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Abstract

Genome-wide association studies have identified more than 100 SNPs that increase the

risk of prostate cancer (PrCa). We identify and compare expression quantitative trait loci

(eQTLs) and CpG methylation quantitative trait loci (meQTLs) among 147 established PrCa

risk SNPs in primary prostate tumors (n = 355 from a Seattle-based study and n = 495 from

The Cancer Genome Atlas, TCGA) and tumor-adjacent, histologically benign samples (n =

471 from a Mayo Clinic study). The role of DNA methylation in eQTL regulation of gene

expression was investigated by data triangulation using several causal inference

approaches, including a proposed adaptation of the Causal Inference Test (CIT) for causal

direction. Comparing eQTLs between tumors and benign samples, we show that 98 of the

147 risk SNPs were identified as eQTLs in the tumor-adjacent benign samples, and almost

all 34 eQTL identified in tumor sets were also eQTLs in the benign samples. Three lines of

results support the causal role of DNA methylation. First, nearly 100 of the 147 risk SNPs

were identified as meQTLs in one tumor set, and almost all eQTLs in tumors were meQTLs.

Second, the loss of eQTLs in tumors relative to benign samples was associated with altered

DNA methylation. Third, among risk SNPs identified as both eQTLs and meQTLs, mediation

analyses suggest that over two-thirds have evidence of a causal role for DNA methylation,

mostly mediating genetic influence on gene expression. In summary, we provide a compre-

hensive catalog of eQTLs, meQTLs and putative cancer genes for known PrCa risk SNPs.

We observe that a substantial portion of germline eQTL regulatory mechanisms are main-

tained in the tumor development, despite somatic alterations in tumor genome. Finally, our

mediation analyses illuminate the likely intermediary role of CpG methylation in eQTL regu-

lation of gene expression.
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Author summary

We conduct rigorous eQTL and meQTL mapping for the 147 confirmed PrCa risk SNPs

using comprehensive genomic data in primary prostate tumors (TCGA and FHCRC) and

tumor-adjacent benign samples (Mayo Clinic). The goal is to explore the biological mech-

anisms of how SNPs predispose to PrCa risk, and to investigate the causal role of DNA

methylation in genetic regulation of gene expression. To our knowledge this is the first

eQTL study for PrCa risk SNPs that includes the comparison between tumors and benign

samples, as well as studying DNA methylation. We use several causal inference

approaches, including a proposed adaptation of the Causal Inference Test (CIT) to deci-

pher the direction of causality. We provide a comprehensive catalog of eQTLs, meQTLs

and putative cancer genes for known PrCa risk SNPs, which shows eQTL regulatory

mechanisms largely maintained in prostate tumors, and our mediation analyses shed light

on the intermediary role of CpG methylation in eQTL regulation of gene expression.

Introduction

Prostate cancer (PrCa) is the most common noncutaneous cancer among men in the Western

world [1], yet few risk factors have been identified [2]. Twin and familial studies have long

established that genetics is a major component of PrCa etiology [3–8]. Tremendous progress

has been made by genome-wide association studies (GWAS) to identify genetic loci predispos-

ing to PrCa, and more than 150 PrCa susceptibility SNPs have been identified [9–29]. The

most recent and the largest GWAS to date assembled 79,194 cases and 61,112 controls of Euro-

pean ancestry from 59 studies for genotyping on a custom high-density genotyping array (the

OncoArray), identified 62 novel loci associated with overall PrCa risk [29]. The polygenic risk

score using the more commonly occurring 147 PrCa risk SNPs (S1 Table) captured 28.8% of

the familial relative risk, which may provide a useful tool to identify men at higher risk for

PrCa. Despite the remarkable progress in identifying PrCa risk SNPs, functional interpretation

of risk SNPs presents a huge challenge. As Fig 1 shows, 141 out of the 147 PrCa risk SNPs

(96%) are located in noncoding regions of the human genome, and five of six risk SNPs located

in coding regions are nonsynonymous. The biological mechanisms of these SNPs influencing

the risk of PrCa remain largely unknown.

A common strategy to interpret functional activity of GWAS-identified risk SNPs is to

investigate whether they affect gene expression [30–33]. Such genetic determinants are

referred to as expression quantitative trait loci (eQTLs), influencing mostly local genes in

nearby genomic regions (local eQTLs, or cis-eQTLs for convenience, without requiring evi-

dence of allelic effects at each locus). Large consortia such as the Genotype Tissue Expression

project (GTEx) now provide genome-wide eQTL mapping from normal whole blood samples

and multiple organs [34,35]. Evidence is abundant that trait-associated SNPs are more likely to

be eQTLs [36], and eQTLs are pervasive in the human genome. A substantial number of

eQTLs in the human genome are tissue-specific, and sample size is a major determinant of the

number of eQTLs that can be detected at genome-wide significance [35]. Yet the number of

normal prostate samples in GTEx is limited due to the difficulty of obtaining normal prostate

samples from donors. A large-scale prostate-specific eQTL analysis from the Mayo Clinic was

conducted in 2015 using 471 adjacent histologically benign prostate tissue samples from pros-

tate cancer patients [37], reporting that nearly half of the known PrCa risk loci/regions may

harbor cis-eQTLs. As eQTLs are often dependent on tissue type and developmental stage, it is

anticipated that eQTLs will differ between primary prostate tumor tissue and adjacent benign
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tissue from the same prostate, though there has not been a systematic comparison of eQTLs

and associated genes (referred to as eGenes hereafter) for the most recent set of GWAS loci

between primary prostate cancer samples and tumor-adjacent benign prostate samples. The

differences in eQTL associations may reflect molecular alterations that occur during carcino-

genesis. An investigation of eQTLs among 12 known PrCa risk loci in 2012 identified four cis-
QTLs in benign tissues and these associations tended to be more attenuated in tumors [38].

Another eQTL study in 2015 examined 39 PrCa risk loci and differences of associations

between tumor and adjacent benign samples [39].

While a great deal of progress has been made in identifying eQTLs in the human genome,

epigenetic mechanisms for regulating gene expression, e.g., DNA methylation, histone modifi-

cation, and chromatin accessibility, are less understood [40,41,42]. In particular, DNA methyl-

ation at CpG sites is an essential epigenetic mark that links to cellular differentiation and tissue

development. Aberrant DNA methylation has been long recognized to be associated with

human diseases, including cancers [43]. This is particularly of interest to prostate cancer, as

DNA methylation plays a critical role in developing prostate cancer, and epigenome continues

to evolve throughout the life history of prostate cancer, possibly associated with cancer out-

come [44]. Genetic polymorphisms such as SNPs have been shown to contribute to variations

of DNA methylation in blood, brain, and adipose tissue and are referred to as methylation-

QTLs (meQTLs) [45–49]. Interestingly, accumulating evidence from peripheral blood samples

suggests that eQTLs co-localize with meQTLs in the genome [41,50–52], and genetic control

of DNA methylation and gene expression may have a shared, causal component [53]. Dissect-

ing the direction of causality presents challenge to statistical analysis: DNA methylation could

be associated with SNPs independent of an effect on gene expression, or actively mediate the

eQTL effect on gene expression, or play a passive role in gene regulation as a downstream

event. The Mendelian randomization approach has been used in this context, which assumes

that the genetic effect on an outcome goes through the intermediary in its entirety and there-

fore cannot test against the independence relationship [54]. The Causal Inference Test (CIT)

can test the causal direction in principle, using the conditional independence relationship of

three variables in a causal pathway and simultaneously assessing multiple causal parameters in

the pathway models [55]. However in practice it can produce significance for both mediation

Fig 1. The genomic locations of the 147 prostate cancer risk SNPs.

https://doi.org/10.1371/journal.pgen.1008667.g001
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and reverse causation, rendering results uninterpretable [55]. To date, no meQTL mapping

study has been reported on prostate tumor samples or histologically benign prostate samples,

nor has any study disentangled the relationships between eQTLs, DNA methylation and gene

expression in prostate tissue samples.

