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Abstract
In the past couple of decades, major efforts were made to increase reliability of metabolic assessments by magnetic reso-
nance methods. Magnetic resonance spectroscopy (MRS) has been valuable for providing in vivo evidence and investigating 
biomarkers in neuropsychiatric disorders, namely schizophrenia. Alterations of glutamate and glutamine levels in brains of 
schizophrenia patients relative to healthy subjects are generally interpreted as markers of glutamatergic dysfunction. How-
ever, only a small fraction of MRS-detectable glutamate is involved in neurotransmission. Here we review and discuss brain 
metabolic processes that involve glutamate and that are likely to be implicated in neuropsychiatric disorders.
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Abbreviations
AMPA	� α-Amino-3-hydroxy-5-methyl-isoxazole-4-

propionate
ATP	� Adenosine triphosphate
EPSCs	� Excitatory post-synaptic currents
GABA	� γ-Aminobutyric acid
Glx	� Glutamate plus glutamine
mGluR2/3	� Metabotropic glutamate receptors 2 or 3
MR	� Magnetic resonance
MRS	� Magnetic resonance spectroscopy
NAAG​	� N-Acetylaspartylglutamate
NMDA	� N-Methyl-d-aspartate
TCA​	� Tricarboxylic acid

Introduction

Schizophrenia is a heterogeneous neurodevelopmental dis-
order affecting multiple domains of brain function, resulting 
in positive symptoms (e.g. delusions, hallucinations), nega-
tive symptoms (e.g. apathy, emotional blunting, low moti-
vation), and cognitive symptoms (e.g. deficits in memory, 
attention and problem solving), which typically develop in 
late adolescence or early adulthood. While many sites in the 
human genome show association with the risk of developing 
schizophrenia, this disorder results from a complex interac-
tion of the genetic predisposition with environmental and 
epigenetic factors [1].

A long-standing hypothesis of schizophrenia considers 
that dopamine depletion in the mesocortical neurons pro-
jecting from the ventral tegmentum to the prefrontal cortex 
results in feeble stimulation of neuronal dopamine D1 recep-
tors, and contributes to negative symptoms and cognitive 
impairments. On the other hand, excessive activation of the 
mesolimbic pathway (projecting to the nucleus accumbens) 
results in overstimulation of D2 receptors, contributing to 
positive symptoms of schizophrenia. Antipsychotic treat-
ments (e.g. haloperidol, clozapine) mainly target dopamine 
D2 receptors and effectively alleviate positive symptoms. 
However, negative symptoms and cognitive impairments 
are virtually irresponsive to typical antipsychotics because 
they involve other neurotransmission systems, namely those 
operated by glutamate and γ-aminobutyric acid (GABA), 
and are furthermore caused by a neurodegenerative process 
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(discussed in [2, 3]). Therefore, a hypothesis suggesting 
that N-methyl-d-aspartic acid (NMDA) receptor hypofunc-
tion and inadequate GABAergic transmission play a major 
role in the disease has emerged [2, 4]. Normally, inhibitory 
interneurons monitor levels of excitatory neurotransmission 
via NMDA receptor signalling, and activated interneurons 
release GABA that acts on pyramidal neurons (glutamater-
gic) to achieve adequate excitatory–inhibitory balance. Due 
to NMDA receptor hypofunction, there is reduced NMDA 
receptor signalling in schizophrenia, which leads to a disrup-
tion of excitation monitoring, and thus GABAergic neurons 
respond as if excitatory transmission is insufficient. This 
poor negative feedback from GABAergic interneurons to 
pyramidal neurons results in increased glutamatergic neu-
rotransmission that, in turn, leads to excitotoxicity. This 
hypothesis was supported by experiments on healthy humans 
that develop schizophrenia-like symptoms upon administra-
tion of ketamine at sub-anaesthetic doses [5]. Nowadays, 
there are several lines of evidence that support the NMDA 
receptor hypothesis: (1) NMDA receptor blockade causes 
symptoms of schizophrenia; (2) neuropathological studies 
identified a schizophrenia-associated reduction of presynap-
tic markers for GABAergic interneurons in the hippocampus 
and the intermediate layers of the prefrontal and cingulate 
cortex, namely reduced expression and/or density of GABA 
transporters (GAT), glutamic acid decarboxylase GAD67 
(but not GAD65), and the Ca2+-binding protein parvalbu-
mine; (3) several genes implicated in schizophrenia are 
involved in regulating NMDA receptors [2, 6, 7].

Glutamatergic neurotransmission acts on dopaminergic 
neurons. Thus, excessive firing of disinhibited pyramidal 
neurons can eventually drive the increase in dopamine 
release that is responsible for the positive symptoms of 
schizophrenia. Indeed, NMDA receptor inhibition in the 
prefrontal cortex increases extracellular glutamate that acts 
on AMPA and kainate receptors, which in turn stimulate 
dopamine release in the prefrontal cortex and striatum ([8] 
and references therein). Also in humans, sub-anaesthetic 
doses of ketamine stimulate striatal release of dopamine [9]. 
Although NMDA receptor hypofunction in schizophrenia 
may be considered as a primary event leading to exacerbated 
dopaminergic transmission [2–4, 6, 7], it remains unknown 
whether it is cause or consequence of GABAergic deficits.

Glutamatergic and GABAergic systems may be investi-
gated in vivo using magnetic resonance (MR) methods. In 
particular, the concentrations of these neurotransmitters, as 
well as products of their metabolism (Fig. 1), are detect-
able by 1H magnetic resonance spectroscopy (MRS) among 
several other metabolites that compose the so-called neuro-
chemical profile [10]. Notably, MRS has served to investi-
gate metabolic impairments in a variety of neurodegenera-
tive disorders [11], and has also been employed to investigate 
biomarkers in psychiatric disorders, with strong incidence on 

schizophrenia [12]. However, one notes a particular incon-
sistency in the reported neurochemical alterations from MRS 
studies on schizophrenia patients, which may be attributed 
to the intrinsic heterogeneity of the disorder.

In this work, we reviewed recent literature reporting 
MRS studies in the realm of schizophrenia. Rather than an 
extensive literature review, we focused on recent studies on 
schizophrenia patients and animal models that are relevant 
for supporting the glutamatergic dysfunction hypothesis. We 
further discuss the involvement of glutamatergic players on 
brain metabolism pathways.

