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Abstract: Human mitochondria contain their own genome, which uses an unconventional genetic
code. In addition to the standard AUG methionine codon, the single mitochondrial tRNA Methionine
(mt-tRNAMeY) also recognises AUA during translation initiation and elongation. Post-transcriptional
modifications of tRNAs are important for structure, stability, correct folding and aminoacylation as
well as decoding. The unique 5-formylcytosine (f°C) modification of position 34 in mt-tRNAM¢t has
been long postulated to be crucial for decoding of unconventional methionine codons and efficient
mitochondrial translation. However, the enzymes responsible for the formation of mitochondrial
°C have been identified only recently. The first step of the f°C pathway consists of methylation of
cytosine by NSUN3. This is followed by further oxidation by ABH1. Here, we review the role of f°C,
the latest breakthroughs in our understanding of the biogenesis of this unique mitochondrial tRNA
modification and its involvement in human disease.
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1. Introduction

Mitochondria have their own DNA (mtDNA) that encodes thirteen essential subunits of the
oxidative phosphorylation (OXPHOS) system. Apart from these genes, the human mitochondrial
transcriptome also consists of two ribosomal RNAs (mt-rRNA) and a full set of 22 transfer RNAs
(mt-tRNA). All other proteins necessary for the expression of mtDNA, including those responsible
for post-transcriptional RNA modifications, are encoded by nuclear genes (nDNA) and imported into
mitochondria upon translation in the cytosol. Perturbation of mitochondrial gene expression can lead
mitochondrial diseases. The pathological defects of mitochondrial gene expression can result from
mutations either in mtDNA or nDNA. For a broad overview of processes and proteins involved in
mitochondrial gene expression and their role in human pathology, we refer to recent reviews [1-7].

The translation of a messenger RNA (mRNA) into its corresponding polypeptide chain is
dependent on the precise interactions between the three bases of the mRNA’s triplet codon and the
triplet anticodon of the cognate tRNA. In mammalian mitochondria, all mt-tRNAs have to recognize at
least two different codons. For any given mt-tRNA, the recognized codons always share the same base
identity at the first and second positions, but differ at the third. Consequently, position 34 (the first
position of the anticodon, the “wobble base”) in the mt-tRNA cannot always base pair with the
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third nucleotide of the codon according to the conventional Watson—Crick pairing rules. There are
eight mt-tRNAs that recognize four codons each. In all these cases, position 34 of the mt-tRNA, the
wobble base, is occupied by uridine, which is capable of base pairing with any of the four bases
due to enhanced conformational flexibility within the anticodon loop [8]. However, the remaining
fourteen tRNAs interact with a purine or a pyrimidine in the third codon position and consequently
recognize exactly two codons. This increase in discrimination by the wobble base is achieved through
post-transcriptional modifications.

The mammalian mitochondrial genetic code differs from the universal genetic code by using
unconventional codons [9]. UGA encodes tryptophan. AGA and AGG (AGR), which encode arginine
in the universal code, are not used by mitochondrial open reading frames (ORFs) during translation
elongation and have been for years recognized as ‘stop’ signals. However, the use of the AGR codons
as stop signal has been questioned by the observation of a -1 frameshift by the mitoribosome, which
places a standard UAG stop codon at the A-site [10], and is still the matter of lively debate [11-13].
Finally, in addition to conventional AUG, methionine coding is expanded to AUA (as well as AUU,
but only as an initiation codon), with all these codons being recognized by a single tRNA Methionine
(tRNAMet) bearing a CAU anticodon, serving as both the elongator and initiator tRNA [14].

As with all known tRNAs, mt-tRNAs undergo numerous post-transcriptional nucleotide
modifications and a great range of chemical diversity exists with bases undergoing methylations
and formylations, along with several others [15,16]. Chemical nucleotide modifications are crucial
for tRNA structure, stability, correct folding and aminoacylation. Additionally, modifications ensure
the efficiency and stringent accuracy that is required during decoding in mitochondrial translation.
Mitochondrial tRNA modifications are introduced by several site-specific enzymes encoded in the
nucleus. For a detailed overview of known nuclear factors that are involved in post-transcriptional
processing and modification of mt-tRNAs and their role in mitochondrial disease, we refer to other
recently published work [15,17-27].