In this work, we perform a comprehensive eQTL and meQTL analysis for 147 PrCa risk

SNPs using genomic data from two large sets of primary prostate tumor samples (Fred Hutch-

inson Cancer Research Center, FH, n = 355; and The Cancer Genome Atlas, TCGA, n = 495)

and a large set of histologically benign prostate samples from cancer patients (Mayo Clinic,

n = 471). Focusing on established PrCa risk SNPs, the goal of this analysis is three-fold: to

identify and compare eQTLs in tumor-adjacent benign samples and primary prostate tumors,

to identify meQTLs in tumor-adjacent benign samples, and to investigate through data trian-

gulation the causal role of DNA methylation in genetic regulation of gene expression. Genes

found to be under regulation of the PrCa risk SNPs will be characterized by Ingenuity Pathway

Analysis (IPA). To interpret eQTLs in the context of cancer development, we also analyze data

from 50 pairs of tumor and tumor-adjacent, histologically benign samples from TCGA.

Results

Overview of samples and datasets

Fig 2 shows samples, datasets and goals for this analysis. We have included two large sets of

primary prostate tumors, both of which have data available on genome-wide genotypes, gene

expression and DNA methylation: the first set is from a FH-based cohort of PrCa patients

diagnosed with clinically localized stage disease (n = 355), and the second set is the compre-

hensive genomic data for primary PrCa samples publicly available from TCGA (n~500). Both

eQTL mapping and meQTL mapping were conducted in the two tumor datasets. The role of

DNA methylation in genetic regulation of gene expression was investigated. For comparison

of eQTLs, we have included a previously published set of tumor-adjacent, histologically benign

samples from men with PrCa who were treated at the Mayo Clinic (n = 471), which had

genome-wide genotypes and gene expression data. The fourth set is the tumor-adjacent, histo-

logically benign samples from TCGA (n = 50), which were compared to the matched TCGA

tumor samples, in order to explore whether somatic alterations may explain the differences of

eQTL/meQTL mapping results in tumors and in adjacent benign samples. Note that although

previous eQTL studies referred to tumor-adjacent, histologically benign samples from cancer

patients as “normal” prostate samples [37,38,39], the field effects on somatic alterations (DNA

methylation in particular) have been reported [56,57,58]. We therefore referred to the tumor-

adjacent samples used in this work hereafter as “benign samples”.

Cis-eQTL and associated eGenes for 147 PrCa risk SNPs. We first cataloged the total

number of possible cis-eQTLs for the 147 PrCa risk SNPs, when considering all genes within 1

Mb of each risk SNP. There are 3089 SNP and gene pairs in the Mayo Clinic adjacent benign

prostate tissues (n = 471), 3300 pairs in the FH tumor tissues (n = 355), and 3468 pairs in

TCGA tumor tissues (n = 492). The different numbers of pairs are due to the different gene

expression platforms (gene-expression array for FH samples, and RNA-seq for Mayo and

TCGA samples). Fig 3A shows the quantile-quantile plots of p-values resulting from cis-eQTL

mapping in the three datasets. The eQTL data from the Mayo adjacent benign tissues yielded

many more significant p-values than the two tumor datasets, likely due to more eQTLs in his-

tologically benign (non-cancerous) samples. Using the false discovery rate of 0.05 as the signif-

icance threshold, Table 1 shows that there are 259 eQTL-eGene pairs (98 eQTL SNPs and 250

eGenes) detected in the Mayo samples, 75 eQTL-eGene pairs (48 eQTL SNPs and 73 eGenes)

in the TCGA samples, and 43 eQTL-eGene pairs (34 eQTL SNPs and 42 eGenes) in the FH
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samples. The details of the significant results for eQTL mapping are shown in S2 Table. The

identified eQTLs typically explain a small proportion of gene expression variability: the

median R-square for eQTLs in the three datasets is 0.069 (FH), 0.043 (TCGA), and 0.036

(Mayo), respectively.

In the Mayo adjacent benign samples, 60% of cis-eQTLs were associated with at least two

eGenes (median of the number of eGenes associated with an eQTL = 2, max = 12). On average,

fewer eGenes were associated with an eQTL in tumor samples (TCGA: median = 1, max = 7,

17 eQTLs associated with more than 1 eGene; FH: median = 1, max = 3, 7 eQTLs associated

with more than 1 eGene), suggesting that eQTL regulation may be disrupted in tumors. The

top master regulators of gene expression are rs3129859 and rs3096702 from the HLA region in

chromosome 6, which are associated with 2 and 9 eGenes in the Mayo set, 7 and 3 eGenes in

the TCGA set and 1 and 2 eGenes in the FH set.

A substantial number of eQTLs overlapped between the FH data (19 out of 34) and TCGA

data (19 out of 48). The discrepancy between eQTLs found in the two tumor datasets may be

explained by differences in sample types used to extract mRNA (FFPE for FH and fresh frozen

for TCGA), gene expression profiling methods (microarray for the FH samples and RNA-seq

for the TCGA samples) so that some gene expressions are only available in one dataset but not

the other, sample sizes and clinical characteristics (TCGA over-sampled high Gleason score

tumors and therefore is less representative of primary tumors). Indeed, if one of the two tumor

datasets were used as the discovery set (FDR<0.05) and the other dataset as the validation set

(p-value <0.05), 25 out of the 34 eQTLs (74%) identified in the FH data were validated by the

TCGA data, and 28 out of the 48 eQTLs (58%) identified in the TCGA data were validated in

the FH data. Across the two tumor datasets, 39 pairs (34 eQTLs and 37 eGenes) had

FDR<0.05 in one dataset and a p-value <0.05 in the other dataset. We therefore define this set

of 39 pairs to be the PrCa eQTL-eGene pairs and compare them with the eQTL-eGene pairs in

the adjacent benign samples.

We investigated the discrepancy between the FH and TCGA set. For the nine eQTLs and

associated 16 eGenes identified in FH but not in TCGA, ZAK (paired with rs34925593) and

Fig 2. Various samples and genomic data used in this paper.

https://doi.org/10.1371/journal.pgen.1008667.g002
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Fig 3. The results of eQTL mapping for the 147 prostate cancer risk SNPs in the Mayo (histologically normal), TCGA (tumor) and

FH (tumor) data. A, the quantile-quantile plot of SNP-gene association p-values. B, the Venn diagram of the eQTLs and eGenes

identified in the Mayo histologically normal set and the eQTLs and eGenes confirmed in the TCGA and FH tumor set. C, the scatter plot

of eQTL effect sizes in Mayo benign samples and TCGA tumor samples. D, Standardized gene expressions grouped by genotypes for three

examples of eQTL-eGene. The top panel is rs12653946-IRX4 identified in both tumor and tumor-adjacent histologically normal samples,
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HCG4P6 (paired with rs12665339) were not available in the TCGA dataset. As the result, two

eQTLs- rs34925593 and rs12665339-couldn’t be detected in the TCGA dataset. The rest of 7

eQTLs were associated with 13 eGenes, which were available and expressed in both tumor sets.

For the 20 eQTLs and associated 42 eGenes identified in TCGA but not FH, ZFP57 (paired

with rs7767188), TRIM26 (paired with rs7767188), MRM2 (paired with rs527510716),

CLDN25 (paired with rs11214775), and ZNF652 (paired with rs11650494) were not available

in the FH dataset. As the result, the four eQTLs (rs7767188, rs527510716, rs11214775 and

rs11650494) were not detectable in the FH dataset. The rest 16 eQTLs were paired with 37

eGenes which were available and expressed in the FH dataset. These results suggest most of the

discrepancy between eQTLs in FH and eQTLs in TCGA is likely due to differences of sample

size and cancer clinical characteristics.

Fig 3B shows the Venn diagrams for the eQTLs and e-Genes identified in the Mayo adja-

cent benign samples and the tumor samples. One striking finding is that most of the eQTLs

identified in prostate tumors were also found in the adjacent benign samples (33 in 34 eQTLs

detected in tumors), the majority of eGenes in tumors were also identified in the histologically

benign samples, while 34% of 98 eQTLs in the Mayo adjacent benign samples were also

detected in tumor samples, suggesting that there were very few tumor-specific eQTL-eGenes.

When eQTLs in FH and eQTLs in TCGA were separately compared to eQTLs in Mayo adja-

cent benign samples, there are 28 eQTLs shared between FH and Mayo, 38 eQTLs shared

between TCGA and Mayo. The tumor-specific eQTL-eGene pairs were plotted in S1 Fig. The

majority of the tumor-specific eQTLs are likely due to random noise when genotypes only

explain a small portion of the variability in gene expressions, so that some SNPs not associated

with gene expressions in the benign samples showed a somewhat moderate level of, sometimes

inconsistent, association in the two tumor sets (S1 Fig). The difference between the tumor and

adjacent normal set is not attributed to the difference of gene-expression platforms. Among 65

eQTL identified in adjacent normal but not in tumor samples, two eQTLs (rs1465618 and

rs10086908) have eGenes (LOC100129726 and PCAT1) not available in both the tumor data-

sets, and 4 eQTLs (rs4713266, rs527510716, rs1512268, rs8008270) have associated eGenes

(SMIM13, MRM2, NKX3-1, GNPNAT1) not available in the FH dataset only.