MRS in Schizophrenia

MRS allows the non-invasive measurement of stationary 
and dynamic information in humans and animals, i.e. con-
centrations of neurochemical compounds and metabolic 
fluxes, using MR-active nuclei such as 1H, 31P and 13C. 1H 
is the most sensitive nucleus for applications in living tis-
sues and localized 1H MRS provides the measurement of 
about 20 metabolites in the brain including those related 
to neurotransmission, namely glutamate (Glu), glutamine 
(Gln), GABA, aspartate (Asp), N-acetylaspartylglutamate 
(NAAG), glycine (Gly) and serine; energy metabolism, 
which includes phosphocreatine (PCr), creatine (Cr), glu-
cose (Glc), lactate (Lac) and alanine (Ala); phospholipid 
precursors involved in membrane metabolism, particularly 
phosphorylcholine (PCho), glycerophosphorylcholine 
(GPC), phosphorylethanolamine (PE); the antioxidants 
glutathione (GSH) and ascorbate (Asc); major osmolytes 

Main metabolic fates of glutamate
1. Exchange with 2-oxoglutarate in the TCA cycle is catalyzed by glutamate dehydrogenase 

(using NAD+ as cofactor) or transaminases.
2. The glial specific activity of glutamine synthetase catalyzes the condensation of glutamate 

with NH3 forming glutamine, an ATP-dependent reaction. 
3. Glutaminase generates glutamate from glutamine, with release of  NH3.
4. Glutamate decarboxylase produces GABA with CO2 release, mainly in GABAergic neurons.
5. Glutathione is produced by the sequential action of glutamate cysteine ligase and 

glutathione synthetase, and can also be decomposed to release glutamate.
6. Synthesis of NAAG from glutamate and N-acetylaspartate is catalyzed by NAAG 

synthetases and requires ATP hydrolysis.   
7. NAAG catabolism is capable of producing glutamate extracellularly.
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Fig. 1   Main pathways of glutamate metabolism in the brain. Gluta-
mate, glutamine, GABA, N-acetylaspartate, NAAG, and glutathione 
are detectable by 1H MRS
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namely myo-inositol (Ins; scyllo-inositol is often also quanti-
fied) and taurine (Tau); finally the putative neuronal marker 
N-acetylaspartate (NAA) that is a precursor of NAAG 
(Fig.  2a). 31P MRS allows the measurement of energy 
related metabolites, namely ATP, phosphocreatine and 
inorganic phosphate (Pi); membrane related phospholipid 
precursors including phosphomonoesters (PME): phospho-
choline + phosphoethanolamine, reflecting membrane phos-
pholipid synthesis, and phosphodiester (PDE): glycerophos-
phorylcholine + glycerophosphorylethanolamine, a marker 
of membrane degradation (Fig. 2b). Moreover, from the 31P 
spectrum one can estimate the intra-/extra-cellular pH and 
free Mg2+ concentration. 13C MRS is a method with low sen-
sitivity due to its low natural abundance and gyromagnetic 
ratio. However, in combination with the infusion of specific 
13C labelled substrates, it offers a unique way of measuring 
energy metabolic rates and neurotransmission in vivo [13, 
14]. Due to the technical complexity such as substrate infu-
sions and radiofrequency power deposition, and the high 
cost of 13C labelled compounds, its application in humans 
is limited as compared to animals. So far no 13C MRS study 
in schizophrenia patients was reported.

N‑Acetylaspartate

N-Acetylaspartate is a putative marker of neuronal integrity, 
and is the most abundant metabolite in the central nervous 
system of adult mammals observed in 1H MR spectra [10, 
15]. Therefore, its measurement in vivo by 1H MRS is rather 
straightforward and observed results are more consistent in 
schizophrenia patients. Decrements of N-acetylaspartate lev-
els were found across different brain regions of schizophre-
nia patients relative to healthy controls, namely in frontal 
lobe, hippocampus and thalamus [16, 17]. With the disease 
progression, the degree of reductions in N-acetylaspartate 
tends to accentuate in patients with chronic schizophrenia 
(versus first episode patients; [17]). However, others have 
demonstrated increased N-acetylaspartate levels in hip-
pocampus of chronic patients [18] and prefrontal cortex of 
high-risk adolescents [19]. Bustillo et al. reported recently 
that, with age, N-acetylaspartate increases in cortical grey 
matter and decreases in white matter of schizophrenia 
patients [20]. A reduction of brain N-acetylaspartate concen-
tration with age and disease duration was found in a meta-
analysis by Brugger et al. [21], and it is likely to reflect loss 
of neuronal metabolic integrity.

Glutamate and Glutamine

Alterations have also been abundantly reported for glu-
tamine and glutamate, pointing towards schizophrenia-
induced concentration changes in a time dependent man-
ner: increased glutamine, glutamate and/or the ratio of 
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Fig. 2   a 1H MR spectrum of the human medial prefrontal cortex acquired 
with the SPECIAL sequence at 3  T (TE/TR = 6/4000  ms, number of 
averages = 148) and the fits of individual metabolites including aspar-
tate (Asp), phosphocreatine (PCr), creatine (Cr), γ-aminobutyric acid 
(GABA), glutamine (Gln), glutamate (Glu), phosphorylcholine (PCho), 
glycerophosphorylcholine (GPC), glutathione (GSH), glucose (Glc), lac-
tate (Lac), glycine (Gly), myo-inositol (Ins), N-acetylaspartylglutamate 
(NAA), N-acetylaspartylglutamate (NAAG), phosphorylethanolamine 
(PE), scyllo-inositol (Scyllo), taurine (Tau) and macromolecules (MM). 
b 31P MR spectrum of the human occipital lobe at 7 T (a pulse-acquire 
sequence, spectral bandwidth = 6000  Hz, TR = 3  s, 320 averages, with 
baseline correction, no apodization). PCr phosphocreatine, ATP adeno-
sine triphosphate, Piint intracellular inorganic phosphate, Piext extracel-
lular inorganic phosphate, PE phophothanolamine, PC phosphocoline, 
GPC glycerophosphocholine, GPE glycerophosphoethanolamine, NADH 
reduced form of nicotinamide adenine dinucleotide, NAD+ oxidized form 
of nicotinamide adenine dinucleotide, UPDG uridine diphosphoglucose
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glutamine-to-glutamate (Gln/Glu) have been found in early 
stages of the disease and unmedicated patients [22–27], 
whereas decreased levels of these amino acids have often 
been observed in chronic patients [26, 28–31]. A recent 
meta-analysis suggested a decline with age and disease 
duration in the levels of glutamate and glutamine [17].