This review article focuses on the 5-formylcytosine (f°C) modification of the wobble position
of mt-tRNAMet  which allows for the recognition of unconventional mitochondrial methionine
codons. We also describe the recent discovery of a sequential pathway and the enzymes involved
in the generation of this post-transcriptional modification. We discuss the in vitro characterization
of this modification and its possible role in vivo. Furthermore, we describe the role of mutations in
mt-tRNAMet, their effect on f°C formation and the lack of f°C in a patient with mitochondrial disease.

2. Discovery and Formation of 5-Formylcytosine at Position C34 of mt-tRNAMet

In 1994, a novel and unique modified nucleoside, °C, was found at the wobble position of bovine
liver mitochondrial tRNAMet [28] and the parasitic nematode Ascaris suum [29]. In the subsequent years,
it was shown that mt-tRNAMet from Loligo breekeri (squid) [30], Drosophila melanogaster (fruit fly) [31],
Gallus domesticus (chicken), Xenopus laevis (frog) and Rattus norvegicus (rat) [32] also possess 5C34
and it was therefore considered universal in eukaryotic mt-tRNAMet, However, the presence of
this modification in human mt-tRNAMet has only recently been confirmed [33,34]. £C has not been
detected in other mitochondrial RNAs.

Although £°C34 on mt-tRNAM¢t was identified almost three decades ago, the enzymes responsible
for this modification have only very recently been discovered by three independent groups, almost
simultaneously [33-35]. It was shown that initially a methyl group is added to the cytosine at position
34 of mt-tRNAMet, which is then further converted to a formyl group. One of the key experiments to
reveal the biosynthetic pathway of £°C, was to identify the carbon source of the C34 formyl group of
mt-tRNAMet, Many metabolites use formyl-tetrahydrofolate (formyl-THF) as the formyl donor. On the
other hand, 5-formyldeoxycytidine (fdC) found as a stable modification of DNA [36], is generated by
oxidation of the 5-methyldeoxycytidine (m>dC) intermediate. In this case, the carbon from the methyl
group donor, S-adenosyl methionine (SAM), is found in the £dC formyl group. Metabolic isotope
labelling with precursors of formyl-THF or SAM revealed that the carbon atom of the formyl group in
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mt-tRNAMet 5C34 was derived from SAM rather than formyl-THF. These results suggested stepwise
biogenesis of °C34 with an initial SAM-dependent methylation of C34, to form m>C34, followed
by hydroxylation and oxidation of the methyl group (Figure 1), reminiscent of m®*dC formation in
DNA [33].
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Figure 1. Graphical overview of the tRNA Methionine (mt-tRNAMet) formylation pathway. NSUN3
methylates unmodified C34 to form 5-methylcytosine (m>C) which is then further oxidized into
5-formylcytosine (f°C) by ABHI.

The methyltransferase NSUN3 has been identified as responsible for the first step of the process
of £C formation, namely, the methylation of carbon 5 to form methylcytosine (m>C). NSUN3
belongs to the family of NOL1/NOP2/Sun (NSUN) domain-containing proteins. Other members
of this family of putative RNA methyltransferases have been shown to methylate cytosolic tRNA
(NSUN2 and NSUNS6) [37,38], cytosolic rRNA (NSUN1/NOP2, NSUNS) [39,40] or mitochondrial
rRNA (NSUN4) [41,42].