Fig 3C shows the general concordance between effect sizes of SNP-gene associations in

TCGA tumors and effect sizes of SNP-gene associations in Mayo benign samples, for all SNP-

the middle panel is rs4430796-HNF1B only identified in adjacent normal samples, and bottom panel is rs11135910-EBF2 identified in

tumors only.

https://doi.org/10.1371/journal.pgen.1008667.g003

Table 1. Summary of cis-eQTL mapping results for 147 prostate cancer risk SNPs in three datasets.

Mayo adjacent benign

(n = 471)

FH tumors

(n = 355)

TCGA tumors

(n = 492)

#SNP-Gene pairs identified within 1 Mb distance 3089 3300 3468

#eSNP-eGene pairs between FDR <0.05 259 43 75

#eQTL 98 34 48

#eGenes 250 42 73

# eGenes per eQTL

(median, min, max)

2,1,12 1,1,3 1,1,7

Distance of eQTL and TSS of the paired eGene

(median, min, max)

124764,57,938281 84214,57,808208 60187,57,811509

R-square of eQTL and paired eGene

(median, min, max)

0.036,0.017,0.740 0.069,0.037,0.486 0.043,0.024,0.435

https://doi.org/10.1371/journal.pgen.1008667.t001
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gene pairs and for the significant eQTL-eGene pairs in both sets. This result suggests that the

majority of eQTL regulatory mechanisms in the benign samples are largely intact in tumors,

though tumor eQTLs may have smaller effect sizes due to other somatic alterations such as

mutations, copy numbers and DNA methylation. Fig 3D shows three representative examples

of the most significant eQTL-eGenes, confirming previously reported eQTL mapping results.

One pair (rs12653946-IRX4) was identified in both tumor and tumor-adjacent benign samples,

one (rs4430796-HNF1B) was only identified in adjacent benign samples, and the last in tumors

only (rs11135910-EBF2). Interestingly, all three eGenes encode transcription factors and are

believed to be tumor suppressor genes [59–63]. The association of rs1265394 and IRX4 tran-

script has been reported previously in Japanese and European populations [59,64]. HNF1B is a

member of the homeodomain-containing superfamily of transcription factors that may sup-

press epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues. This

tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the pro-

gression to PrCa [61]. It may also be involved in PrCa development via modulating androgenic

hormone effects [62]. Consistent with our result, a previous eQTL analysis also reported the

eQTL association for rs4430796-HNF1B only in tumor-adjacent, histologically benign prostate

tissue but not in tumors [38]. The oncogenic role of EBF2 in PrCa development is less under-

stood [63], though this eQTL association of rs11135910 with EBF2 has been reported earlier in

a smaller subset of TCGA data [65].

Using IPA, a gene set enrichment analysis for the 250 eGenes identified in the Mayo adja-

cent benign samples was conducted. As the background in these genomic regions, the canoni-

cal pathways, molecular functions, and networks enriched by these eGenes were compared to

those derived from 2417 genes in the cis regions which were not identified to be eGenes of the

147 PrCa risk SNPs. The top ten canonical pathways are all immune—related functions, such

as antigen presentation (p-value = 2.2e-10), PD-1, PD-L1 cancer immunotherapy pathway (p-

value = 2.0e-7), and allograft rejection signaling(p-value = 3.2e-7), and OX40 signaling(p-

value = 4.7e-7, S3 Table). This included numerous HLA genes, including HLA-A, HLA-DPB1,

HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB5, HLA-G. These

HLA genes are associated with five PrCa risk SNPs in chromosome 6: rs7767188, rs12665339,

rs3096702, rs3129859, and rs9296068. The top enriched molecular and cellular functions for

these 250 eGenes are important for cell to cell signaling and interaction (24 genes),cell cycle

(24 genes), cell morphology (21 genes), cellular development, cellular growth and proliferation

(19 genes), and immunological disease (17 genes). The largest molecular functional group are

genes related to DNA transcription, including the ones shown in Fig 3d and 3a number of

well-known transcription regulators and DNA methylation machineries, such as ASCL2,

FOXP4, TET2, DNMT3B, HNF1B, HOXA13, NOTCH4, IRX4, CTBP2, and ZNF217. Notably,

TET2 (corresponding eQTL rs7679673) encodes a methylcytosine dioxygenase that catalyzes

the conversion of methylcytosine to 5-hydroxymethylcytosine and plays an important role in

DNA demethylation. It has been reported that TET2 binds the androgen receptor and its loss

is associated with prostate cancer [66]. DNMT3B (corresponding eQTL rs11480453) encodes a

DNA methyltransferase which is thought to function in de novo methylation and have been

implicated in prostate cancer development [67]. Genes involved in steroid synthesis included

CYP21A2, HSD17B2, ITGA6, IDI2, MAP2K1, PMVK, TSPO, and may correspond to androgen

dependent growth of prostate cancer.

cis-meQTLs and associated CpGs for 147 PCa risk SNPs. Within 1 Mb distance of the

147 PCa risk SNPs, 77,649 SNP-CpG pairs were identified in the FH data and 69,602 SNP-CpG

pairs in the TCGA data. Cross-reactive and polymorphic CpGs were removed in both datasets.

The different numbers of SNP-CpG pairs between the two datasets are due to removal of

CpGs in the TCGA dataset that are located within 15bp of a repetitive element. Fig 4 shows the
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summary of cis-meQTL mapping results. The details of the significant results for cis-meQTL

mapping are shown in S2 Table. The q-q plot in Fig 4A highlights the large number of signifi-

cant SNP-CpG pairs for both datasets. Table 2 summarizes the cis-meQTL mapping results.

When FDR <0.05 was used as the significance threshold, approximately two-thirds of the 147

PCa risk SNPs were identified as meQTLs in at least one of the two tumor datasets. There are

Fig 4. The results of meQTL mapping for the 147 prostate cancer risk SNPs in the FH (tumors) and TCGA (tumors). A, the quantile-quantile plot

of SNP-CpG association p-values. B, the Venn diagram of the meQTL identified in the FH tumor set and the meQTL confirmed in the TCGA tumor

set. C, beta values of CpG methylation grouped by genotypes for an example meQTL-CpG association.

https://doi.org/10.1371/journal.pgen.1008667.g004
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776 meQTL-CpG pairs (101 meQTLs and 740 CpGs) identified in the TCGA data, and 586

meQTL-CpG pairs (93 meQTLs and 567 CpGs) identified in the FH data. The median distance

between the chromosomal positions of meQTLs and their associated CpGs is 52,747 bp

(min = 9, max = 956,913) in the FH dataset, and 67,139 bp (min = 11, max = 985,743) in the

TCGA dataset. Similar to eQTLs, meQTLs typically explain a small proportion of the variabil-

ity of CpG methylation levels: the median R-square for meQTLs in the FH dataset is 0.056,

and the median R-square for the meQTLs in the TCGA data is 0.046. The functional annota-

tion of the CpGs linked to meQTLs shows that in the FH data, 13% of the CpGs are located in

promoters, 37% in gene bodies (between transcription start site and transcription ending site),

and 21% in enhancer regions. In the TCGA data, 16% of the CpGs are located in promoters,

37% in gene bodies, and 17% in enhancer regions. The spatial distribution of these CpGs

linked to meQTLs did not differ significantly from all CpGs included on the HM450 array.

Typically, meQTLs are associated with multiple CpGs (median = 2, min = 1, max = 91 in

the FH data, and median = 3, min = 1, max = 110 in the TCGA data). These meQTLs may be

master regulators of DNA methylation that involves multiple genes. Among 93 meQTLs iden-

tified in FH, 26 of them are associated with multiple CpGs which are located in more than one

gene. Among 101 meQTLs identified in TCGA, 33 of them are associated with multiple CpGs

which are located in more than one gene. Notably, we found the three PrCa SNPs in chromo-

some 6 (rs7767188, rs3129859 and rs3096702) are master regulators of DNA methylation in

over 9 genes in near regions. All three SNPs are also identified as eQTLs in TCGA and FH

tumor data.

