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Is Myocardial Fibrosis Impairing Right Heart Function?

Many articles describing results from pulmonary hypertension
studies begin with a statement like this: “Severe pulmonary
hypertension is terrible and patients die from right heart failure.”
For many years, this statement had become a mantra without much
attention having been paid to the outcome of the pulmonary
vascular diseases. Thankfully, this situation has changed. A recent
workshop report sponsored by the American Thoracic society has
moved right ventricular (RV) function and right heart failure into
the limelight (1). One of the many unresolved questions that have
been raised in this report is the following: Is myocardial fibrosis
of functional importance in the setting of chronic pulmonary
hypertension and right ventricular stress? The question is an
important one and is exactly the subject of a collaborative
multiinstitutional investigation published in this issue of the
Journal by Crnkovic and colleagues (pp. 1550–1560) (2). If we can
prevent the development of RV fibrosis and reverse established RV
fibrosis, we perhaps might prevent RV failure. It is generally
believed that fibrosis is bad, whether it is in the liver and kidney or
in the context of interstitial lung diseases. Obviously, if we wish to
prevent RV fibrosis, we need to understand the cellular and
molecular mechanisms underlying tissue fibrosis. Teleological
reasoning would have it that the injury that offsets the tissue
homeostasis triggers a wound-healing program, and part of this
program is fibrosis. Crnkovic and colleagues employ pulmonary
artery banding in mice and the Sugen/hypoxia and monocrotaline
rat models to stress the RV and generate RV fibrosis. The authors
found that pirfenidone treatment of pulmonary artery-banded mice
reduced the amount of fibrosis but did not restore RV function.
Because the pro-fibrotic galectin-3 and elevation of circulating
galectin-3 have been linked to the development of left heart failure
and RV dysfunction (3–5), the authors focused their attention on
galectin-3 to explain the (lack of) importance of RV fibrosis in RV
failure.

The presented data appear at odds with a growing body of
evidence linking fibrosis to poor function of the pressure-overloaded
right heart. RV diastolic stiffness in pulmonary arterial hypertension
is partially mediated by interstitial fibrosis (6) and is related to poor
clinical outcomes (7). This mimics the clinical situation in left heart
failure, where the pattern and extent of myocardial fibrosis is
associated with reduced left ventricular ejection fraction and
predicts adverse outcomes (8). In most clinical studies,

myocardial fibrosis is quantified using late gadolinium
enhancement, and histological proof of the validity of this
concept is readily available (9). The list of drugs that
concomitantly improve RV function and decrease fibrosis in
experimental models is long and includes beta-adrenergic
blockers (10), iloprost (11), p38 MAPK inhibition (12),
pirfenidone (13), and nintedanib (14). In most of these studies,
RV effects were partly mediated by a drug-induced decrease in
pulmonary vascular resistance. But iloprost and p38 MAPK
inhibition were tested in rats after pulmonary artery banding,
isolating RV afterload from the pulmonary vasculature. In those
studies, proof of a mechanistic link between fibrosis and RV
dysfunction was to a certain degree circumstantial. RV fibrosis
seems “guilty by association” to the development of RV failure.
However, the lack of association between a drop in fibrosis and a
change in RV function in the study by Crnkovic is similarly
insufficient to completely dismiss fibrosis as a contributor to RV
dysfunction. As such, the boldness of the title of the paper:
“Therapy of right ventricular fibrosis does not ameliorate right
ventricular dysfunction RV” may seem a bit of an overreach.

One simple explanation for Crnkovic’s findings may be that an
expected improvement in RV function was offset by adverse effects
of pirfenidone unrelated to the drug’s antifibrotic action. But on a
deeper level, the difficulty of mechanistically linking fibrosis to
function or dysfunction of the RV exemplifies a general problem
in preclinical cardiac failure research: a reductionist attempt
to explain RV dysfunction by one type of cellular response
(hypertrophy, fibrosis, inflammation, capillary rarefaction, etc.)
is unlikely to solve the puzzle. Under conditions of pressure
overload, it is obvious that a certain degree of hypertrophy is
necessary to increase contractility. Likewise, a certain response
of the extracellular matrix is needed to provide a scaffold for the
remodeling myocardium. The capillary network will need to
adapt to the changing oxygen demand. The success of RV
adaptation will depend on the “quality” of hypertrophy
(contractile proteins), fibrosis (perivascular and diffuse type,
linking of extracellular matrix proteins), inflammation (type of
activity of immune cells), and endothelium (leakiness, facilitation
of diffusion). Moreover, the overall quality of RV adaptation will
depend on the exact matching of these different processes. As
such, there is no “good” or “bad” hypertrophy, fibrosis,
inflammation, or capillary rarefaction. Pirfenidone treatment in
the studies by Crnkovic did not result in a repair of capillary
rarefaction. As such, it is possible that the benefit of reduced
fibrosis was negated by the persistence of myocardial ischemia.
In contrast, fibrosis reduction during carvedilol treatment
occurred alongside an improvement in capillary density
and did result in RV functional improvement (10).
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It appears that the fibroblast phenotype identified by Crnkovic
can be put into a larger concept of progressive fibrosis driven by an
altered extracellular matrix and fibrogenic mesenchymal cells in a
fibrotic niche (15). Another concept connects myocardial capillary
endothelial cells and their mesenchymal transition to myocardial
fibrosis, again emphasizing the importance of cell–cell interactions
and cell phenotype switch in fibrogenesis (16). The experimental
exploration pivots around galectin-3, a carbohydrate binding beta-
galactoside that binds to fibronectin and tenascin; its expression is
induced by tissue injury, and it has pleiotropic pro-inflammatory,
pro-fibroblastic, and pro-angiogenic properties regulating cell
proliferation, differentiation, and migration (17). Galactin-3 likely
commands mechanisms of cardiac adaptation to stress; it has
recently been named a “culprit protein” and thus made a
therapeutic target (18). There has been an expert committee
recommendation to include galectin-3 levels as a biomarker in the
management of heart failure (19). Despite these impressive
credentials in left heart failure, Crnkovic found no association
between galactin-3 levels and clinical characteristics of patients
with pulmonary arterial hypertension and observed no RV
functional improvement after prevention of fibrosis by genetic
deletion of galectin-3. The presented data seem to imply that RV
fibrosis is unimportant to RV adaptation, but could also suggest
that the importance and mechanisms of fibrosis in the RV are less
dependent on galectin-3.

To summarize: the critical drivers of fibrosis are likely
organ-specific, and inmyocardial fibrosis, it continues to be prudent to
consider cell–cell interactions, the role of inflammatory cells, capillary
cells, and ischemia. Although the question: “Is myocardial fibrosis
impairing RV function?” continues to warrant further investigations,
we may still want to keep an eye on galectin-3 (20). n
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