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Instrumental Quality Predictions and
Analysis of Auditory Cues for Algorithms
in Modern Headphone Technology

Thomas Biberger , Henning Schepker, Florian Denk , and
Stephan D. Ewert

Abstract

Smart headphones or hearables use different types of algorithms such as noise cancelation, feedback suppression, and sound

pressure equalization to eliminate undesired sound sources or to achieve acoustical transparency. Such signal processing

strategies might alter the spectral composition or interaural differences of the original sound, which might be perceived by

listeners as monaural or binaural distortions and thus degrade audio quality. To evaluate the perceptual impact of these

distortions, subjective quality ratings can be used, but these are time consuming and costly. Auditory-inspired instrumental

quality measures can be applied with less effort and may also be helpful in identifying whether the distortions impair the

auditory representation of monaural or binaural cues. Therefore, the goals of this study were (a) to assess the applicability of

various monaural and binaural audio quality models to distortions typically occurring in hearables and (b) to examine the

effect of those distortions on the auditory representation of spectral, temporal, and binaural cues. Results showed that the

signal processing algorithms considered in this study mainly impaired (monaural) spectral cues. Consequently, monaural

audio quality models that capture spectral distortions achieved the best prediction performance. A recent audio quality

model that predicts monaural and binaural aspects of quality was revised based on parts of the current data involving binaural

audio quality aspects, leading to improved overall performance indicated by a mean Pearson linear correlation of 0.89

between obtained and predicted ratings.
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Modern earphones, in the following denoted as hear-

ables, go far beyond their original application for

audio playback, providing many additional features

such as medical monitoring, voice assistant systems,

active noise control, and hear-through features

(Rumsey, 2019; Temme, 2019). It is conceivable that

such devices may bridge the gap between a classical hear-

ing aid and a modern HiFi sound reproduction system in

the future. Typical applications demand a variety of

signal processing algorithms that may either deliberately

alter the properties of the signal (e.g., noise suppression,

nonlinear amplification, attenuation) or alter signal

properties by undesired distortions (e.g., hear-through,

feedback suppression). Undesired distortions introduced

by hear-through processing and feedback suppression
algorithms recently received a lot of interest (e.g.,
Madsen & Moore, 2014; Marentakis & Liepins, 2014;
Maxwell & Zurek, 1995) for applications aiming at faith-
ful reproduction of external sound signals, enabling per-
ceptually authentic conversations as well as awareness of
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the acoustical scene while hearables are inserted in the
ear canals of the listeners.

The hear-through mode is one basic feature of many
hearables that allows the user to hear the acoustic envi-
ronment through the device, similar to a hearing aid, and
to simultaneously listen to an audio signal from a source
device like a smartphone. A natural representation of the
acoustical environment, similar to that experienced with
an open ear (without inserted device), is desirable. In the
optimal case, the listener is not able to distinguish
between scenarios where the hearables with activated
hear-through mode are inserted in the ear canals and
where the ears are open without the inserted device,
which is typically referred to as acoustical transparency
(Denk et al., 2018; Hoffmann et al., 2013). Because the
human auditory system is limited in resolving monaural
(e.g., spectral or temporal) and binaural differences (e.g.,
interaural time differences [ITDs] and interaural level
differences [ILDs]), acoustical transparency can be
achieved by the hear-through mode without exactly
reproducing the open-ear signal at the eardrum. In addi-
tion, an important feature in hearables, as in convention-
al hearing aids, is acoustic feedback suppression to avoid
howling or chirping of the device. This may introduce
audible distortion.

To assess the perceived audio quality of such hearing
devices or algorithms, subjective quality tests can be
used. These tests can be carried out as reference-free
tests (e.g., ITU-R BS.1534, 2014), where listeners rate
the audio quality of a processed audio signal under
test without any knowledge of an unprocessed reference
signal, and as reference-based tests (e.g., ABX: Munson
& Gardner, 1950; Multiple Stimulus with Hidden
Reference and Anchor [MUSHRA]: ITU-T. P800,
1996), where listeners are allowed to compare the proc-
essed signal with the unprocessed signal to make their
quality judgment. Performing subjective listening tests
for audio quality evaluation is time consuming, expen-
sive, and often requires qualified (expert) listeners. With
the goal of replacing listening tests, several instrumental
audio quality measures have been developed over the
past few decades. Similar to the reference-free and
reference-based listening tests, instrumental measures
can be classified into nonintrusive and intrusive meas-
ures. Nonintrusive measures do not require an unpro-
cessed reference signal, while intrusive measures
explicitly require a reference signal. Given that instru-
mental quality measures are less time consuming and
more cost-effective than listening tests, they lend them-
selves to application during hearing device and algo-
rithm development, as well as for the development of
real-time steering and optimization of signal processing
in future devices.

For the assessment of distortions introduced by audio
signal processing, intrusive measures based on auditory

perception models are commonly used and have been
shown to be broadly applicable (Biberger et al., 2018;
Harlander et al., 2014). Such measures include the
Perceptual Audio Quality Measure (Beerends &
Stemerdink, 1992), Perceptual Speech Quality Measure
(Beerends & Stemerdink, 1994), Perceptual Evaluation
of Speech Quality (Beerends et al., 2002; ITU-T P.862,
2001; Rix et al., 2002), Perceptual Evaluation of Audio
Quality (PEAQ; ITU-R BS.1387, 2001; Thiede et al.,
2000), Short-Term Partial Loudness Model (Glasberg
& Moore, 2005), or the Perceptual Objective Listening
Quality Assessment (Beerends et al., 2013a, 2013b).
Moore and colleagues suggested a measure of the per-
ceived naturalness of sounds based on differences in the
auditory excitation patterns (D; Moore & Tan, 2004)
and a measure for predicting the quality of nonlinearly
distorted signals (Rnonlin; Tan et al., 2004).