Fig 4B shows that meQTLs (with FDR<0.05) identified in the two datasets are highly con-

cordant, with 71 meQTLs (76% of FH meQTLs) being shared. The concordance increases to

85 meQTLs (91% of FH meQTLs) if we use a less stringent significance rule: FDR<0.05 in

one dataset and p-value <0.05 in the other. This level of consistency is much higher than the

eQTL findings in the two datasets, which may be attributed to the better preservation of DNA

than RNA in FFPE tumor tissue samples, and the fact that the same profiling method was used

for measuring DNA methylation (Illumina HM450 BeadChip).

Fig 4C shows an example of meQTL-CpGs appearing in both the FH and TCGA sets. SNP

rs141536087 is located in the gene-body of LARP4B, and cg26597838 is located in an enhancer

region approximately 17 Kb upstream of LARP4B. LARP4B is an RNA binding protein that

has been previously identified as a putative tumor suppressor that inhibits cell migration and

invasion of prostate cancer cells [68]. Furthermore, rs141536087 is an eQTL for LARP4B in

the Mayo set (p-value = 4.5e-15) but not in the two cancer sets (p-value = 0.41 for FH and 0.63

for TCGA).

Table 2. Summary of cis-meQTL mapping results for 147 prostate cancer risk SNPs in two datasets.

FH tumors

(n = 355)

TCGA tumors

(n = 494)

#SNP-CpG pairs identified within 1 Mb distance 77649 69602

#SNP-CpG pairs with FDR <0.05 586 776

#meQTL with FDR <0.05 (#genes with associated CpGs) 93 101

#CpGs with FDR <0.05 567 740

#CpGs associated with meQTL

(median, min, max)

2,1,91 3,1,110

Distance (bp) between meQTL and associated CpGs

(median, min, max)

52747,9,956913 67139,11,985743

R-square of meQTL and associated CpGs

(median, min, max)

0.056,0.035,0.757 0.046,0.025,0.738

https://doi.org/10.1371/journal.pgen.1008667.t002
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Relationship between cis-eQTL and cis-meQTL. Fig 5 includes the Venn diagram of

eQTLs and meQTLs identified in the two tumor datasets. The majority of eQTLs are also

meQTLs in tumor datasets (Fig 5A and 5D), more so in the TCGA data (30 out of 34 in the FH

data; 41 out of 48 in the TCGA data), while only ~41% of meQTLs are also eQTLs in the

TCGA data, and ~32% of meQTLs are also eQTLs in the FH data. One complicating factor for

comparing eQTLs and meQTLs is that there were more pairs being tested for meQTL than

eQTL pairs, therefore meQTL mapping is penalized by a greater degree of multiple testing cor-

rection. If a less stringent significance threshold (FDR <0.2) is used for meQTL mapping, 44

out of 48 eQTLs identified in the TCGA data are also meQTLs, and 32 out of 34 eQTLs in the

FH data are also identified as meQTLs, reinforcing the finding that eQTLs is mostly a subset of

meQTL in tumor sets.

For those SNPs identified as both eQTL and meQTL, causal effects of the associated CpG

methylation sites on the corresponding gene expressions were assessed for 541 SNP-CpG-gene

expression triplets (31 SNPs, 385 CpGs, 39 genes) in the FH set and 1219 SNP-CpG-gene

expression triplets (41 SNPs, 539 CpGs, 72 genes) in the TCGA set, using the Mendelian

Fig 5. Genetic regulation of gene expression overlaps with genetic regulation of CpG methylation in the 147 PrCa risk SNPs. A, the Venn diagram

of eQTL and meQTL identified in the FH tumor set. B, the histogram of p-values when applying the two-stage least squares method to FH SNP-CpG-

gene expression triplets when SNPs are both eQTL and meQTL. C, the scatter plot of genetic associations with gene expression and genetic associations

with CpG methylation for SNPs identified as eQTL and meQTL in the FH tumor set and CpGs located in the same gene of gene expression. D, the

Venn diagram of eQTL and meQTL identified in the TCGA tumor set. E, the histogram of p-values when applying the two-stage least squares method

to FH SNP-CpG-gene expression triplets when SNPs are both eQTL and meQTL. F, the scatter plot of genetic associations with gene expression and

genetic associations with CpG methylation for SNPs identified as eQTL and meQTL in the TCGA tumor set and CpGs located in the same gene of gene

expression.

https://doi.org/10.1371/journal.pgen.1008667.g005
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randomization (MR) method exploiting genetic variants as instrumental variables. Fig 5B and

5E show the histograms of p-values derived from the two-stage least squares method for the

two tumor sets, both showing a high proportion of triplets with evidence of causal effect (47%

triplets in FH have FDR<0.05, 35% triplets in TCGA have FDR<0.05). However, a significant

MR result could also due to the genotype affecting DNA methylation and gene expression

independently. An alternative method is to assess the dose correspondence of eQTL effect

sizes and meQTL effect sizes. The triplets were restricted to those containing CpG sites located

in the same genes whose expression was measured (91 in FH and 145 in TCGA), Fig 5C and

5F assess the concordance of the absolute values of genetic associations with standardized CpG

methylation levels and the absolute values of genetic associations with standardized gene

expression levels. The absolute values of coefficients were plotted because DNA methylation

can be positively or negatively associated with gene expression, depending on the locations of

the CpGs in a genic region (gene body or promoter). Both scatter plots show the dose response

relationship between a SNP’s genetic influence on DNA methylation and on gene expression

(p-value for a linear trend is 0.018 for the FH data and 5.1e-7 for the TCGA tumor data),

which provides evidence of a causal relationship between DNA methylation and gene expres-

sion. Taken collectively, the results in Fig 5C and 5F suggest that genetic regulation of gene

expression and genetic regulation of CpG methylation are not independent molecular events,

though neither Mendelian randomization nor the dose response can differentiate the direction

of the causal effect: it could be that eQTL associations were mediated by altering DNA methyl-

ation in the respective genes, or that DNA methylation is a downstream event after a genetic

variant affecting gene expression.

Absence of eQTLs in tumor samples may be due to altered DNA methylation. The

TCGA genomic data for 50 pairs of primary PrCa and adjacent benign samples were investi-

gated for reasons that may explain the “loss” of eQTLs when comparing tumors to adjacent

benign samples. We investigate whether differential gene expression, copy number alterations

or somatic mutations between tumor and normal samples where associated with loss of eQTL

in tumors. There is no systematic difference for either of three genomic features when we com-

pare 53 genes which lost eQTL control in TCGA tumors to 173 eGenes whose eQTL regulation

remain intact in TCGA tumors.

Fig 6 shows the comparison of DNA methylation in the eGenes in adjacent benign samples

only and the eGenes in both tumor and benign samples. DNA methylation data available for

the paired 50 tumors and 50 tumor-adjacent benign samples were investigated in two ways.

First, differentially methylated probes (DMP) between tumor samples and tumor-adjacent,

histologically benign samples (paired with matched tumor) were identified in regions sur-

rounding eGenes. There are more differentially methylated probes between tumors and adja-

cent benign samples around the eGenes that “lost” genetic regulation in tumors from eQTLs

compared to eGenes that “maintained” genetic associations in both benign samples and tumor

samples (Fig 6A, p-value = 0.032). Second, the differentially methylated region (DMR)

between tumor samples and tumor-adjacent, histologically benign samples were determined

by at least two consecutive probes with significant differences in the same direction. Fig 6B

compares the number of DMRs in two groups of genes: there are more tumor-benign DMRs

in the genes which lost genetic regulation in TCGA tumors, with a marginally statistically sig-

nificant difference (p-value = 0.0612). Finally, the percentage of genes containing at least one

meQTL-regulated CpG sites (as defined in the TCGA set in Fig 4) was compared between the

two groups of eGenes. Consistently, there was a substantially higher percentage of eGenes in

tumor and benign samples which have genetically regulated CpGs, when compared to the

eGenes in benign samples only (Fig 6C, 64% vs 26%, p-value = 3.46e-7). In S2 Fig, two exam-

ples were shown where eQTL associations were evidently weakened in the tumor data and,
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simultaneously there are substantial differences between DNA methylation at key CpG sites

within the gene between tumors and adjacent benign samples (~50 pairs from TCGA).

Together with Fig 5, these results in Fig 6 and S2 Fig suggest the hypothesis that at least some

altered CpG methylation sites may be mechanistically involved in loss of genetic regulation of

gene expression in tumor sets.