Note that 1H MRS offers the measurement of neuro-
chemical information at rest condition, while performing 
1H MRS measurement during a functional task so called 
functional MRS (fMRS) allows the unique measurement of 
dynamic information of glutamatergic and energy metabo-
lism upon neuronal activation. In fMRS studies, glutamate 
increase is a common manifestation of neuronal activa-
tion that has been interpreted as a response to stimulated 
energy metabolism [32, 33] because brain net amino acid 
synthesis requires increased anaplerotic activity, namely 
through pyruvate carboxylation [34]. These changes in 
glutamate levels are very subtle, and therefore such experi-
ments require high sensitivity and stability of the MRS 
measurement. Recently, Taylor et al. conducted a fMRS 
study in schizophrenia patients at 7 T and, interestingly, 
they observed a delayed increase of glutamate levels in 
response to a cognitive task, comparing to healthy con-
trols [35]. This suggests a neurodegeneration-like effect 
involving glutamatergic neurotransmission and oxidative 
metabolism.

GABA

Converging evidence suggests that abnormal function of 
GABAergic parvalbumin-positive interneurons leading to a 
loss of the balance between neuronal excitation and inhibi-
tion, and to deficits in neuronal synchronization, may con-
tribute to cognitive deficits in schizophrenia. Accordingly, 
a reduction of mRNA encoding for the GABA synthesis 
enzyme GAD67 and aberrant gamma waves [36, 37] were 
observed in schizophrenia patients [38, 39]. The measure-
ment of excitatory neurotransmitter glutamate in vivo by 
1H MRS is straightforward due to its high cerebral concen-
tration, on the contrary, the low level of GABA makes it 
challenging to be measured in vivo. Therefore, the number 
of studies of GABA by 1H MRS is very limited and most 
studies were conducted by spectral editing methods at 3 T 
[40–46], at 4 T [47], and recently also at 7 T [26, 48, 49]. 
A comprehensive meta-analysis shows that no significant 
schizophrenia-associated changes in GABA levels can be 
identified in medial prefrontal cortex, parietal/occipital cor-
tex and striatum, which is not consistent with the post-mor-
tem studies indicating a reduction in GABA synthesis [38, 
39]. However, this may be attributed to the diverse method-
ologies used, the regional specificities or the compensation 
of other unaffected subtype of interneurons [42].

Glutathione

Glutathione is a major cellular redox regulator and anti-
oxidant protecting cell from damages induced by reactive 
oxygen species. Its levels are decreased in cerebrospinal 
fluid and medial prefrontal cortex of chronic schizophrenia 
patients [50] and the lower glutathione levels are associ-
ated with more severe negative symptoms [51]. Moreo-
ver, subjects carrying polymorphisms in the gene coding 
for the catalytic subunit of the glutamate–cysteine ligase 
(Gclc) that are associated with high risk of developing 
schizophrenia [52, 53] display lower glutathione con-
centrations in the medial prefrontal cortex than low-risk 
genotype subjects [54]. Interestingly, low prefrontal glu-
tamate levels are present in patients with low-risk geno-
types [54], suggesting a predominant pathogenic role of 
glutamatergic system impairments in Gclc low-risk geno-
types. However, unchanged cerebral glutathione levels 
were also reported between patients and controls [54, 55]. 
This may be linked to the different distributions of Gclc 
polymorphisms between groups and/or the measurement 
under resting conditions, where alterations may not be 
pronounced as under particular conditions, such as upon 
psychosocial stress exposure. However, stress-induced glu-
tathione alterations remain to be directly demonstrated in 
patients or subjects at risk of developing schizophrenia. 
In addition, glutathione was also shown to associate with 
white matter integrity and resting-state functional con-
nectivity along the cingulum bundle, and this association 
with functional connectivity seems to be disrupted in early 
psychosis patients [56].

NAD+/NADH

The equilibrium between the oxidized (NAD+) and 
reduced (NADH) forms of nicotinamide adenine dinu-
cleotide play a key role in many biological processes 
such as energy metabolism, antioxidation, and calcium 
homeostasis, and their ratio reflects cellular redox state. 
Their measurement in vivo is challenging due to its low 
concentration and limited spectral separation. With the 
increase of sensitivity and spectral dispersion at high mag-
netic fields, and with the improvements made for spectral 
fitting, recent studies have reported the measurement of 
NAD+ and NADH in human brains in vivo by 31P MRS 
[57]. One application of this method revealed a signifi-
cant reduction of redox state NAD+/NADH in both early 
psychosis and chronic patients, offering for the first time 
direct in vivo support of the presence of redox imbalance 
in schizophrenia patients, possibly linked to mitochondrial 
dysfunction and impaired energy metabolism [58].
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Mitochondrial Dysfunction

Abnormalities in mitochondrial function and energy metab-
olism have also been proposed to occur in patients with 
schizophrenia [59]. Although as shown by 31P MRS studies 
no consistent changes of ATP, phosphocreatine and Pi can 
be identified from frontal lobe, temporal lobe and subcorti-
cal regions [60], interestingly the reaction rate of creatine 
kinase, the enzyme catalysing the exchange between phos-
phocreatine and ATP, was decreased in anterior cingulate 
cortex of patients using magnetization transfer experiment 
in 31P MRS [61]. Apart from methodological heterogenei-
ties (discussed in [60]), the potential compensatory mecha-
nism at rest likely plays a role such that dynamic change can 
be observed in the absence of changes in total resting pool 
size. In addition, accumulation of lactate was observed in 
medial prefrontal cortex [62] and cerebral spinal fluid [63] 
in schizophrenia patients, suggest a shift towards reliance 
on glycolysis for energy production, and may lead to lactic 
acidosis. Accordingly, low brain pH values in schizophrenia 
patients were observed in one 31P MRS study [61].