An auditory model front end suggested by Kates and
Arehart forms the basis for the speech intelligibility
model—the Hearing-Aid Speech Perception Index
(Kates & Arehart, 2014b)—and the quality models—
Hearing-Aid Speech Quality Index (HASQI; Kates &
Arehart, 2010), Hearing-Aid Speech Quality Index ver-
sion 2 (HASQIv2) (Kates & Arehart, 2014a), and
Hearing-Aid Audio Quality Index (Kates & Arehart,
2016). Following the idea that a psychoacoustic model
that successfully accounts for a large number of relevant
psychoacoustic experiments should also be suited as
front end for audio quality predictions, Huber and
Kollmeier (2006) adapted the Perception Model
(PEMO) of Dau et al. (1997a, 1997b), resulting in
Perception Model Quality Assessment (PEMO-Q),
while the more complex Computational Auditory
Signal processing and Perception model (CASP; Jepsen
et al., 2008) formed the basis for Computational
Auditory Signal processing and Perception model
based Quality assessment (CASP-Q) of Harlander
et al. (2014). Biberger and Ewert combined the Power
Spectrum Model (PSM; Fletcher, 1940; Patterson &
Moore, 1986) and Envelope Power Spectrum Model
(EPSM; Ewert & Dau, 2000) with multiresolution anal-
ysis as suggested by Jørgensen et al. (2013), denoted the
Generalized Power Spectrum Model (GPSM), which has
been demonstrated to predict the results of several
experiments on psychoacoustic masking and speech
intelligibility (Biberger & Ewert, 2016, 2017). Recently,
Biberger and colleagues suggested the Generalized
Power Spectrum Model for quality (GPSMq; Biberger
et al., 2018) that has been shown to predict the percep-
tion of a large variety of monaural distortions.

All aforementioned quality models account only for
monaural aspects of audio quality, while several appli-
cations, including hear-through modes, may also intro-
duce binaural distortions (Denk et al., 2020). Such
binaural distortions could arise from processing delays
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and sensitivity differences between the left and right ear
channels of the hearing device, resulting in distorted
ITDs and ILDs that may alter the perceived spatial
image. Thus, the binaural perceptually motivated direc-
tion estimation model of Dietz et al. (2011) was adapted
by Fleßner et al. (2017) to develop the intrusive binaural
auditory model for audio quality (BAM-Q). In their
later study (Fleßner et al., 2019), Fleßner and colleagues
combined the outputs of the binaural BAM-Q and the
monaural GPSMq, here denoted MoBi-Q, to predict
overall audio quality for monaurally, binaurally, and
combined monaurally and binaurally distorted speech,
music, and noise signals.

To the knowledge of the authors, it has not yet been
tested whether existing instrumental audio quality meas-
ures are applicable to the distortions that might occur in
modern hearing devices such as hearables. Moreover, it
is not clear which auditory cues are mainly impaired by
such algorithms. In this context, auditory-inspired
instrumental quality measures could help to analyze
the contribution of monaural and binaural cues.

To address these two aspects, the current study exam-
ined the prediction performance of 13 intrusive monau-
ral and binaural audio quality models for distortions
occurring in hearables. Three databases, including
sounds processed using algorithms for adaptive feedback
cancelation, feedback suppression based on a null-
steering beamformer, and hear-through processing,
were used to cover a large range of relevant distortions.
A comparison of the models’ prediction performance
should help to identify models suited for the objective
evaluation of algorithms potentially employed in hear-
ables. The best performing quality models are also
expected to provide information about auditory cues
that are relevant for accounting for quality degradation
and potentially help developers to test their algorithms
and identify perceptually relevant distortions. Finally,
based on these findings, an instrumental measure opti-
mized for the distortions that might occur in hearables is
suggested. This instrumental measure will be made pub-
licly available.1

Audio Quality Models

In total, 13 intrusive auditory-based perceptual measures
were examined for their applicability to distortions typ-
ically occurring in hearables. First, 11 measures purely
based on monaural cues are described, followed by the
description of a measure purely based on binaural cues.
Third, a perceptual measure combining monaural and
binaural cues is explained. There exist only a few
approaches (e.g., Sch€afer et al., 2013; Seo et al., 2013;
Takanen et al., 2014) for predictions of binaural or com-
bined monaural and binaural audio quality that are, to
the best knowledge of the authors, not publicly

available. Thus, only one binaural and one combined
audio quality model were tested in the current study.

Instrumental measures used the original sampling rate
given by the input signals of the databases (see the
Evaluation section for details). Input signals were up-
or downsampled if measures required a certain sampling
rate (e.g., PEAQ required a sampling rate of 48 kHz).

Monaural Models

The ITU standardized PEAQ (ITU-R BS.1387, 2001;
Thiede et al., 2000) was developed to predict the audio
quality of low-bit-rate coded audio signals. PEAQ incor-
porates two different ear models from which a large vari-
ety of features, such as envelope modulation, partial
noise loudness, audible linear distortion, noise-to-mask
ratio, or signal bandwidth, are calculated for the proc-
essed and unprocessed signals. Based on such features,
model output variables (MOVs) are derived, which are
assumed to represent relevant quality-degrading aspects,
for example averaged temporal envelope differences or
partial loudness of additive distortions. A trained multi-
layer perceptron neural network is used to map a select-
ed set of MOVs to a single measure of audio quality. The
training data set resulted from audio quality ratings of
normal-hearing (NH) listeners for music and speech sig-
nals processed by low-bit-rate audio codecs. Such algo-
rithms mainly introduced nonlinear distortions.