Mediation analysis of genetic influence on DNA methylation and gene expression. To

further dissect the direction of causality among the three possible relationships (Fig 7),

Fig 6. Altered DNA methylation in genes which lose genetic control in tumors when compared to benign samples. A, Number of differentially

methylated probes (DMP) in the eGenes in benign samples only and eGenes in both tumor and benign samples. B, Number of differentially methylated

blocks in eGenes in benign samples only and eGenes in both tumor and benign samples. C, the percentage of genes associated with at least one

meQTL-CpG pair within the genes.

https://doi.org/10.1371/journal.pgen.1008667.g006

Fig 7. Three possible SNP-Methylation-gene expression relationships and representative results of mediation analyses from TCGA and FH.

https://doi.org/10.1371/journal.pgen.1008667.g007
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mediation analyses between PrCa risk SNPs, CpG methylation probes and expressions of

eGenes were conducted using the Causal Inference Test (CIT) method [55] and the three addi-

tional criteria we propose. CIT is a four-component composite test that was designed to test

mediation of the effect of an exposure on an outcome by an intermediate phenotype (see

details in the Methods Section). The goal here is to identify three types of mediation relation-

ships: 1) a SNP influences gene expression and DNA methylation through independent path-

ways (denoted as independence, no causal relationship); 2) a SNP alters CpG methylation,

which in turn influences gene expression (SNP!Methylation!Gene, denoted as the SME

mediation); and 3) a SNP changes gene expression, which unwind local chromosome and trig-

gers passive alterations in CpG methylation (SNP!Gene!Methylation, denoted as the SEM

mediation). See the top panel in Fig 7 for illustration of the three tri-variate relationships. The

unique feature is that there will be typically multiple CpG sites involved in any eQTL-eGene

pair.

In the TCGA dataset, 41 risk SNPs identified as both eQTL and meQTL were included in

the mediation analysis, together with their associated CpG probes and gene expression (72

eGenes, 539 CpG probes). There are 1219 QTL-CpG-Gene triplets, 824 of them have both

CIT-SEM and CIT-SME p-values > 0.05, 210 have both CIT p-values <0.05, 185 have one of

the two CIT p-values <0.05. Pooling multiple CpGs in the cis-region around a gene together

and using CIT and three proposed criteria to differentiate SME and SEM, we identified evi-

dence of SME for 30 QTL-CpGs-Gene relationships, 15 SEM triplets for QTL-Gene-CpGs

relationships, and 18 independent QTL-Gene/QTL-CpGs relationships (Fig 7). In the FH

dataset, 31 risk SNPs identified as both eQTL and meQTL were included in the mediation

analysis, together with their associated CpG probes and gene expression (39 eGenes and 385

CpG probes). There are 541 QTL-CpG-Gene triplets, 394 of them have both CIT-SEM and

CIT-SME p-values > 0.05, 99 have both CIT p-values <0.05, 48 have one of the two CIT p-val-

ues<0.05. Pooling nearby CpGs, we identified 12 SME triplets, 9 SEM triplets, and 15 inde-

pendent triplets in the FH set (Fig 7). The two pie plots in Fig 7 shows the distribution of the

three relationships. Across the two datasets, over two-thirds of the triplets showed evidence of

a causal relationship, the majority of which are SME. The details of mediation results are

shown in S4 Table.

Table 3 shows examples of the SNP-CpGs-eGene triplets that were identified to be SME (5

triplets) or SEM (4 triplets), and that were consistent between FH and TCGA datasets. This

group of risk SNPs provides the strongest evidence of that regulation of the corresponding

eGenes involves alterations of DNA methylation. The majority of these SNPs in Table 3 have

been previously reported to be eQTLs for some putative PrCa risk genes, including rs2292884

for MLPH [69], rs12653946 for IRX4 [59,60], rs1933488 for RGS17 [70,71], rs10993994 for

MSMB [72,73], rs5945619 for NUDT11 [38,74], Notably, SNP rs684232 has been reported to

be associated with FAM57A gene expression [38,39], a gene encoding membrane-associated

protein that promotes lung carcinogenesis [75], though its role in PrCa has not been reported.

Several pairs of eQTL-eGenes represent new discoveries. SNP rs10875943 is between the tubu-

lin gene TUBA1C and the peripherin gene PRPH. Our result suggests its link to TUBA1C,

though its functional role in PrCa has not been studied. The genes in the 6p21/MHC region,

HLA-DQB1 and HLA-DRB5, that are associated with rs3096702 and rs3129859, have not been

previously studied in relation to PrCa.

A substantial proportion of the mediation relationships for the triplets are inferred to be

SME (Fig 7), evidence of the mechanistic role of DNA methylation in the genetic regulation of

gene expression. Figs 8 and 9 shows two examples of SME with three diagnostic plots for infer-

ring causal direction: residuals of gene expression~CpGs regression versus genotypes (Figs 8A

and 9A), gene expression versus residuals of CpG~genotype regression (Figs 8B and 9B), and
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residuals of CpG~gene expression regression versus genotypes (Figs 8C and 9C). Associations

shown in the last two plots but not the first plot indicate a SME relationship. Specifically,

rs12653946 is located in an intronic region of an RNA gene transcribed upstream of IRX4, reg-

ulating gene expression of IRX4 [59,60] (Fig 8). Our result suggests that this gene regulation is

mediated altered DNA methylation in the CpG islands located in the first exon and the gene

body. For the 6p21/MHC region (Fig 9), previously SNP rs3096702 was suggested to be associ-

ated with NOTCH4, a nearby gene that may be related to epithelial-mesenchymal transition

(EMT) and PrCa growth [76]. Our result suggests that this SNP influences gene expression of

an HLA class II gene DQB-1, which may be related to immune escape of PrCa. Furthermore,

this genetic influence on gene expression is mediated through multiple CpGs in the gene body

and TSS1500 region. The proportion of genetic control on gene expression explained by the

CpGs was as high as 50% ~ 100% in the two tumor sets for the two genes. Further inspection

of ENCODE data in the 30 kb region surrounding this SNP suggests that rs3096702 is in bind-

ing sites for multiple transcription factors and the transcriptional regulator protein CTCF, 300

kb upstream of the HLA gene. These results suggest that rs3096702 may affect transcription

binding affinity and enhancer-mediated epigenetic machinery, then regulate the methylation

and gene expression of HLA genes.

Discussion

In this work we performed rigorously eQTL and meQTL mapping for the 147 confirmed PrCa

risk SNPs using comprehensive genomic data in primary prostate tumors (TCGA and FH)

Table 3. Examples of the triplets (SNP, CpGs, eGene) with a mediation relationship (either SME or SEM) that is consistent in FH and TCGA datasets.

SNP Chr

(position)

Associated CpGs, overlapped

between FH and TCGA

CpGs regulatory

region

eGene

(TSS

position)

Mediation

type

Median CIT
p-value (FH;

TCGA)

Proportion explained by CpGs

if SME(FH;TCGA)

rs2292884 2

(238443226)

cg00285317, cg27051686 Enhancer/DHS MLPH
(238395053)

SME 0.009;0.002 23%; 81%

rs3096702 6 (32192331) cg07180897,cg15343510 Gene body HLA-DQB1
(32627240)

SME 0.005;0.003 77%;81%

rs3129859 6 (32400939) cg12672189, cg05383619 TSS1500, gene

body, DHS

HLA-DRB5
(32485153)

SME 0.01;0.007 100%; 68%

rs12653946 5 (1895829) cg00089823, cg00483562,

cg00626856,

cg03587843,cg04849541,

cg06161964,

cg09672187,cg11279838,

cg13143349,

cg14051264,cg14823763,

cg16210248,cg17650747,

cg18764814,cg26195178

DHS/DMR IRX4
(1877540)

SME 0.002;0.003 54%; 100%

rs1933488 6

(153441079)

cg03661775,cg16924337,

cg17264670,cg19904233,

cg22867315,cg23651356,

cg24028809,cg24312610

Enhancer/DHS RGS17
(153332031)

SEM 0.001;1e-4 -; -

rs10993994 10

(51549496)

cg00807366 Enhancer MSMB
(51549552)