Taken together, the observations in patients by MRS stud-
ies indeed offer in vivo evidences supporting the presence 
of glutamatergic, redox and mitochondrial dysfunction in 
schizophrenia, despite many confounding factors involved 
such as MR methodologies, disease stage, region specificity, 
heterogeneity in patient cohorts and medication effects. It 
is important to note that compensatory mechanisms at rest-
ing state may mask changes in metabolite concentrations. In 
contrast, dynamic MRS measurements may be more inform-
ative, as is the case of fMRS studies [35] and magnetization 
transfer experiments [61] in patients.

Furthermore, one should note that only small fractions 
of the measured pools of glutamate and GABA are involved 
in neurotransmission. To directly address the aberrant glu-
tamate and GABA neurotransmission, as well as energy 
metabolism pathways, future studies using 13C MRS are 
required [13] and are expected to provide novel insights in 
pathophysiology of schizophrenia.

MRS on Animal Models: Glutamate/Glutamine 
Alterations

MRS can be applied in both clinical and pre-clinical set-
tings, and thus represents a valuable method for translational 
research. The establishment of animal models for schizo-
phrenia (and for the so complex psychiatric disorders in 
general) is challenging and does not fully recapitulate all 
behavioural phenotypes of the disease. Recent research on 
animal models has focused particularly on mice carrying 
modifications in genes associated to the risk of developing 
schizophrenia, as well as on the exposure to environmental 
insults. MRS has also been employed to identify metabolic 

modifications triggered by acute administration of NMDA 
receptor antagonists that mimic behavioural symptoms simi-
lar to those observed in schizophrenia (e.g. the open channel 
blockers phencyclidine, ketamine). In this section we assem-
bled evidence from studies on animal models of schizophre-
nia and of psychological stress that triggers schizophrenia-
like phenotypes, which might contribute to explain findings 
in the brain of schizophrenia patients.

Phencyclidine was reported to acutely induce a reduction 
of glutamate levels accompanied by glutamine accumula-
tion (without changes in the total content of glutamate plus 
glutamine, called “Glx”) in the rat prefrontal cortex [64]. 
This MRS study at high magnetic field supports changes in 
Gln/Glu as a putative marker for the glutamatergic dysfunc-
tion in schizophrenia. Psychosocial stress is a major trigger 
of neuropsychiatric disorders [65–67]. In rodents, exposure 
to stress early in life causes anxiety and depressive-like 
behaviours, and might also contribute to the development 
of schizophrenia-like behaviours [68–70]. Interestingly, 
Napolitano et al. reported that social isolation, an often used 
psychosocial stress paradigm, results in an altered response 
to a NMDA receptor non-competitive antagonist (ketamine) 
challenge in mice, namely an exacerbated ketamine-induced 
glutamine increase and a reduction of GABA concentration 
in the prefrontal cortex [71]. In particular, exposing rodents 
to social isolation stress after weaning leads to mitochondrial 
dysfunction and increased oxidative stress [69, 72], impaired 
function of oligodendrocytes that results in poor myelina-
tion [73, 74], and degeneration of parvalbumine-positive 
neurons and neuroinflammation [75] within the prefrontal 
cortex. These features are likely to cause alterations of the 
neurochemical profile measured by MRS. In a recent study, 
we observed that social isolation after weaning causes an 
increase of Gln/Glu, as well as a reduction of myo-inositol 
in the mouse frontal cortex [76]. In addition, recent work 
suggests that a number of stress paradigms applied to mice 
early in life leads to reduced concentration of metabolites 
produced and stored in neurons, namely glutamate, GABA 
and N-acetylaspartate, almost exclusively in the prefron-
tal cortex ([77] and references therein). Also Vernon et al. 
reported altered metabolite concentrations in the prefrontal 
cortex of adult mice born from females exposed to immune 
activation during gestation, namely decreased levels of glu-
tathione, taurine and N-acetylaspartate [78].

As discussed above, reduced levels of glutathione are a 
recurrent observation in the brains of schizophrenia patients, 
and genes involved in glutathione synthesis have been impli-
cated in the disease [79]. Mice with a functional deletion 
in the modulatory subunit of the glutamate–cysteine ligase 
(Gclm) display impaired glutathione synthesis leading to 
reduced glutathione levels in multiple organs, including the 
brain [80, 81]. Compared to wild-type mice, Gclm −/− mice 
were reported to have delayed oligodendrocyte maturation 
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(which depends on adequate intracellular redox balance) and 
myelination in the anterior cingulate cortex, and impaired 
white mater integrity [56, 82]. Furthermore, early-life insults 
inducing oxidative stress in Gclm −/− mice are detrimental 
to immature parvalbumin-immunoreactive interneurons and 
have consequences for anterior cingulate cortex functioning 
in adulthood [83]. Elevated Gln/Glu was also found in the 
frontal cortex of the Gclm −/− mouse relative to controls 
[82, 84], which is further accentuated by social isolation 
stress after weaning [76]. In line with these observations, 
glutamine synthetase was suggested to be impacted by oxi-
dative stress [85], which occurs in neuropsychiatric disor-
ders and upon NMDA receptor inhibition [78, 86]. Interest-
ingly, a mouse model of schizophrenia induced by perinatal 
treatment with ketamine was reported to display a persistent 
reduction of glutathione and increased oxidative stress in 
the medial prefrontal cortex [87], which was accompanied 
by impaired mitochondrial function, reduced parvalbumin 
expression, and disruption of the excitation–inhibition bal-
ance (reduced inhibition onto layer 2/3 pyramidal cells, 
and increased excitatory drive onto parvalbumin-positive 
interneurons). These alterations were ameliorated by N-ace-
tylcysteine treatment [87], a compound that might stimulate 
glutathione synthesis and also acts as antioxidant [84, 87].

Cerebral Energy Metabolism and Glutamatergic 
Function

Glutamatergic Neurotransmission and Signalling Through 
NMDA Receptors

Given its relatively large concentration in the brain (~ 10 mM 
in cortex), glutamate is of easy quantification by MRS [10], 
and has been proposed as a biomarker for neurodegenera-
tion in several pathologies [11]. However, studies at low 
magnetic field are unable to distinguish between glutamate 
and glutamine signals and have reported the sum of their 
concentrations, called “Glx”.