The linear distortion measure D of Moore and Tan
(2004) is based on peripheral preprocessing in which the
excitation patterns of the reference and the test signals
are calculated on an equivalent rectangular bandwidth
(ERB)-number scale (Moore & Glasberg, 1983), from
which excitation differences are derived. A combination
of the standard deviation of the spectrally weighted exci-
tation differences (first-order excitation differences) and
the standard deviation of the slopes of the excitation
differences (second-order excitation differences) pro-
vides the output measure D. A curvilinear relationship
between D and subjective ratings was observed by
Moore and Tan (2004b). To obtain a more linear rela-
tionship, a transformation was applied that was also
used in this study (see appendix in Biberger et al.,
2018). The linear measure D was developed using the
data set provided by Moore and Tan (2003), where
NH listeners rated the audio quality (perceived natural-
ness) of music and speech signals impaired by linear fil-
tering. D was separately developed with music and
speech signals, from which two sets of optimized
model parameters were derived.

The nonlinear distortion measure Rnonlin of Tan et al.
(2004) analyzes the reference and test signals using sim-
ulated auditory filters that are uniformly spaced on an
ERB-number scale. A correlation analysis between the
reference and the test signals is performed in short time
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frames of 30ms, where each frame is weighted according
to its level. The weighted frames are summed across
auditory filters and averaged across frames to obtain
the output measure Rnonlin. Since Tan et al. (2004)
observed a curvilinear behavior between Rnonlin and sub-
jective ratings, they used a nonlinear transformation to
obtain a more linear relationship between predicted and
subjective ratings. Such a transformation was also
applied in this study (see appendix in Biberger et al.,
2018). Rnonlin was developed using three data sets pro-
vided by Tan et al. (2003), where NH listeners rated the
audio quality of music and speech signals impaired by
artificial nonlinear processing (e.g., hard symmetrical/
asymmetrical clipping or center clipping) and nonlinear-
ities from transducers. The nonlinear distortion measure
was separately optimized with music and speech signals,
resulting in two sets of model parameters for each of the
three databases. Because no generalized parameter set
was provided, the user has to either use one of the exist-
ing optimized parameter sets from the study of Tan et al.
(2004) or optimize the fitting parameters for the data-
base under test, as was suggested by the authors.
However, the latter procedure makes it difficult to com-
pare Rnonlin to other instrumental measures as they do
not have such a priori knowledge. Thus, in this study,
the same fitting parameters as used in Biberger et al.
(2018), derived by averaging the fitting parameters for
speech and music given in Figure 2 of Tan et al. (2004),
were applied to Rnonlin.

The combined quality model Soverall of Moore et al.
(2004) is based on the linear component Slin and the
nonlinear component Snonlin derived from D and
Rnonlin, respectively, as described in the appendix of
Biberger et al. (2018). The combined measure is obtained
as Soverall ¼ s � Slin þ 1� sð Þ � Snonlin, where s is 0.3.
Soverall was optimized using data sets, where NH listeners
rated the audio quality of music and speech signals
impaired by linear filtering and nonlinear processing.
Because the measure was separately optimized for
music and speech, for each data set two optimized
parameter sets were provided.

The HASQI (Kates & Arehart, 2010) is based on a
cochlear model including a middle-ear filter, a linear
gammatone filterbank used to extract the envelope for
each auditory channel, instantaneous compression,
attenuation, dB conversion (providing an approximate
conversion of signal intensity into a perceptually moti-
vated scale linked to just-noticeable differences in inten-
sity and loudness perception), and low-pass filtering.
From the cochlear model output, a nonlinear quality
index, based on cepstrum correlation, and a linear qual-
ity index, adopted from Moore and Tan (2004b),
accounting for (long-term) spectral differences between
the reference and test signal, are calculated and com-
bined to give the final overall quality index. The main

difference between HASQI and HASQIv2 (Kates &
Arehart, 2014a) is an additional analysis of temporal
fine structure (TFS) to account for nonlinear distortions
in HASQIv2, while the nonlinear and linear distortion
indices proposed in the original HASQI are maintained.
HASQIv2 also uses a modified version of the model of
the auditory periphery used in HASQI that includes the
following aspects: a conversion of all input signals to a
24-kHz sampling rate, broader auditory filters with
increasing signal intensity, different outer hair cell
dynamic-range compression rule, and inner hair cell
firing-rate adaption. Quality judgments made by NH
and hearing-impaired (HI) listeners for speech stimuli
containing noise and nonlinear processing were used to
optimize the nonlinear part of HASQI, while judgments
of speech stimuli with linear filtering were used to opti-
mize the linear part. For validation of the entire HASQI
(combination of linear and nonlinear parts), quality
judgments made by NH and HI listeners for speech con-
taining combinations of noise and nonlinear processing
with linear filtering were used. HASQIv2 was optimized
using the same data as was used for HASQI.