A large-scale proteomic approach had previously suggested that NSUN3 localizes to the
mitochondrial matrix [43]. Having confirmed the mitochondrial localization of the NSUNB3 protein, a
number of high-throughput techniques employed by different groups further identified mt-tRNAMet
as the target of NSUNB3. Firstly, ultraviolet crosslinking and immunoprecipitation coupled with
high-throughput sequencing (HITS-CLIP), identified mt-RNAMet by irreversibly binding the protein
to its target RNA [34,35]. Likewise, methylation-individual nucleotide resolution cross-linking
and immunoprecipitation (miCLIP), which relies on the overexpression of a mutated protein that
irreversibly binds to the methylation site, arrived at the same conclusion. The same is true for exposure
to the cytidine derivative 5-Azacytidine (5-AzaC), which becomes incorporated into nascent RNA
and specifically traps m>C RNA methyltransferases on their target in 5-azacytidine cross-linking and
analysis of cDNA (5-AzaC CRAC) [35].

The above mentioned three studies which identified NSUN3 as the first step enzyme towards
f°C formation have used different approaches to study the consequences of its inactivation, namely
CRISPR-Cas9 generated knockout human embryonic kidney (HEK293T) cells [33], patient derived
primary dermal fibroblasts that carry compound heterozygous predicted loss-of-function variants in
NSUN3 [34] and small interfering RNA (siRNA) treated HeLa cells [35], and yet reached generally
similar conclusions. The lack of NSUN3 in human cells results in the loss of m>C34 and f°C34 of
mt-tRNAMet, Furthermore, in vitro reconstitution experiments in combination with mass spectrometry
also prove that NSUNB3 is required for methylation of mt-tRNAMet [33].

The enzyme responsible for the further conversion of 5-methylcytosine to 5-formylcytosine
was identified as ABH1 (ALKBH1), a member of the AlkB-like Fe?*/ a-ketoglutarate-dependent
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dioxygenases [35]. Other members of this family have been shown to play a role in DNA repair
by removal of alkyl adducts from nucleobases by oxidative dealkylation [44]. Depletion of ABH1
abolishes the formation of f°C34 in mt-tRNAMet [35] (Figure 2). Hydroxymethylcytosine (hm>C) was
not observed as an intermediate in vitro. Although the presence of this modification cannot be ruled
out, results seem to indicate that hm>C might not play an important role for mt-tRNAMet,
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Figure 2. Formation of f°C by NSUN3 and ABHI is crucial for codon recognition and normal
mitochondrial translation (grey). Inactivation of NSUN3 (orange) or ABH1 (blue) abolishes the
formation of 2°C34 in mt-tRNAMet. Also, mutations in mitochondrial DNA that affect mt-tRNAMet can
lead to perturbations in the biogenesis of f°C34 (yellow). Proteins in brackets are available, but cannot
perform their function because the correct substrate is missing. All three scenarios result in a failure of
codon recognition, causing a mitochondprial translation deficiency.

Formylation of m>C34 of mt-tRNAMet is not the only function of ABH1 reported thus far. It also
mediates the demethylation of N!-methyladenosine in tRNAs and can modulate translation initiation
and elongation by regulating the cellular levels of initiator tRNAM¢t in the cytoplasm [45]. ABH1
deficiency in mice results in an 80% reduction of the litter size due to embryonic lethality, with
the surviving mice exhibiting neural development defects and sex-ratio distortion [46,47]. Notably,
incubation of total tRNA with ABHI1 led to a significant decrease in the N'-methyladenosine (m'A)
level, but not levels of m>C [45]. Finally, ABH1 has also been shown to demethylate N®-methyladenine,
preferably on single stranded DNA, suggesting that the demethylation may be coupled with cellular
transcription or replication [48].
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3. The Role f5C34 in mt-tRNAMet

As introduced earlier, owing to the specific features of the mammalian mitochondrial genetic
code, the single tRNAMe! bearing a CAU anticodon recognizes the conventional methionine AUG
codon as well as the AUA and AUU codons, conventionally coding for isoleucine.