Glutamate is the main excitatory neurotransmitter in the 
brain and plays a major role in psychopathology. Synap-
tic vesicles in nerve terminals of glutamatergic neurons are 
loaded with glutamate. Following an action potential, glu-
tamate is released via exocytosis. Once in the synaptic cleft, 
it can activate ionotropic (ion channels) and metabotropic 
(GTP-binding protein coupled) receptors. The ligand-gated 
ion channels are further divided into three families: α-amino-
3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA), kain-
ate and N-methyl-d-aspartate (NMDA). In the mammalian 
central nervous system, AMPA and kainate receptors mainly 
mediate rapid depolarizing responses, the excitatory post-
synaptic currents (EPSCs) [88]. The NMDA receptor par-
ticipates mainly in synaptic plasticity and synapse formation, 
although it can also contribute to EPSPs and dendritic spikes 

[89]. The family of metabotropic receptors comprises several 
members within three subtypes, all involved in modulating 
synaptic signalling by glutamate and other transmitters [90].

As discussed above, NMDA receptors of the postsynaptic 
spine are of particular importance in the pathophysiology of 
schizophrenia. The NMDA receptor is a tetramer containing 
two subunits: NR1, which is required for channel function, 
and NR2A–D or NR3A,B, which determine biophysical and 
pharmacologic characteristics of the receptor (e.g. reviewed 
by [3]). NMDA receptors require that two different ligands 
bind to open the ion channel: glutamate binds to a site on the 
NR2/3 subunit (same site of NMDA and aspartate binding), 
and glycine, d-serine, kynurenic acid or NAAG binds to the 
modulatory binding site on the NR1 subunit. The channel 
also comprises a binding site for dissociative anaesthetics, 
including phencyclidine, dizocilpine (MK-801) and keta-
mine. At resting membrane potential, the NMDA receptor 
channel is blocked by Mg2+ that is released upon depolariza-
tion, allowing cation transport across the pore.

Glycine, Serine and NAAG are detectable in the brain by 
MRS, but their quantification may be hampered by the over-
lap with peaks from metabolites with much larger concentra-
tion, especially when operating at low magnetic fields [10] 
where spectral resolution is poor. However, specific editing 
techniques have been employed to resolve signals of these 
metabolites in 1H MRS [91]. NAAG is of particular interest 
for glutamatergic neurotransmission. In addition to acting 
as an antagonist of the glycine site of the NMDA receptor 
[92], NAAG is synthetized from glutamate (Fig. 1). It is a 
peptide widely spread in the nervous system and particu-
larly concentrated in synaptic vesicles of presynaptic ter-
minals, including those of pyramidal neurons in the cortex 
and limbic system, being co-released with glutamate [93]. 
NAAG is synthetized from ATP-dependent condensation of 
N-acetylaspartate and glutamate in neurons (Fig. 1) cata-
lysed by NAAG synthetase activities [94, 95]. Although its 
role is not fully understood, NAAG does specifically interact 
with the NMDA receptor (but not with AMPA or kainate 
receptors) through which it modulates synaptic plasticity 
[93]. Therefore, the balance between synaptic levels of glu-
tamate and NAAG, as well as other ligands of the glycine 
site, is important to modulate cation translocation through 
the receptor’s pore.

Importantly, NAAG also acts on the metabotropic type II 
glutamate receptor mGluR3 [96, 97] inhibiting the release 
of neurotransmitters, such as glutamate, GABA and glycine 
[93, 96–99]. Interestingly, it was reported that inhibitors 
of glutamate carboxypeptidase II (enzyme that inactivates 
N-acetylaspartylglutamate) are useful in rescuing memory 
impairments in rodent models of neurogenerative disorders 
[100], as well as preventing increases in glutamate release 
induced by the NMDA receptor non-competitive antagonist 
phencyclidine, through NAAG actions on mGluR3 [99]. 
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Such evidence suggests that increasing levels of NAAG 
might help re-establishing the inhibitory–excitatory balance 
in schizophrenia.

Reduced cortical levels of NAAG have been reported in 
schizophrenia, as well as in bipolar disorder [101]. A deficit 
in NAAG levels would therefore (1) increase the activity of 
NMDA receptors, leading to over-activation of GABAergic 
interneurons and consequently disinhibit pyramidal neu-
rons, (2) and reduce the agonist action on mGluR3 recep-
tors located pre-synaptically in glutamatergic neurons, thus 
removing the negative feedback. Both actions result in 
increased glutamate release.

Although brain NAAG occurs in concentrations detecta-
ble by MRS at high magnetic field, its main resonances over-
lap with those of N-acetylaspartate and are thus of difficult 
analysis [10]. Therefore, the reduction of N-acetylaspartate 
levels reported in brains of schizophrenia patients (studies 
generally conducted at low magnetic field; see above) likely 
includes reduced NAAG.

Astrocytes are Capable of Regulating NMDA Receptor 
Activity

Glutamatergic signalling is terminated by an uptake mecha-
nism that uses the driving force of Na+, K+ and H+ gradi-
ents to transport glutamate against its concentration gradi-
ent, keeping extracellular glutamate concentration below the 
level that activates its receptors (~ 1 µM; [102, 103]). This 
transport mechanism not only ensures adequate synaptic sig-
nalling but also prevents glutamate-mediated excitotoxicity 
(excessive glutamatergic activity) that triggers brain injury. 
Astrocytes are crucial for glutamatergic neurotransmission, 
particularly by clearing glutamate of neuronal origin in their 
processes abutting synapses, by modulating neuronal activ-
ity, and by controlling nutrient delivery from circulation 
([34] and references therein).

Once glutamate is taken up by astrocytes, it can be either 
oxidised or converted to glutamine in an energy-dependent 
manner via the glial-specific enzyme, glutamine synthetase 
[104]. Thus, the pool of astrocytic glutamate is considered 
much smaller than that of neurons, while the opposite is pro-
posed for glutamine compartmentation (Fig. 3; discussed in 
[105]). Glutamine, which is electrophysiologically inactive, 
is then shuttled to neurons, and the glutamate–glutamine 
cycle is finally completed by action of neuronal glutaminase 
and packing of the produced glutamate into vesicles. There-
fore, it is generally considered that neurons include a large 
metabolic pool of glutamate separated from the pool that 
comprises vesicular glutamate. This is however an oversim-
plified view of metabolic compartmentation. It is important 
to note that both glutamate and glutamine can be diverted 
to a number of metabolic processes, such as the formation 
of GABA or glutathione, protein synthesis, or catabolism 

in the tricarboxylic acid (TCA) cycle (Fig. 1), which can 
result in multiple kinetically different glutamate pools. Also 
contributing to multiple pools is the intracellular tortuosity 
of diffusion paths that may render metabolic pools not fully 
interchangeable.