The PEMO-Q (Huber & Kollmeier, 2006) front end
was adopted from the psychoacoustic model PEMO
(Dau et al., 1997a, 1997b), which includes the following
auditory processing stages: linear (gammatone) basilar
membrane filtering, hair cell transduction, adaptation,
and a modulation filterbank. The front-end outputs of
PEMO and PEMO-Q, also denoted the internal repre-
sentations (IR), provide cues mainly based on amplitude
modulation (AM). Based on the IR, three quality meas-
ures, the Perceptual Similarity Measure (PSM), the time-
dependent PSM (PSMt), and the Objective Difference
Grade (ODG), were calculated with the back end of
PEMO-Q. Harlander et al. (2014) demonstrated that
the ODG had better overall prediction performance
than PSM and PSMt. Thus, this study considers only
the ODG measure, which calculates the (power-weight-
ed) linear cross-correlation between the IR of the test
and reference signals in successive time frames of
10ms, from which the 5th percentile gives the final
PSMt. The ODG is derived by mapping the PSMt to a
Subjective Difference Grade (ITU-R BS.1116-1, 1997)-
like scale by applying a nonlinear regression function. As
in Harlander et al. (2014), we used the original PEMO-Q
as described in Huber and Kollmeier (2006) and a mod-
ified version, PEMO-QISO (Harlander et al., 2014), that
additionally includes a hearing threshold based on ISO
226 (2003). Similarly as for PEAQ, the data set used to
optimize PEMO-Q was derived from audio quality rat-
ings of NH listeners for music and speech signals proc-
essed by low-bit-rate audio codecs.

CASP-Q (Harlander et al., 2014) can be considered as
an updated version of PEMO-Q with a front end
adopted from the CASP model described by Jepsen

4 Trends in Hearing



et al. (2008). The substantial changes compared with the
PEMO-Q front end are outer- and middle-ear transfor-
mations, nonlinear basilar membrane filtering, and a
squaring expansion after hair cell transduction. The IR
of CASP-Q mainly represents AM-based features.
CASP-Q uses the same back-end processing as PEMO-
Q, thus providing the similar quality measures PSM,
PSMt, and ODG. Here, for the same reason as stated
earlier for PEMO-Q, only the ODG measure is consid-
ered. It should be mentioned that the CASP-Q front end
has some general modifications compared with the orig-
inal CASP, such as an adjustment of the amplification
following hair cell processing and modified adaptation
loops, which are important for audio quality predictions
(for more details, see Harlander et al., 2014). Both
CASP-Q versions, CASP-QISO and CASP-QnoExp as sug-
gested by Harlander et al. (2014), were used in this study.
CASP-QISO additionally applies a hearing threshold
based on ISO 226 (2003), while CASP-QnoExp includes
a hearing threshold but does not have the expansion
stage. As mentioned by Jepsen et al. (2008), the expan-
sion stage transforms the half-wave rectified and low-
pass filtered signal into an intensity-like representation,
which was motivated by physiological findings of Yates
et al. (1990) and Muller et al. (1991). CASP-Q was opti-
mized with a database derived by Hu and Loizou (2007),
where NH listeners rated the audio quality of speech
signals processed by noise reduction algorithms.

The GPSMq (Biberger et al., 2018) represents an
audio quality extension of the GPSM, which has been
demonstrated to predict the results of many psycho-
acoustic and speech intelligibility experiments (Biberger
& Ewert, 2016, 2017). GPSMq applies a linear, fourth-
order gammatone filterbank with bandwidth equal to
the equivalent rectangular bandwidth of the auditory
filter (ERBN; Glasberg & Moore, 1990; Moore &
Glasberg, 1983) that simulates the behavior of the bas-
ilar membrane, followed by calculating the low-pass fil-
tered Hilbert envelope (cutoff frequency of 150Hz) to
account for decreased modulation sensitivity at high
modulation frequencies. The low-pass filtered Hilbert
envelopes form the basis for calculating the local enve-
lope power and the local DC power. The local DC power
is calculated in rectangular windows with a fixed dura-
tion of 375ms for each auditory filter. After modulation
filterbank processing of the Hilbert envelopes, the local
envelope power is calculated in rectangular windows,
where the window duration is related to the inverse of
the center frequency of the corresponding modulation
bandpass filter. These calculation steps are performed
for the reference and the test signals, from which local
envelope-power signal-to-noise ratios (SNRs) and power
SNRs are derived, averaged over time and combined
across audio and modulation channels. The resulting
single-valued envelope-power SNR and power SNR

are additively combined and transformed by a logarith-

mic function to give the objective perceptual measure

(OPM). The data sets used for optimizing GPSMq

include speech and music signals processed by audio

codecs, audio source separation, noise reduction algo-
rithms, and loudspeaker and their subjective quality rat-

ings from NH listeners.

Binaural Model

The binaural audio quality model (BAM-Q; Fleßner

et al., 2017) is based on the binaural psychoacoustic

model front end of Dietz et al. (2011). The peripheral

processing stages include outer and middle-ear filtering
followed by a linear, fourth-order gammatone filterbank

with bandwidths equal to one ERBN, and cochlear com-

pression. The mechano-electrical transduction process in

the inner hair cells is modeled by half-wave rectification

followed by a 770-Hz fifth-order low-pass filter. These

steps are followed by further processing of TFS for audi-

tory filters tuned at or below 1.4 kHz and temporal enve-

lope processing for auditory filters tuned to higher

frequencies. The binaural feature extraction stage uses
complex outputs from the left and right channels to cal-

culate the interaural transfer function, from which inter-

aural phase differences and ITDs are derived. The

interaural vector strength (IVS), which is similar to the

interaural coherence (IC), is also derived from the inter-

aural transfer function. In addition, ILDs are calculated

from the energy ratio between the right and left filters.

The back-end processing combines the submeasures
ILD, ITD, and IVS that are calculated in consecutive

time frames of 400ms. The ILD and ITD submeasures

can be used to predict changes in perceived source loca-

tion and changes in the apparent source width (ASW).