SEM 0.023;0.002 -;-

rs10875943 12

(49676010)

cg04797936,cg12073537,

cg22606869,cg25751371

Promoter-

associated

TUBA1C SME 0.002;1e-4 34%;84%

rs684232 17 (618965) cg13073302,cg25186143 TSS1500, gene-

body

FAM57A SEM 0.008;6e-4 -;-

rs5945619 X (51241672) cg16065628 Gene-body, north

shore

NUDT11 SEM 0.002;0.003 -;-

https://doi.org/10.1371/journal.pgen.1008667.t003
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and tumor-adjacent benign samples (Mayo Clinic). To our knowledge this is the first eQTL

study for PrCa risk SNPs that also includes DNA methylation data, and the first to systemati-

cally investigate the differences of eQTLs in prostate tumors and tumor-adjacent benign sam-

ples. Methodologically, we also carefully examined the existing approaches and proposed a

modified version of CIT to disentangle the role of DNA methylation in eQTL regulation. The

impact of this work is primarily on the prostate cancer literature and the functional interpreta-

tion of 147 prostate cancer risk SNPs. The contributions of this work are two folded: we

Fig 8. An example of the mediation relationship: rs12653946 and IRX4 in chromosome 5. A, residuals of gene expression~CpG versus genotype. B,

gene expression versus residuals of CpG~genotype. C, residuals of CpG~gene expression versus genotypes. D, the genomic annotation maps by UCSD

genome browser for the region with rs12653946 and IRX4 in chromosome 5.

https://doi.org/10.1371/journal.pgen.1008667.g008
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systematically compare eQTLs and meQTLs among prostate cancer tissue and the adjacent

normal tissue which has not been done previously; we rigorously dissect the role of DNA

methylation in eQTL regulation of gene expression. Several important observations were

made as discussed below.

Fig 9. Another example of the mediation relationship: rs3096702 and NOTCH4 in chromosome 6. A, residuals of gene expression~CpG versus

genotypes. B, gene expression versus residuals of CpG~genotype. C, residuals of CpG~gene expression versus genotypes. D, the genomic annotation

maps by UCSD genome browser for the region with rs3096702 and NOTCH4 in chromosome 6.

https://doi.org/10.1371/journal.pgen.1008667.g009
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First, perhaps not surprisingly, there are many more eQTLs identified in the tumor-adja-

cent benign samples than in primary tumor samples. Moreover, nearly all eQTLs in tumors

are also identified as eQTLs in tumor-adjacent benign samples, yet approximately half of

eQTLs in adjacent benign samples were not present in tumors. This observation is consistent

with previous observations that eQTL association signals in normal or benign samples tend to

be attenuated in tumor samples [37], if not absent, and benign tissue samples tend to have

more eQTLs than tumor samples [77]. One possible explanation for an eQTL only identified

in histological benign samples but not in tumors is that the corresponding eGene may only

function in tumor initiation, become silenced in tumor progression. For example, our result

(Fig 3D) confirmed previous findings that rs4430796 is an eQTL for HNF1B only in the

tumor-adjacent benign samples [38,77], but not in tumor samples. Recent functional assays

suggest that HNF1B, which encodes a transcription factor, is a pro-differentiation factor that

suppresses epithelial-to-mesenchymal transition (EMT) in unmethylated, healthy tissues [61].

This tumor-suppressor activity is lost when HNF1B is silenced by promoter methylation in the

progression to PrCa, and it is therefore no longer associated with the eQTL [61]. Along this

same line, it is also possible that somatic alterations such as mutations, copy number changes

and aberrant DNA methylation arising in the tumor genome perturb gene expression, which

may disrupt or weaken eQTL associations. This explanation is consistent with Fig 3C, where

there is a global concordance between eQTL effect sizes in benign samples and eQTL effect

sizes in tumors. We have thoroughly investigated the TCGA genomic data regarding somatic

alterations in the PrCa genome, and we show in Fig 6 that the loss of eQTL regulation in gene

expression in tumors may be due to widely altered DNA methylation in tumors, less likely due

to somatic mutations or copy-number alterations. On the other hand, we conclude that among

the 147 PrCa susceptibility SNPs, tumor-specific eQTLs are very rare, likely because the eQTLs

in these susceptibility SNPs predispose to cancer risk through influencing oncogenic genes in

benign samples during the early stage of tumor development. One complication factor is the

field effect of carcinogenesis–the benign prostate samples are tumor-adjacent, histologically

benign, taken from cancer patients. It is possible that gene expression profiles of tumor-adja-

cent, histologically benign samples have been altered by the tumor field effect.

Second, the majority of the 147 risk SNPs (~100) were identified to be meQTLs in prostate

tumors, yet only a subset was identified as eQTLs. Intriguingly, nearly all eQTLs were also

identified as meQTLs. It is known that aberrant DNA methylation play a key role in PrCa

development, which may interfere with genetic regulation of gene expression. We hypothesize

that, if we indeed had a large set of normal prostate samples, we would observe more PrCa

SNPs that are meQTLs in normal prostate samples, with a high degree of overlap between

eQTLs and meQTLs in normal prostate tissue. This level of concordance is much higher than

what was reported in the recent genome-wide analyses of eQTLs and meQTLs from peripheral

blood and lymphoblastoid cell lines [48–51], suggesting that genetic regulation of gene expres-

sion by these PrCa risk SNPs are very much intertwined with methylation changes, either

actively as a mediator or passively as a downstream consequence. Our results in Fig 4 and

mediation analyses support this hypothesis. There are several possible explanations for the

observation that more risk SNPs are meQTLs than eQTL. It is known that DNA methylation

may have broader biological functions in maintaining chromosomal stability and cellular dif-

ferentiation beyond regulating gene expression. Furthermore, mRNA abundance is much

more dynamic, subject to multiple regulating mechanisms and more liable to measurement

error when compared to DNA methylation. Therefore, eQTL mapping may be inherently

more variable than meQTL mapping. Thus, not all meQTLs become eQTLs in a particular cel-

lular state, similar to the observation that not all differentially methylated CpGs correlates with

altered gene expression.
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Third, among the risk SNPs that were both eQTLs and meQTLs, our mediation analysis

suggests that the majority of triplets (SNP, DNA methylation, gene expression) display a causal

mediation relationship, either of SNP!Methylation!Expression (SME) or

SNP!Expression!Methylation (SEM), supporting the important role of DNA methylation

in PrCa risk SNPs for regulation of gene expression. DNA methylation variable sites are

known to be associated with gene expression mechanistically in complex and context-depen-

dent ways, which includes both active (e.g., DNA hypomethylation causally affecting gene

expression through transcription factor binding) or passive methods where DNA methylation

is a consequence or independent mark of gene expression (e.g., reflecting the chromatin state)

[49]. Statistically it is challenging to discern whether DNA methylation status is an active or

passive consequence of gene expression. For example, standard CIT could not distinguish the

SME from the SEM model in a recent genome-wide eQTL and meQTL analysis.53 Leveraging

typically multiple candidate mediating CpG sites in a gene, we have added additional discrimi-

natory criteria to the CIT test in order to separate SME from SEM: 1) the SME p-value is

smaller than the SEM p-value, and the proportion of association explained by SME should be

greater than SEM; and 2) the proportion of genetic association explained by SME should be

greater if multiple CpGs are included in mediation analysis. These criteria are helpful to disen-

tangle the causal direction, though its exploratory nature requires caution in interpretation.

Altogether, these data support the important role of altered DNA methylation as a mechanism

for the influence of these 147 SNPs on gene expression.

Among the eGenes that are regulated by the 147 PrCa risk SNPs in benign tissue, the

immune response pathways stand out as the most significantly enriched. This observation cor-

responds to the risk SNPs in chromosome 6 and various HLA genes located in the region, reit-

erating the importance of immune responses in the early developmental stage of PrCa.

Prostate cancer cells produce a number of tumor associated antigens (TAA) [78,79,80], such as

prostate-specific antigen (PSA), prostate acid phosphatase (PAP), and prostate-specific mem-

brane antigen (PSMA). The typically slow growth of prostate tumors allows time for the

immune system to mount an anti-tumor response to these antigens. Our eQTL analysis sup-

ports the hypothesis that polymorphisms of the HLA alleles are associated with expression lev-

els of various HLA molecules and, likely, the efficiency of immune response to particular

TAAs and the risk of PrCa.