The involvement of astrocytes in regulating NMDA activ-
ity is of importance for schizophrenia. First of all, as men-
tioned above, astrocytic processes that engulf glutamatergic 
synapses are equipped with high density of the transporters 
that clear synaptic glutamate, and readily respond to gluta-
mate release by engaging paracrine signalling and stimulat-
ing its metabolism (reviewed by [34]). Moreover, as expertly 
reviewed by others [2, 3, 93], astrocytes regulate the synap-
tic availability of NMDA receptor modulators: (1) kynurenic 
acid, an antagonist at the glycine binding site of the NMDA 
receptor, is produced from tryptophan and released by astro-
cytes; (2) astrocytes possess the glycine transporter type 1 
that regulates synaptic levels of glycine; (3) both serine 
racemase that synthesizes d-serine, and d-amino acid oxi-
dase that catabolizes d-serine are localized in astrocytes; (4) 
astrocytic end-feet contain glutamate carboxypeptidase II 
that catabolises NAAG to N-acetylaspartate and glutamate. 
Malfunctioning of any of these pathways in astrocytes is 
likely causing schizophrenia-like phenotypes. Neverthe-
less, the major role of astrocytes in regulating glutamater-
gic activity remains the clearance of synaptic glutamate and 
maintenance of the glutamate–glutamine cycle, which are 
energetically costly [34, 102].

Many studies found reduced levels of glutamate trans-
porters in the brain of schizophrenia patients, which could 
contribute to glutamate accumulation after release into 
the synapse (e.g. [106, 107]; reviewed in [108]). A recent 
study analysed cell-specific expression of transporters, and 

neuronal 
TCA cycle

glial TCA 
cycle

Glum
Glug

Glnn Glng

Gluv

Main cerebral pools of glutamate and glutamine
Glutamate:

Glum Large metabolic pool in neurons

Gluv Small vesicular pool in neurons 

Glug Small glial pool

Glutamine:

Glnn Small neuronal pool

Glng Large glial pool

Glu-Gln
cycle

Fig. 3   Relative sizes of the main cerebral pools of glutamate and glu-
tamine linked to the TCA cycles of neurons and glial cells
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reported that the density of glutamate transporters is reduced 
in astrocytes but not in neurons [109]. This suggests that 
the astrocytic support to glutamatergic neurotransmission 
is impaired. In addition, differential mRNA expression 
of splice variants of the excitatory amino acid transport-
ers EAAT1 and EAAT2 was observed in pyramidal neu-
rons of the anterior cingulate cortex in the schizophrenia 
post-mortem brain [110]. Also polymorphisms of EAAT1 
and EAAT2 were proposed to be associated with cognitive 
performance in schizophrenia [111]. These findings pro-
vide an additional dimension to the regulation of glutamate 
transport that is relevant for schizophrenia but remains to 
be understood.

Another point of glutamatergic regulation by astrocytes is 
the glutamate dehydrogenase, a mitochondrial enzyme that 
catabolises glutamate to 2-oxoglutarate for mitochondrial 
further oxidation (see [34] and references therein). Reduced 
glutamate dehydrogenase activity and concomitant increased 
hippocampal glutamate levels were found in patients with 
mesial temporal lobe epilepsy, with SCZ-like psychotic 
symptoms and cognitive deficits [112]. However, inconsist-
ent findings on glutamate dehydrogenase have reported in 
post-mortem analyses of brains from schizophrenia patients 
[113–115]. Interestingly, a brain-specific glutamate dehydro-
genase knock-out mouse was reported to show schizophre-
nia-like behaviours, reduced hippocampal volume, disrupted 
hippocampal excitatory–inhibitory balance [115].

Both glutamate uptake by astrocytes and its mitochon-
drial catabolism initiated by glutamate dehydrogenase are 
important nodes of glutamatergic regulation within astro-
cytes, and alterations of these processes might contribute to 
metabolic deregulation in schizophrenia.

Energy Metabolism and the Glutamate–Glutamine Cycle

Brain function is demanding in terms of energetic require-
ments, as all transport of ions across cell membranes is 
dependent on ATP, the main cellular energy carrier. When 
ion translocation does not require direct ATP hydrolysis, this 
takes place upon subsequent reestablishment of the ionic 
gradients. Thus, glutamatergic dysfunction in schizophrenia 
is certainly associated to metabolic impairments.

Most of the cell’s ATP is produced by oxidative phos-
phorylation using reducing equivalents generated by the 
TCA cycle in the mitochondria. Therefore, both neurons 
and astrocytes stimulate their TCA cycle rates in response 
to increased activity, namely glutamatergic neurotransmis-
sion [105].

As discussed elsewhere [10], the pool of glutamate 
involved in synaptic transmission is much smaller than that 
associated to energy metabolism (Fig. 3). Thus, it is likely 
that alterations of energy metabolism in schizophrenia repre-
sent a major contribution to changes in the levels of cerebral 

glutamate and glutamine (as well as N-acetylaspartate that 
is produced in mitochondria; [15]) measured by MRS in 
patients relative to healthy subjects. Accordingly, in a study 
of the aging human brain, Boumezbeur and co-authors 
employed 1H and 13C MRS, and identified a correlation 
between levels of glutamate and N-acetylaspartate (taken 
as marker of neuronal integrity) and the TCA cycle rate in 
neurons, as well as between the levels of myo-inositol (a 
putative glial marker, discussed in [10]) and the TCA cycle 
rate in glial cells [116].