Perceived diffusiveness and ASW are often related to IC

(e.g., Ando & Kurihara, 1986; Blauert & Lindemann,

1986; Damaske & Ando, 1972; Kendall, 1995), where

perceived diffusiveness and ASW increase as IC
decreases, and thus the IVS submeasure is assumed to

predict differences for both perceptual attributes. The

submeasures for each frame are averaged across time

and auditory bands, and then combined by a nonlinear

regression method, providing the final output measure

binQ. BAM-Q was optimized with a data set for which

10 NH listeners rated spatial audio quality degradations

for manipulations of static and dynamic binaural prop-

erties of music, noise, and speech signals.

Combined Monaural and Binaural Model

The MoBi-Q model of Fleßner et al. (2019) combines the

quality outputs of a modified version of the monaural

GPSMq and the binaural BAM-Q. The GPSMq modifi-

cation was necessary to reduce sensitivity of the model to
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binaural distortions such as ILDs and ITDs based on
monaural features and artifacts such as level differences
and phase distortions. In the combined MoBi-Q model,
it was thus ensured that the binaural features were exclu-
sively captured by BAM-Q. Because the monaural
GPSMq processes the left and right channels of a binau-
ral input signal separately, and then averages the output
measures from the left and the right channels, it is sen-
sitive to certain binaural cues without applying such a
binaural modification. Fleßner et al. (2019) demonstrat-
ed that overall quality is dominated by whichever aspect
is lower in quality, either monaural or binaural.
Accordingly, Fleßner and colleagues suggested a combi-
nation of the outputs of the monaural GPSMq

(OPMdual) and the binaural BAM-Q (binQ) by selecting
the (transformed) output that showed the largest quality
degradation (minimum operation):

Overall quality ¼ min log10 0:0528�OPMdualð Þ; 0:0078�binQ� �

(1)

In the study of Fleßner et al. (2019), 16 NH listeners
evaluated 119 items containing music, speech, and noise
that had either monaural (50 items) and binaural (24
items) distortions in isolation or combined monaural
and binaural distortions (45 items). For monaural dis-
tortions in isolation, overall quality was dominated by
the monaural pathway, while for binaural distortions,
overall quality was dominated by the binaural pathway.
For combined monaural and binaural distortions, over-
all quality was dominated by the monaural pathway for
35 items and by the binaural pathway for 10 items.

Evaluation

Three databases with different types of distortions were
chosen that covered a broad range of distortions affect-
ing quality in hearables. The first database was based on
monaural (right ear) dummy head recordings and thus
included only monaural distortions. Data were taken
from the study of Nordholm et al. (2018). The second
and third databases were based on binaural dummy
head recordings and were taken from the studies of
Schepker et al. (2019, 2020). These databases potentially
included monaural and binaural distortions. Denk et al.
(2020) demonstrated that the devices examined by
Schepker et al. (2020) impaired the representation of
monaural and binaural cues, and thus monaural and
binaural distortions were expected to contribute to qual-
ity degradations for the third database of Schepker et al.
(2020). The second database (Schepker et al., 2019) was
not technically evaluated, but test signals mainly showed
monaural spectral differences compared with the test
signal, while spatial differences such as changes in

ASW and source location could be perceived as well

(as indicated by informal listening tests).
The databases taken from Schepker et al. (2019, 2020)

are balanced in the sense that the impairments range

from intermediate to small, and distortions are homoge-

nously distributed over time. Depending on the tested

segment, the database from Nordholm et al. (2018)

includes some signals where the distortions are concen-

trated in a short segment. Thus, distortions for the

stimuli of Nordholm et al. (2018) are perceptually differ-

ent to the distortions for the stimuli of Schepker et al.

(2019, 2020).

Databases

Adaptive Feedback Cancelation. The adaptive feedback can-

celation (AFC) database was taken from the study of

Nordholm et al. (2018). It consists of 60 monaural

items, based on speech and music material, sampled at

16 kHz. All signals were recorded using a microphone

placed in the right ear of a dummy head in an anechoic

chamber for two different sound source positions (azi-

muths of 0� and 90�), resulting in four audio signals

(2� speech and 2�music). In hearing devices such as

hearing aids and hearables, acoustic coupling between

the loudspeakers and the microphones generates feed-

back loops that can be suppressed by AFC algorithms.

Nordholm et al. (2018) examined four AFC algorithms

using four signals and three signal segments (initial and

reconvergence phase, steady-state phase). Signals proc-

essed with an ideal feedback cancelation algorithm (with

perfect a priori knowledge about the feedback path)

served as reference signals, while signals processed with-

out feedback cancelation served as anchor signals. This

resulted in 48 items based on the AFC algorithms plus

12 items based on the anchor algorithm. The 12 items

based on the reference algorithm were used by the

reference-based instrumental measures as reference.

For convenience, the algorithm names referring to

Nordholm et al. (2018) are provided in Figure 1; their

exact function is beyond the scope of the current article.

Subjective quality ratings from 15 NH subjects were

obtained using the MUSHRA method (ITU-R

BS.1534-1, 2003). Besides the instruction to rate the per-

ceived overall audio quality of the test signals compared

with the reference signal, the listeners were instructed to

rate at least one of the signals with a score of 100 (no

perceptible difference) and at least one signal with a

score of 0 (very strong difference). The listening test

was carried out in a quiet office room, and signals

were presented via headphones. Averaged MUSHRA

scores for distorted test signals (including the anchor)

ranged from 0 to 100.