While this work presents a comprehensive analysis of eQTLs and meQTLs among 147

SNPs using multiple large genomic datasets, one weakness of our meQTL analysis is that we

did not have a large set of normal prostate tissue samples with genome-wide DNA methylation

data. This limits our capability to examine the relationship between SNPs, DNA methylation

and gene expression in normal prostate. It remains of interest to determine whether the inter-

mediary role of DNA methylation in regulation of gene expression that we observed in tumor

samples is consistent in normal prostate samples. Strictly speaking, the tumor-adjacent, histo-

logically benign samples in the Mayo dataset may already have some cancer-related molecular

alterations (these benign samples were obtained from patients with PrCa), therefore are not

ideal for a tumor-normal comparison study. However, it is difficult to obtain an adequate

amount of normal prostate tissue samples through biopsy or donors, e.g., GTEx has a limited

number of normal prostate samples. Finally, a limitation for our eQTL analysis is that the FH

data were generated using FFPE tissue samples and array-based methods, which may not be

ideal for measuring low abundance of mRNA and gene expression. In addition to the differ-

ence of clinical characteristics between TCGA and FH data (TCGA has many more high-grade

tumors), this factor may also contribute to the differences in eQTL results between FH and

TCGA, since the latter used RNA obtained from fresh frozen samples.
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In conclusion, we conducted comprehensive eQTL and meQTL analyses for 147 PrCa risk

SNPs, in tumors and tumor-adjacent benign samples, and we investigated the role of DNA

methylation in eQTL regulation of gene expression. The eQTLs and associated eGenes provide

insight into the molecular biology of PrCa, and there is strong evidence that DNA methylation

plays an important role in eQTL regulation of gene expression in tumors and in benign sam-

ples. These results may guide functional studies that characterize mechanisms of genetic

regulation.

Methods

Study populations and sample collection

The Seattle-based Fred Hutchinson (FH) Cancer Research Center PrCa study is composed of

European-American male residents of King County, Washington, who were diagnosed with

PrCa either in 1993–1996 or in 2002–2005 [81,82]. A subset of patients with clinically localized

disease underwent radical prostatectomy as primary treatment, provided a blood sample, and

provided consent for access to primary formalin-fixed paraffin-embedded (FFPE) tumor tissue

obtained at surgery. Genotype data, gene expression data, and DNA methylation data were

generated on this subset of PrCa patients who had blood and tumor tissue available. The details

of study and sample collection have been described elsewhere [83]. In summary, the FH study

includes 395 cases with both genotype data and at least one of the other data types used in the

eQTL or meQTL analysis. The ages at diagnosis ranged from 35–74 years; the distribution of

Gleason sum is < = 6 (49.9%), 7 (42.8%) and 8–10 (7.3%). The FH genotype data are part of

the recent PRACTICAL consortium analysis which has been deposited to dbGap phs001391.

v1.p. The DNA methylation data from FH is accessible at dbGap phs001921.v1.p1. The gene

expression data from FH is accessible at GEO GSE141551.

The TCGA study consists of approximately 500 primary PrCa cases diagnosed in 2000–

2013, mostly of European ancestry [84]. Fresh frozen prostate tumor samples were obtained by

extensive pathologic, analytical, and QC review. Images of frozen tissue were evaluated by

multiple expert genitourinary pathologists, and cases were excluded if no tumor cells were

identifiable in the sample or if there was evidence of significant RNA degradation. The ages at

diagnosis for the TCGA patients ranged from 41–78 years. Gleason scores were< = 6 (9.1%),

7 (49.9%), and 8–10 (41.0%). All TCGA data were downloaded from https://portal.gdc.cancer.

gov.

The Mayo study acquired adjacent histologically benign prostate tissue from an archived

collection of fresh frozen material obtained from 471 PrCa patients, the majority of whom

underwent radical prostatectomy and a few who had cystoprostatectomy at the Mayo Clinic

[36]. Hematoxylin and eosin (H&E) slides were prepared from each adjacent benign tissue

samples to make sure all were free of prostate adenocarcinoma.

Genotype data collection and processing

For the FH dataset, germline DNA samples (N = 395) were genotyped using two custom Illu-

mina arrays: 1) iCOGS, with 211,000 SNPs; or 2) OncoArray-500K BeadChip with 533,000

SNPs. We applied the following QC on the SNP data: (i) excluded SNPs with call rates <95%;

(ii) excluded SNPs that deviated from Hardy-Weinberg Equilibrium (HWE) at P<10−7; (iii)

excluded SNPs for which the genotypes were discrepant in more than 2% of duplicate samples.

A total of 201,598 SNPs passed the QC criteria for iCOGS data. For OncoArray data, 489,974

SNPs remained for analysis after QC. Germline DNA genotypes for TCGA samples (N = 495)

were obtained from the TCGA data portal. Genotypes for 906,000 SNPs were assessed using

the Affymetrix SNP 6.0 array. Confidence score was computed at each SNP, ranging from 0
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(most confident) to 1 (least Confident). Genotypes with score less than 0.1 are considered to

be highly confident (Broad institute, BIRDSUITE software), and 898,000 SNPs were retained

in the study. For the Mayo dataset, germline DNA samples (N = 471) were genotyped using

the Illumina Infinium 2.5M bead array and genotypic data were downloaded from dbGaP

under accession code phs000985.v1.p1. SNPs were excluded if (i) call rate<95%; (ii)

HWE<10−5; (iii) MAF<1%. A total of 1,541,380 SNPs were included after QC.

The three datasets utilized different microarray platforms for genotyping and none of them

had all 147 PrCa risk variants genotyped. We thus imputed those missing SNPs for each data-

set based on the 1000 Genomes Project. Pre-phasing was conducted using SHAPEIT [85];

IMPUTE2 was then used on the phased data to perform imputation [86]. The reference panel

used was the 1000 Genomes Phase 3 release, downloaded from the IMPUTE2 website: https://

mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html. After imputation, we used the following

criteria to select SNPs from the three datasets: (i) imputation confidence score, INFO� 0.3;

and (ii) HWE p-value>1 × 10−6. After imputation, all 147 PrCa risk SNPs passed quality con-

trol. The top three principal components (PC) of the genome-wide genotype data were used as

adjustment covariates in eQTL and meQTL analyses.

Gene expression data collection and processing

For the FH cohort, the Human HT-12 v4 BeadChip (Illumina) was used for mRNA expression

profiling of primary tumor tissues (N = 355). Expression levels for 29,377 transcripts were

determined. Among those, 3326 poor quality probes (i.e., probes that matched to repeat

sequences, intergenic or intronic regions, or are unlikely to provide specific signal for any tran-

scripts) were removed from the analysis. For those genes with more than one transcript mea-

sured (n = 4601), the mean transcript level for each gene was calculated. This resulted in

18,024 genes with transcript data available for eQTL analysis. For the TCGA data, gene expres-

sion profiles (N = 492) were obtained from the TCGA data portal. The RNASeq data were gen-

erated on the Illumina HiSeq platform. The raw count data for 19,078 genes were converted to

Reads Per Kilobase of gene per Million (RPKM) values. For the Mayo study, the RNASeq data

were generated using the Illumina HiSeq 2000 platform, and included raw transcript counts

for 17,233 genes. These data were downloaded from dbGaP under accession code phs000985.

v1.p1. The raw counts data were transformed to RPKM values. In the downloaded Mayo

RNA-seq data, RefSeq was originally used as the gene annotation. The gene names were in the

Mayo data were converted to the GENCODE annotation, which was used in the TCGA data,

in order to make the two datasets comparable in eQTL analysis. For each dataset, gene expres-

sion levels for each sample were quantile normalized using the R package preprocessCore [87].

For eQTL-mapping, expression levels of each gene were transformed to the quantiles of the

standard normal distribution.

DNA methylation data collection and processing

Tumor DNA was bisulfite converted, and methylome-wide CpG methylation levels were mea-

sured using the Infinium Human Methylation450 BeadChip. Background-corrected methyl-

ated (M) and unmethylated (U) summary probe intensities were measured for each CpG site,

and beta values (M/(M+U)) were used in the meQTL analysis. In the FH study, tumor DNA

samples (N = 377) were profiled for 485,577 CpG sites. The following QC steps were applied:

(i) The R package Minfi was used to remove probes with a non-detection (p-value) greater

than 0.05 and filter out non-CpG-targeting probes (Probe ID prefix = “ch”); and, (ii) cross-

hybridizing probes and probes with any SNP within 10 bp of the CpG site or single base exten-

sion were removed [88,89,90]. Finally, for each sample 353,245 probes remained for meQTL
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analysis. The methylation data were normalized using the subset-quantile within array nor-

malization (SWAN) [91], and batch effects were removed using ComBat [92]. For the TCGA

study, the tumor methylation data measured on 485,577 CpG sites (N = 495) were obtained

from the TCGA data portal. Probes with a non-detection (p-value) greater than 0.05 were

removed by TCGA. We further applied the above filter (ii) on these data, and for each sample

396,065 probes remained for meQTL analysis.