There is indeed abundant evidence pointing towards 
metabolic dysfunction in schizophrenia. Many studies found 
altered expression of genes related to brain energy metabo-
lism in schizophrenia patients [117, 118]. In an interesting 
study that combined transcriptomics, proteomics and metab-
olomics on the prefrontal cortex of schizophrenia patients 
and controls (post-mortem), nearly half the altered proteins 
were associated with mitochondrial function, metabolism 
and oxidative stress, and were indeed associated with altera-
tions at transcriptional and metabolic levels [119]. Regard-
ing oxidative metabolism, several studies reported that 
schizophrenia alters the expression and activity of enzymes 
of the TCA cycle, as well as components of the mitochon-
drial electron transport chain and oxidative phosphoryla-
tion [120]. Compared to controls, reduced number and size 
of mitochondria have also been reported in neurons and 
oligodendrocytes of brains of schizophrenia patients (e.g. 
[121, 122]). In addition, impaired cerebral metabolic rate 
of glucose in schizophrenia patients was observed in posi-
tron emission tomography studies, namely in frontal areas 
[123, 124]. Studies of functional magnetic resonance imag-
ing further suggest an impairment of cerebral blood flow 
and/or oxygen metabolism, consistent with a disruption of 
the neurovascular and/or neurometabolic coupling in frontal 
areas of patients with schizophrenia both at rest and during 
activation [125, 126].

Research in animal models confirmed such brain meta-
bolic disturbances. Acute antagonism of NMDA receptors 
modulates mitochondrial oxidative metabolism, as was for 
example demonstrated in the rat (e.g. [127]). Mimicking per-
sistent hypofunction of NMDA receptors, a sub-anaesthetic 
dose of ketamine administered to rats over a week resulted 
in impaired activities of mitochondrial respiratory chain 
complexes in the prefrontal cortex, striatum and hippocam-
pus [128]. Rodents exposed to social isolation stress after 
weaning, which is recognised to contribute for developing 
anxiety, and depressive- and schizophrenia-like behaviours 
[68], also display mitochondrial dysfunction and increased 
oxidative stress in cortical areas [69, 72, 129].

However, such impairments in components of mitochon-
drial metabolism may not directly translate to alterations 
of metabolic fluxes in vivo due to potential compensatory 
mechanisms. As discussed above, glutamate release is 
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tightly coupled to energy metabolism. According to the glu-
tamatergic hypothesis of schizophrenia, reduction of NMDA 
receptor activity in inhibitory neurons results in disinhibi-
tion of pyramidal cells with concomitant stimulation of 
glutamate release, and an increase in oxidative metabolism 
is thus expected. Indeed, increased extracellular glutamate 
after systemic injections of NMDA receptor antagonists, 
such as the open channel blockers phencyclidine and keta-
mine, was observed using micro-dialysis in the prefrontal 
cortex [8, 130].

This released glutamate is likely taken by astrocytes 
and accumulated in the form of glutamine, which can be 
provided to neurons, and a glutamate–glutamine cycle 
rate increase is expected to result in stimulation of neu-
ronal and astrocytic TCA cycle [105, 131]. Accordingly, a 
phencyclidine-induced glutamate reduction and glutamine 
increase were reported by Iltis et al. [64]. In a later study, 
Chowdhury et al. employed 1H-[13C] MRS to measure rates 
of global energy metabolism and the glutamate–glutamine 
cycle in the frontal cortex and hippocampus of rats acutely 
treated with ketamine. Indeed, a sub-anaesthetic, but not 
anaesthetic, dose of ketamine significantly increased the 
fraction of 13C labelling in carbons of glutamate, GABA 
and glutamine upon infusion of either [1-13C]glucose or 
the glial specific substrate [2-13C]acetate [132]. Altogether, 
these observations suggest that NMDA receptor antagonists 
(administered at a sub-anaesthetic dose) result in stimulation 
of the glutamate–glutamine cycle rate as well as of oxida-
tive metabolism in both neurons and astrocytes within the 
prefrontal cortex.

It should be noted, however, that not all cortical areas are 
likely to present the same metabolic alterations in schizo-
phrenia, as is evidenced for example in positron emission 
tomography studies [123, 124, 133]. In these lines, a recent 
study in a methylazoxymethanol acetate rat model of schizo-
phrenia showed that resting oxidative metabolism, as meas-
ured by 1H-[13C] MRS with administration of [1,6-13C]
glucose, was reduced in the orbitofrontal cortex, increased 
in the visual cortex, and unaltered in the somatosensory 
cortex and dorsal hippocampus, when compared to controls 
[134]. These observations were compatible with functional 
and structural connectivity differences and behavioural out-
comes, which indicated hypofrontality and posterior hyper-
activity [134].

Changes of energy metabolism require a direct match of 
glucose utilisation rates. Upon phencyclidine administration, 
Iltis and co-workers observed an immediate rise in cortical 
glucose levels that normalised within 30 min, while lactate 
content was substantially reduced and took nearly 1 h to 
reach baseline levels [64]. These observations are compat-
ible with an initial reduction of glycolysis upon acute phen-
cyclidine administration. Accordingly, glucose utilisation 
was found decreased within some cortical areas after 2 min 

of phencyclidine administration [135]. Notably, 1–3 h after 
administration of NMDA receptor antagonists, increased 
glucose utilisation was shown in the prefrontal cortex, as 
well as in other cortical areas (mainly layers 1–3) and in 
parts of the limbic system [135, 136], which is consistent 
with increased metabolism in neurons and astrocytes [132]. 
Also in humans, NMDA receptor blockade with sub-anaes-
thetic doses of ketamine enhances blood flow and glucose 
utilisation in the prefrontal cortex and anterior cingulate 
cortex [137–139].

Investigation of brain energy metabolism in schizophrenia 
patients has been attempted. In particular, as noted above, 
31P MRS has been used to measure the content of phos-
phorus-containing compounds in the brain of schizophrenia 
patients, including ATP and phosphocreatine that are related 
to energy metabolism [60]. Although few 31P MRS studies 
showed reduced levels of these energy-related metabolites 
in cortical areas of patients relative to healthy subjects, a 
comprehensive review of the available literature led Yuksel 
and co-authors to observe that available data is highly vari-
able and there are inconclusive in terms of metabolic altera-
tions. First, 31P MRS studies typically have small sample 
sizes, which masks potential schizophrenia-induced altera-
tions. Another major concern is the lack of control on the 
medication effects and illness progression. Finally, it is clear 
that methodological improvements are required for stand-
ardisation of the acquired data: studies should be conducted 
at high magnetic field strengths to increase sensitivity and 
spectral resolution; and there should be a correction for the 
tissue composition (white matter, grey matter, cerebral spi-
nal fluid) of the volume-of-interest used for signal detection 
because it is known to change with disease progression.