6 Trends in Hearing



Acoustically Transparent Hearing Device. The acoustically

transparent hearing device (ATHD) database was taken

from the study of Schepker et al. (2019). The database

consists of 140 speech (female, male) and music (piano,

jazz) items, sampled at 48 kHz. Schepker et al. evaluated

the audio quality of a real-time hearing device prototype

intended to achieve acoustically transparent sound pre-

sentation. This device applies feedback suppression

based on a null-steering beamformer and individualized

equalization of the sound pressure at the eardrum. Six

signal processing conditions representing feedback sup-

pression in combination with different equalization

strategies and their effect on perceived audio quality

were assessed for three recording room reverberation

times (T60 � 0.35 s, 0.45 s, 1.4 s) and three incoming

signal directions (azimuths of 0�, 90�, 225�). A dummy

head with inserted hearing devices was used for record-

ings. The loudspeakers used for signal playback were

placed at a distance of approximately 2m from the

dummy head and adjusted in height to be at ear level

with the dummy head. The dummy head open-ear

recordings served as the reference signals for acoustical

transparency. A low-quality anchor signal (denoted as

Rec Off in Figure 2) was obtained using dummy head

occluded-ear recordings, with hearing devices inserted

but without signal processing. The algorithm names

are provided in Figure 2, and the reader is referred to

Schepker et al. (2019) for further details. The subjective

evaluation was carried out by 15 NH subjects via a

MUSHRA-like framework2 (V€olker et al., 2018).

Participants were instructed in writing to rate the per-

ceived overall sound quality of each stimulus relative to

the (open-ear) reference. The listening test was carried

out in a sound-isolated cabin, and signals were presented

over headphones. Averaged MUSHRA scores for dis-

torted test signals (including the anchor) ranged from

about 8 to 95.
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Figure 2. Audio Quality Predictions of GPSMq, MoBi-Q, PEAQ,
D, HASQIv2, and PEMO-Q for the Acoustically Transparent Hearing
Device (ATHD) Database. Hearing device settings are indicated by
different colors. Prediction performance is given in each panel by
Accuracy (rpear) and Monotonicity (rrank). The algorithm names are
indicated in the two bottom panels.
GPSMq¼Generalized Power Spectrum Model for quality;
HASQIv2¼Hearing-Aid Speech Quality Index version 2;
PEAQ¼ Perceptual Evaluation of Audio Quality; PEMO-
Q¼ Perception Model based Quality assessment.
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Figure 1. Audio Quality Predictions of GPSMq, MoBi-Q, PEAQ,
D, HASQIv2, and PEMO-Q for the Adaptive Feedback Cancelation
(AFC) Database. Algorithms are represented by different colors.
The individual prediction performance is given in each panel by
Accuracy (rpear) and Monotonicity (rrank). The names of the algo-
rithms are indicated in the right top panel.
GPSMq¼Generalized Power Spectrum Model for quality;
HASQIv2¼Hearing-Aid Speech Quality Index version 2;
PEAQ¼ Perceptual Evaluation of Audio Quality; PEMO-
Q¼ Perception Model based Quality assessment.
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Hear-Through Mode. The hear-through mode (HTM) data-

base was taken from the study of Schepker et al. (2020).

The database consists of 120 speech (female, male) and

music (jazz, piano) items, sampled at 48 kHz. The study

examined the audio quality of the hear-through mode of

six commercial hearables (referred to as Devices A, B, C,

D, E, and F) and three research devices (Devices H, I,

and J). A dummy head with inserted hearables was used

for recordings in a laboratory with moderate room

reverberation (T60 � 0.45 s) to assess the devices in real-

istic but controlled acoustic conditions. Four audio sig-

nals were recorded for three playback directions

(azimuths of 0�, 90�, and 225�) with loudspeakers

placed at a distance of approximately 2m from the

dummy head and adjusted in height to be at ear level

with the dummy head. The dummy head’s open-ear

recordings served as reference signals, and thus the

sound transmission to the eardrum with the hearable

should be equivalent to the open-ear reference signal

to achieve acoustic transparency. The occluded ear,

using Device J turned off, was used as anchor signal

(denoted Device K in Figure 3). For further details

about the devices, the reader is referred to Schepker

et al. (2020). Subjective results are based on data for

17 NH subjects using a MUSHRA-like framework2

(V€olker et al., 2018). Participants were instructed in writ-

ing to rate the perceived overall sound quality of the

stimuli recorded with the different devices relative to

the (open-ear) reference. The test was carried out in a

sound-isolated cabin, and signals were presented over

headphones. Averaged MUSHRA scores for distorted

test signals (including the anchor) ranged from about

10 to 82.

Objective Performance Measures for Model

Predictions

As suggested by Emiya et al. (2011) and applied in

Harlander et al. (2014) and Biberger et al. (2018), pre-

diction performance was individually calculated for each

database on the basis of three measures: Accuracy,

Monotonicity, and Consistency. Accuracy was quantified

by the Pearson linear correlation coefficient,

Monotonicity by the Spearman rank correlation coeffi-

cient, and Consistency was based on the number of dis-

crepancies in quality prediction using an interval of�
one standard deviation of the subjective quality ratings,