Identification of eQTLs

The eQTLs in the Mayo dataset were detected using the linear model, gene expression ~ SNP

+ top 10 PCs + age + top 15 PEER factors, to regress gene expression of a regulated gene

(eGene) on a SNP, adjusting for other covariates. To remove the effect of population structure

on gene expression, we used smartpca in the EIGENSOFT program to perform principal com-

ponent (PC) analysis [93], and selected the top three PCs from genome-wide genotype data as

covariates. To remove the hidden batch effects and other potential confounders in the gene

expression data, we also used the Probabilistic Estimation of Expression Residuals (PEER)

method to select the first 15 PEER factors as covariates [94].

The eQTLs in tumor tissue data were detected using the linear model: gene expression ~

SNP + top 10 PCs + age + top 15 PEER factors + age at diagnosis + pathologic stage + Copy

Number Alterations (CNA). For these data, in addition to the above adjustment covariates

used for analysis of data from adjacent-benign tissues, we also adjusted for clinical variables

such as age at diagnosis and pathologic stage. We also adjusted for copy number alterations

(CNA) of the eGene because somatic copy number changes can substantially affect transcript

levels in tumors. For TCGA data, the CNA data were obtained from the TCGA data portal.

For the FH dataset, 355 cases had both germline genotype and tumor gene expression data.

Among these 355 cases, 337 also had tumor DNA methylation data available. We used the R

package ChAMP to call CNA on the methylation data [95]; twenty additional adjacent-benign

tissue samples were used as the control group to call CNA. The R package qvalue was used to

adjust for multiple comparisons [96], and SNPs with a q-value <0.05 were defined as eQTLs.

cis-eQTLs were defined if the SNP was within 1 Mb from the eGene region (from the first tran-

scription start site (TSS) to the last transcription end site (TES) of an eGene).

Identification of meQTLs

The meQTLs were detected in the FH and TCGA datasets using the linear model CpG methyl-

ation ~ SNP + top 10 PCs of genotype + top 15 PCs of methylation + age at diagnosis + patho-

logic stage, adjusting for covariates as follows. To remove the effect of population structure on

DNA methylation, we used smartpca in the EIGENSOFT program to perform PC analysis

[93], and selected the top three PCs of genome-wide genotype data as covariates. To remove

the hidden batch effects and other confounders in the tumor methylation data, we picked the

first 15 PCs of methylation data as covariates. To remove the potential effects of clinical status

on DNA methylation, age at diagnosis and pathologic stage were included as additional covari-

ates. The R package qvalue was used to adjust for multiple comparisons, and SNPs with a q-

value <0.05 were defined as meQTLs. cis-meQTLs were defined if the SNP was within 1 Mb

from the CpG site. All genomic data were aligned to chromosome positions from the human

reference genome GRCh37/hg19.
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Analyses to explain the absence of eQTLs in tumors compared benign

samples

The R/Bioconductor package edgeR was used for differential gene expression analysis on the

50 TCGA prostate tumors and 50 matched adjacent histologically benign samples [97]. The

RNA-seq data contained counts of sequence reads aligned to 60,000 transcripts, of which

52,000 transcripts were included with at least 1 count per million (CPM) in at least two sam-

ples. The counts data were normalized using the trimmed mean of M-values (TMM) method,

and differential transcripts were using the R/Bioconductor package limma [98].

The TCGA-PRAD level 3 somatic mutation calls for 50 tumor samples were used to com-

pare mutation frequencies in the neighborhood of the two groups of eQTLs. For each eQTL,

the number of somatic mutations within 1 Mb distance was counted for each tumor sample

and the mutation frequency was computed. The TCGA-PRAD level 3 copy number segmented

data for 50 tumor samples were used to compute the fraction of copy number alterations

among the tumor samples for the two groups of eGenes. Copy number alterations were

defined as a copy number greater than 2.5 or less than 1.5. The TCGA-PRAD level 3 DNA

methylation beta values were used to compare the number of DMP and DMR between 50

TCGA tumor samples and 50 TCGA benign samples in the two groups of eGenes. For each

eGene we identified the associated probes in the gene, beta values for each probe in the tumor

sample group and the benign sample group were compared using the R package geepack [99],

and the probe with FWER less than 0.05 was defined as a DMP. The methylation data were

also used to compare the percentage of genes within significant meQTL-CpG pairs. For each

eGene we identified the paired SNP and associated CpG probes, and checked if there were any

SNP-CpG probes included in the meQTL result.

Causal analysis of eQTL, DNA methylation, and gene expression

PrCa risk SNPs that were identified to be both eQTLs and meQTLs were analyzed for causal

relationships between associated CpG methylation and gene expression. Mendelian randomi-

zation (MR) analysis was conducted by using risk SNPs as instrumental variables, testing cau-

sality by regression gene expression on predicted methylation based on genotypes using the

two-stage least squares method [54]. This method assumes there is no direct effect from the

genotype to gene expression, which can be problematic for this context because there are often

multiple adjacent CpGs mediating the genetic effect, any single SNP-CpG-gene expression

triplet may present a partial mediation. Moreover, when risk SNPs merely independently affect

gene expression and CpG methylation, MR will erroneously detect causality as shown in Fig 5.

To effectively distinguish the three possible relationships (Fig 7): namely the mediation rela-

tionship of CpG methylation in genetic regulation of gene expression (the SME relationship),

risk SNPs independently affecting CpG methylation and gene expression, or there is reverse

causation from gene expression to methylation (SEM relationship), a modified CIT mediation

test is proposed [55], accounting for the challenge that there are typically multiple CpGs, each

of which partially mediates the genetic effect. One advantage of this method over MR is that,

with modification, it can test for direction of causality by switching the order of the intermedi-

ary and the outcome.

For ease of notation, suppose data contain a genotype (G), two correlated CpG methylation

probes (M1 and M2), and a gene transcript (Y). The data generating models are: M1 = α1 G +

ε1; M2 = α2G + ε2; Y = γ1M1 + γ2M2 + ε3. In this scenario, M1 and M2 together mediates the

genetic effect on Y. If CIT was used to test G!M1!Y, three regression models will be fit: 1) E

[Y] = β1G; 2) E[M1] = β2G + β3Y; 3) E[Y] = β4G+β5M1. The four-component test for

G!M1!Y includes 1) β1 6¼ 0; 2) β2 6¼ 0; 3) β5 6¼ 0; 4) β4 = 0. If CIT is used to test G!Y!M1,

PLOS GENETICS Cis-regulation of gene expression by prostate cancer risk SNPs

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008667 March 30, 2020 23 / 30

https://doi.org/10.1371/journal.pgen.1008667


three regression models will be fit: 1) E[M1] = β1
�G; 2) E[Y] = β2

�G + β3
�M1; 3) E[M1] = β4

�G
+β5

�Y. The four-component test for G!Y!M1 includes 1) β1
� 6¼ 0; 2) β2

� 6¼ 0; 3) β5
� 6¼ 0; 4)

β4
� = 0. One can show that in this scenario, CIT will result in significance in both directions,

G!M1!Y and G!Y!M1, a phenomenon observed previously for deciphering the direction

of causality between DNA methylation and gene expression [90].

When CIT yielded significant p-values for both the SME and SEM relationships for many

of triplets for the eQTL-eGene pair, three criteria are added to distinguish SME from SEM.

First, the SME p-values should be generally smaller than the SEM p-values, as the true model

should yield a smaller p-value. Second, when there is a single CpG showing significance in test-

ing SME and SEM, the proportion of genetic association with gene expression explained by

CpG methylation (for example, β4/ β1 in the models above) should be greater than the genetic

association with CpG methylation explained by gene expression, both proportions between 0

and 1 (β4 and β1 having the same sign). The proportion of genetic association explained by a

candidate intermediary was computed as the ratio of the genetic association without adjusting

for the intermediary (fitting E[Y|G], for example) and the genetic association adjusting for the

intermediary (fitting E[Y|M,G], for example). Third, when there are multiple adjacent CpGs

showing evidence of mediation, adding multiple CpGs in the mediation model (for example, E

[Y] = β4G+β5M+β6M2) should explain a greater proportion of the genetic effect on gene

expression than any single CpG. We found in both FH and TCGA data that the third criterion

often can effectively distinguish SME and SEM.
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