Analysis of the chemically synthesised, f?C34-modified anticodon loop of human mitochondrial
tRNAMet showed that °C34 contributes to the mt-tRNA’s anticodon domain structure [49]. It was
further demonstrated that f°C34 defined a reduced conformational space for the nucleoside due to
a reduction in conformational dynamics of the anticodon bases [50]. The modification enhances the
thermodynamic properties of the anticodon and its ability to bind the unconventional methionine
codon AUA. Further analysis revealed that f°C is particularly important for AUA recognition at
the ribosomal A-site and affects the kinetics of codon recognition at both the P- and A-sites [50].
Visualization of the codon-anticodon complex by X-ray crystallography showed that recognition of
both G and A at the third position of the codon occurs in the canonical Watson—Crick geometry [51].
The £°C modification shifts the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine
making base pairing with A possible. For more information on the structural insights into °C in an
RNA duplex, we refer to Wang et al. [52].

It is currently still undefined whether in vivo, the entire pool of mt-tRNAMet has the °C34
modification or whether differentially modified forms are used to modulate mitochondrial translation
activity. Invitro codon recognition studies with chemically synthesised modified or unmodified
mt-tRNAMet have demonstrated that during initiation, both the AUG and AUA codon in the
ribosomal P-site were preferentially recognized by m>C34-modified mt-tRNAMet [35]. Binding of f°C
modified mt-tRNAMet to these two codons was much lower and not significantly different compared to
unmodified C34 mt-tRNAMet, Recognition of AUU was generally lower and not significantly different
with respect to the mt-tRNAMet modification. Notably, m>C34-modified mt-tRNAMet was less efficient
than other variants in AUG decoding during elongation. This suggests that m®C34 plays an actual
role in mitochondrial translation, rather than just being an intermediate step in the f°C34 formation.
The presence of substantial levels of m°C34 in mt-tRNAMet was also detected by next generation
sequencing methods derived from RNA bisulfite sequencing (BS). RNA BS is a well-established
method to detect m°C and hm®C. However, since bisulfite does convert f°C, this approach cannot
distinguish f°C from unmodified C. Reduced bisulfite RNA sequencing (Red BS RNA-Seq) relies on the
chemical reduction of f°C to hm®C by NaBHy, with the resulting hm®C being subsequently detected
by RNA BS. Alternatively, 5-formylcytosine chemically assisted bisulfite RNA sequencing (fCAB
RNA-Seq), is based upon O-ethylhydroxylamine protection of f°C from bisulfite conversion. These two
approaches measured about 38% °C, 30% m°C (and hm°C) and 32% unmodified mt-tRNAMet C34 [34].
It is possible, however, that these approaches overestimate the levels of unmodified C due to an
inefficient conversion/protection of f°C. It should also be noted that this technique cannot distinguish
mature mt-tRNAMe! from precursors.

The functional invitro codon recognition studies and the results of the genome-wide
detection of f°C, however, are in disagreement with the mass spectrometry analysis shown by
Nakano et al., 2016 [33], which suggests that the entire pool of mt-tRNAMet has the f°C34 modification
with undetectable amounts of m>C34 or unmodified C34. Therefore, further study will be required
to establish whether alterations to the relative abundance of m>C34 and f°C34 modifications could
participate in the regulation of mitochondrial translation.

There is currently no evidence that f°C34 is involved in mt-RNAM¢' aminoacylation.
Methionyl-tRNA synthetase (MetRS, MARS2) recognizes mt-tRNAMet irrespective of the presence
or absence of f°C34 without influencing the kinetics of aminoacylation [53]. This is supported by
high-resolution Northern blot analysis on patient fibroblasts lacking a functional NSUN3 protein, and
consequently lacking any C34 modification of mt-tRNAMet, showing no differences in aminoacylation
levels compared to control fibroblasts [34].
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Although current evidence supports a role for f°C in recognition of both the AUG and AUA codon
in both the ribosomal A- and P-site, the exact function has yet to be elucidated. Nonetheless, severe
impairment of de novo mitochondrial translation, with a consequent defect in oxygen consumption
rate, was consistently observed upon inactivation of NSUN3 or ABH1 [33-35]. Therefore, the analysis
of cells with the deficiency of NSUN3 or ABH1 has provided the first evidence for a physiological role
of C34 in mt-tRNAMet in living cells.