instead of the two-standard-deviation interval used by

Emiya et al. (2011) and Harlander et al. (2014). The

calculation of Consistency requires relating objective

scores to the subjective results, and this was done

using linear regression. After this transformation, sub-

jective and objective model scores were expressed on a

100-point scale. More detailed explanations of these

measures can be found in Emiya et al. (2011) and

Harlander et al. (2014).
In addition to Accuracy, Monotonicity, and

Consistency, the widely used objective performance mea-

sure epsilon-insensitive root mean square error (also

denoted as RMSE*; ITU-T Rec P.1401, 2012) was cal-

culated, including first-order mapping of the objective
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Figure 3. Audio Quality Predictions for GPSMq, MoBi-Q, PEAQ,
BAM-Q, D, HASQIv2, and PEMO-Q for the Hear-Through Mode
(HTM) Database. Hearing devices are indicated by different colors.
Prediction performance is given in each panel by Accuracy (rpear)
and Monotonicity (rrank). For better visualization of the relationship
between subjective and objective scores, the upper left panel
shows GPSMq predictions without lower and upper perceptual
limits (see Equation 6 in Biberger et al., 2018). Disregarding the
perceptual limits results in a slightly lower Accuracy of 0.92 com-
pared with the Accuracy of 0.93 for the standard GPSMq, which
incorporates such perceptual limit by default. For further details
about the devices, refer to Schepker et al. (2020).
GPSMq¼Generalized Power Spectrum Model for quality;
HASQIv2¼Hearing-Aid Speech Quality Index version 2;
PEAQ¼ Perceptual Evaluation of Audio Quality; PEMO-
Q¼ Perception Model based Quality assessment; BAM-
Q¼Binaural Auditory Model for audio Quality.
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scores, for cross-validation. RMSE* is based on the 95%
confidence-interval-weighted RMSE.

Accuracy, Monotonicity, and Consistency values of
one represent the best achievable prediction perfor-
mance, while values of zero represent the worst predic-
tion performance. Small RMSE* values indicate
accurate predictions, while large values represent dis-
crepancies between subjective and objective scores.

Results

Table 1 compares the prediction performance of all
audio quality models (rows) across the three databases
(columns). BAM-Q predictions are only shown for the
HTM database. Pretests indicated that binaural distor-
tions played a minor role for the ATHD, while the AFC
consists of monaural recordings. The bold values in
Table 1 indicate the best performing instrumental mea-
sure for Accuracy, Monotonicity, Consistency, and
RMSE* for each database, respectively.

For clarity, the relationships between subjective and
objective scores for the three databases are shown in
Figures 1–3 only for the four best performing models
of this study and the widely used PEAQ and PEMO-Q.

Adaptive Feedback Cancelation

Figure 1 shows subjective scores and objective scores for
GPSMq, MoBi-Q, PEAQ, D, HASQIv2, and PEMO-Q
for the AFC database. The abscissa of each panel in
Figure 1 represents subjective scores, while the ordinate
represents objective scores. Each panel gives the
Accuracy and Monotonicity, abbreviated as rpear and
rrank, of the corresponding instrumental measure. The
PEAQ predictions agreed well with subjective ratings
from the AFC database and gave, together with MoBi-
Q, the highest Monotonicity value of 0.97. Large differ-
ences between the Accuracy and Monotonicity values
indicate a curvilinear relationship between subjective rat-
ings and PEAQ scores, which is also represented in
Figure 1. The naturalness measure D performed very
well and showed high values for Accuracy and
Monotonicity of 0.95 (see Figure 1). Rnonlin also achieved
reasonably good prediction performance for the AFC
database represented by Accuracy and Monotonicity
values of 0.83 and 0.91. However, predicted quality
scores of Rnonlin were often lower than subjective
scores, resulting in a small Consistency value of 0.42
and a high RMSE* value of 3.4. The combination of
D and Rnonlin, Soverall, achieved values for Accuracy
and Monotonicity of 0.92 and 0.94, respectively. The
Consistency value of Soverall (0.48) fell between the
Consistency values for D (0.67) and Rnonlin (0.42).

Both HASQI versions performed very well for the
AFC database with Accuracy and Monotonicity

values> 0.9, and small RMSE* values (HASQI: 2.7;

HASQIv2: 2.2).
PEMO-Q and PEMO-QISO, showed good prediction

performance, with similar Accuracy (PEMO-Q: 0.78;

PEMO-QISO: 0.8) and Monotonicity (PEMO-Q: 0.82;

PEMO-QISO: 0.86). CASP-QISO and CASP-QnoExp

gave poor predictions for the AFC database with

Accuracy and Monotonicity values< 0.6. GPSMq predic-

tions agreed well with subjective ratings, indicated by an

Accuracy value of 0.95 and a Monotonicity value of 0.91

(see Figure 1). GPSMq predictions produced the fewest

outliers as indicated by the highest Consistency value of

0.7 and the lowest RMSE* value of 2.0. MoBi-Q

achieved the highest Accuracy and Monotonicity of

0.96 and 0.97, respectively. Accurate predictions of

MoBi-Q are also represented by Consistency and

RMSE* of 0.67 and 2.2, respectively. As signals in this

database are monaural, MoBi-Q predictions are purely

based on the monaural pathway.