It is likely that brain homeostasis is maintained, thus 
resulting in unaltered baseline metabolite concentrations, 
whereas the response to a stress challenge of a complex, 
energetically demanding task may reveal specific metabolic 
impairments (discussed in [77]). In a recent study on bipo-
lar disorder patients, 31P MRS was performed in the visual 
cortex during a visual stimulation task [140]. While there 
were no ATP or phosphocreatine abnormalities at baseline, 
there were distinct stimulation-induced metabolic changes 
in patients and healthy controls: visual stimulation reduced 
the levels of phosphocreatine but not ATP in controls, 
and reduced the levels of ATP but not phosphocreatine in 
patients. These results suggest that the visual cortex of bipo-
lar disorder patients is limited in recruiting phosphocreatine 
as energetic buffer through creatine kinase.

The rate of creatine kinase can be directly measured 
in vivo using magnetisation transfer technics combined with 
31P MRS. In the frontal cortex of schizophrenia patients, Du 
et al. [61] reported a significant reduction of the creatine 
kinase reaction rate, while phosphocreatine and ATP levels 
were normal at baseline.
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Interestingly, reduced glucose tolerance and impaired 
insulin sensitivity have been reported in schizophrenia 
patients and their siblings, relative to healthy subjects 
[141–143], which suggests that metabolic dysfunction in 
schizophrenia is not exclusive to the brain. It should be 
noted as well that impaired metabolism and mitochondrial 
dysfunction were also suggested to occur in other psychiatric 
disorders such as bipolar disorder [144, 145], major depres-
sive disorder [146] or autism [147].

Metabolic impairments linked to mitochondrial dysfunc-
tion are accompanied by oxidative stress, which is an impor-
tant component of schizophrenia. As reviewed elsewhere 
[79, 86], impairments in redox homeostasis and susceptibil-
ity of increased oxidative stress are linked to glutamatergic 
dysfunction due to (1) hypoactive NMDA receptors, (2) to 
degeneration of fast-spiking parvalbumin-positive GABAe-
rgic interneurons that are essential for fast local neuronal 
synchronization, (3) to dysfunctional oligodendrocytes 
resulting in poor myelination and thus impairing axonal 
integrity and signal conduction across brain areas, and (4) 
to neuroinflammation.

Glutamate as a Marker for Neuronal Density

Glutamate is the most concentrated amino acid in the brain. 
As discussed above, glutamine synthetase resides exclu-
sively in glial cells, and neurons readily convert glutamine 
into glutamate (Fig. 3). Thus, while most glutamate resides 
in neurons of the mammalian brain, glutamine is thought 
to be mainly localized to astrocytes (for revision see [34]). 
Therefore, a reduction in the size or amount of space occu-
pied by neurons, relative to the volume occupied by other 
brain cells, might result in a reduction of glutamate concen-
tration relative to that of glutamine.

In the Gclm −/− mouse model of schizophrenia, we 
found increased Gln/Glu in the frontal cortex (relative to 
both +/+ and +/− mice), without a reduction of glutamate 
but an increase in glutamine levels [76, 82, 84]. Moreover, 
social isolation in mice was also found to cause an increase 
in the ratio of glutamine-to-glutamate (Gln/Glu) in the 
frontal cortex and a trend towards a decrease in glutamate 
concentration [76]. Since glutamate is primarily located in 
neurons, neuronal loss or reduced neuronal processes are 
likely to result in decreased tissue glutamate content [10]. 
Supporting this notion, chronic stress was reported to result 
in a marked reduction of the dendritic arborisation in the 
medial prefrontal cortex [148–150]. Chronic social isolation 
stress was also shown to reduce levels of glutamate receptors 
in cortical areas and the hippocampal formation [151–153], 
suggesting impairments in glutamatergic neurons.

Increased Gln/Glu was also reported in the cerebro-
spinal fluid of schizophrenia patients, relative to healthy 

subjects [23]. Bustillo et al. reported higher anterior cingu-
late Gln/Glu in minimally treated patients than in control 
subjects [24]. Interestingly, glutamate was reported to be 
higher in young schizophrenia patients, but to decrease 
with age, relative to healthy subjects [17, 26].

Neurons are also the primary reservoir of N-acety-
laspartate. The concentration of N-acetylaspartate is 
relatively high in neurons and, since it is synthetized in 
neuronal mitochondria and endoplasmic reticulum [15], 
it is sensitive to mitochondrial dysfunction and deleteri-
ous effects of oxidative stress, being considered a marker 
of neuronal health (reviewed in [10]). Interestingly, since 
N-acetylaspartate hydrolysis by aspartylacylase in oligo-
dendrocytes and astrocytes produces oxaloacetate and 
acetate that are substrates for the TCA cycle, it can serve 
either for fuelling activity of these glial cells or for de 
novo glutamate synthesis [154]. Impairments of aspar-
tylacylase activity are thus likely to result in increased 
N-acetylaspartate levels without improved mitochondrial 
function in neurons (e.g. [155]).

Correlation between concentrations of N-acetylaspar-
tate and glutamate is observable in the brains of both 
rodents [156] and humans [157]. This correlation between 
the neuronal markers N-acetylaspartate and glutamate has 
been found disrupted in frontal areas of patients with neu-
ropsychiatric disorders, including schizophrenia (e.g. [158, 
159]). Importantly, in schizophrenia, glutamate loss was 
found to correlate with functional deterioration and with 
grey matter loss [160]. This is consistent with glutamate 
being a marker for neurodegeneration.

Conclusion

Although changes in glutamate levels in schizophrenia 
have been linked to impaired glutamatergic neurotransmis-
sion and hypofunction of NMDA receptors, it is likely that 
glutamate alterations also result from metabolic impair-
ments, particularly at mitochondrial level. Moreover, 
given the primary location of glutamate in neurons and 
glutamine in astrocytes, one must consider that deteriora-
tion of neuronal processes, reduction of dendritic arborisa-
tions, etc. might result in increased Gln/Glu.
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