walker,B.J., Sharpe,T., Hall,G., Shea,T.P., Sykes,S. et al. (2011)
High-quality draft assemblies of mammalian genomes from massively
parallel sequence data. Proc. Natl. Acad. Sci. U.S.A., 108, 1513–1518.



e117 Nucleic Acids Research, 2021, Vol. 49, No. 20 PAGE 10 OF 10

59. Zimin,A.V., Marçais,G., Puiu,D., Roberts,M., Salzberg,S.L. and
Yorke,J.A. (2013) The MaSuRCA genome assembler. Bioinformatics,
29, 2669–2677.

60. Miller,J.R., Delcher,A.L., Koren,S., Venter,E., Walenz,B.P.,
Brownley,A., Johnson,J., Li,K., Mobarry,C. and Sutton,G. (2008)
Aggressive assembly of pyrosequencing reads with mates.
Bioinformatics, 24, 2818–2824.

61. Li,D., Liu,C.-M., Luo,R., Sadakane,K. and Lam,T.-W. (2015)
MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinformatics,
31, 1674–1676.

62. Ganapathy,G., Howard,J.T., Ward,J.M., Li,J., Li,B., Li,Y., Xiong,Y.,
Zhang,Y., Zhou,S., Schwartz,D.C. et al. (2014) High-coverage

sequencing and annotated assemblies of the budgerigar genome.
GigaScience, 3, 11.

63. O’Connor,R.E., Farré,M., Joseph,S., Damas,J., Kiazim,L.,
Jennings,R., Bennett,S., Slack,E.A., Allanson,E., Larkin,D.M. et al.
(2018) Chromosome-level assembly reveals extensive rearrangement
in saker falcon and budgerigar, but not ostrich, genomes. Genome
Biol., 19, 171.

64. Gurevich,A., Saveliev,V., Vyahhi,N. and Tesler,G. (2013) QUAST:
quality assessment tool for genome assemblies. Bioinformatics, 29,
1072–1075.