4. The Role of £5°C34 in mt-tRNAMet jn Human Disease

Mitochondria contain multiple genomes per cell. As a result, mtDNA mutations may be present
at any fraction, a condition referred to as heteroplasmy. The percentage of mutant mtDNA may vary
among patients and among organs and tissues within the same individual. This partially explains
the varied clinical phenotype seen in individuals with pathogenic mtDNA mutations. Different base
substitutions in the same mt-tRNA or even the same point mutation can cause different clinical
symptoms. Despite only accounting for approximately 5% of the total mtDNA sequence, pathogenic
point mutations in mt-tRNAs are responsible for the majority of mitochondrial DNA diseases [54,55].
Some of these pathogenetic alterations have been shown to interfere with post-transcriptional
mt-tRNA modifications [18,56,57]. The effects of primary mt-tRNA mutations on maturation and
post-transcriptional modifications are discussed elsewhere [1,58,59].

Eight pathogenic mutations in mt-tRNAM¢t have been reported to date with a broad range
of symptoms (MITOMAP) [60]. While m.4335A > G is associated with maternally inherited
hypertension or Leber’s hereditary optic neuropathy [61,62], m.T4409T > C and m.G4450G > A cause
myopathy [63,64] and m.4437C > T is associated with hypotonia, seizures, muscle weakness, lactic
acidosis and hearing loss [65]. Differentially affected levels of C34 modifications in mt-tRNAMet could
provide a possible explanation for this wide clinical phenotypic variation in the symptoms associated
with mutations in the same mt-tRNA. Two out of eight mutations (m.A4435A > G and m.C4437C > T)
inhibited NSUN3-mediated m>C formation in vitro, suggesting that in these mutations, the molecular
pathogenesis can be at least partially attributed to the absence of °C in mt-tRNAM¢t [33]. Both these
mutations are localized in the anticodon arm of the mt-tRNAMet, These results are in line with another
study that shows that NSUN3 requires a stable anticodon stem loop for methylation of cytosine 34 [35].
These in vitro results indicate that some, but not all, mutations in mt-tRNAMet cause hypomethylation,
resulting in a reduced level of f°C.

The importance of this post-transcriptional modification of C34 of mt-tRNAMe! is further
supported by our recent study that describes a patient who has no detectable levels of m>C34 or
2C34. Whole-exome sequencing had identified compound heterozygous predicted loss-of-function
variants in the NSUN3 gene and no functional NSUNB3 protein was detected. This patient developed
mitochondrial disease symptoms at the age of three months. Symptoms were combined developmental
disability, microcephaly, failure to thrive, recurrent increased lactate levels in plasma, muscular
weakness, external ophthalmoplegia and convergence nystagmus [34]. Taken together, these data
show that detailed understanding of the basic mechanistic aspects of mt-tRNA modifications might be
helpful for explaining the different clinical presentations of mitochondrial diseases related to genetic
defects in the molecular biology of mt-tRNA.

5. Concluding Remarks

Methylation of C34 in mt-tRNAMet by NSUN3, followed by further oxidation to °C34 by ABH1,
is essential for mitochondrial translation and mitochondrial function. However, it is still unclear
whether m>C34 in mt-tRNAM¢t is a transient intermediate or whether this modification plays an actual
role in mitochondprial translation regulation. Furthermore, it would also be interesting to check for
additional functions of ABH1 in mitochondria that could contribute to tuning translation initiation
and elongation. To summarize, although current evidence supports an important role for °C34 and



Biomolecules 2017, 7, 24 7 of 10

possibly m>C34 in codon recognition in both initiation and elongation, the exact in vivo role has yet to
be elucidated.
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