Acoustically Transparent Hearing Devices

Figure 2 shows subjective scores and objective scores for

GPSMq, MoBi-Q, PEAQ, D, HASQIv2, and PEMO-Q

for the ATHD database. The abscissa and ordinate of

each panel are the same as in Figure 1. PEAQ gave poor

prediction performance with Accuracy and Monotonicity

values of 0.49 and 0.45. The naturalness measure D gave

the best prediction performance (see Figure 2), indicated

by the highest Accuracy and Monotonicity values of 0.9

and 0.9, and the lowest RMSE* value of 1.9. Rnonlin

showed poor prediction performance (Accuracy value

of 0.17, Monotonicity value of 0.01) for the ATHD data-

base. The combined measure Soverall based on D and

Rnonlin, achieved moderate prediction performance

(Accuracy value of 0.73, Monotonicity value of 0.79).
HASQI performed rather poorly (Accuracy of 0.52,

Monotonicity of 0.46), while HASQIv2, gave very accu-

rate predictions, indicated by high values for Accuracy

and Monotonicity of 0.89 and 0.87, and the highest

Consistency value 0.84, and the lowest RMSE* value

of 1.7.
PEMO-Q, and PEMO-QISO, but also the more com-

plex CASP-QISO, and CASP-QnoExp, gave poor predic-

tions, with Accuracy values	 0.41 and Monotonicity

values	 0.22. GPSMq predictions agreed well with sub-

jective ratings, indicated by Accuracy and Monotonicity

values of 0.87 and 0.86, and a high Consistency value of

0.78. MoBi-Q showed good prediction performance,

indicated by Accuracy, Monotonicity, and Consistency

values of 0.83, 0.8, and 0.73, respectively. For 32 test

items (out of 140 test items), the binaural pathway pre-

dicted greater quality degradations than the monaural

pathway.
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Hear-Through Mode

Figure 3 shows subjective scores and objective scores for

GPSMq, MoBi-Q, PEAQ, BAM-Q, D, HASQIv2, and

PEMO-Q for the HTM database. Figure 3 shows that

PEAQ predictions differed substantially from subjective

ratings (Accuracy of 0.2, Monotonicity of 0.1). The nat-

uralness measure D gave accurate predictions (see

Figure 3) indicated by Accuracy and Monotonicity of

0.86 and 0.87, while Rnonlin gave poor prediction perfor-

mance (Accuracy of 0.18, Monotonicity of 0.14). Soverall
achieved moderate performance, indicated by a

Monotonicity value of 0.73. However, low values for

Accuracy and Consistency of 0.34 and 0.44 and a high

value of RMSE* of 3.3 represent the nonlinear relation-

ship between objective and subjective scores as well as

some large deviations between objective and subjective

scores of up to 60 points on the 0 to 100 point scale used

by the MUSHRA protocol.
HASQI performed rather poorly (Accuracy of 0.15,

Monotonicity of 0.14) for the HTM database, while

HASQIv2 showed moderate prediction performance,

indicated by Accuracy, Monotonicity, and Consistency

values of 0.62, 0.56, and 0.59, respectively.
PEMO-Q, and PEMO-QISO, but also CASP-QISO,

and CASP-QnoExp, gave poor predictions with

Accuracy values	 0.19 and Monotonicity values	 0.23.

GPSMq predictions achieved the best performance, indi-

cated by Accuracy,Monotonicity, and Consistency values

of 0.93, 0.91, and 0.91 and a low value for RMSE* of

1.3. BAM-Q predictions, purely based on binaural dis-

tortions, were poor (Accuracy of 0.33, Monotonicity of

0.27). MoBi-Q gave good prediction performance

(Accuracy of 0.79, Monotonicity of 0.81). For 32 test

items (out of 120 test items), the binaural pathway pre-

dicted greater quality degradations than the monaural

pathway.

Overall Performance

To compare the overall performance of the models, the

average Accuracy, Monotonicity, Consistency, and

RMSE* and their standard deviation across databases

are summarized in Figure 4, where the four overall best

performing instrumental measures are highlighted in

green. Because distortions in the AFC, ATHD, and

HTM databases were assessed by different listener

groups and in different comparison contexts (including

different anchor signals), performance measures were

calculated for each database and then compared across

the three databases.
In each of the panels in Figure 4, GPSMq, D, MoBi-

Q, and HASQIv2 (with exception of Monotonicity)

achieved the best average prediction performance of all

instrumental measures examined in this study. The mean

Accuracy, Monotonicity, Consistency, and RMSE* and
the standard deviation for the four best performing
measures across the AFC, ATHD, and HTM databases
are given in Table 2. This table shows that GPSMq and
D achieved the highest mean Accuracy, Monotonicity,
and Consistency and the lowest RMSE*, indicating the
best overall prediction performance. The performance of
MoBi-Q and HASQIv2 was somewhat lower than for
GPSMq and D. As shown in Table 2, GPSMq and D
show the same standard deviation for Accuracy,
Monotonicity, and Consistency, while the RMSE*
values of GPSMq showed slightly larger variability
than those of D. A one-way repeated-measures analysis
of variance showed a significant main effect of measure,
F(1.7, 3.5)¼ 10.5, p< 0.05 on RMSE*. A post hoc pair-
wise comparison using the least significant difference test
(protected t test) showed no significant RMSE* differ-
ences between GPSMq, D, MoBi-Q, and HASQIv2. For
each of the models, GPSMq, D, and MoBi-Q, a signifi-
cant RMSE* difference to Rnonlin, PEAQ, PEMO-Q,
PEMO-QISO, CASP-QISO, and CASP-QnoExp was
observed, while there was no significant RMSE* differ-
ence to HASQI and Soverall. Further, there were no sig-
nificant RMSE* differences between HASQIv2 and the
other instrumental measures

Discussion

Comparison of the Instrumental Measures

Analysis of Auditory Cues Used by the Top Four Measures. The
best performing audio quality models in this study,
GPSMq, MoBi-Q, HASQIv2, and D, explicitly account
for spectral distortions by evaluating auditory excitation
patterns. Therefore, it can be concluded that (monaural)
spectral cues are highly relevant for the hearable algo-
rithms assessed in this study. However, this also raises
the question of what differences between these four
models are responsible for the differences in their pre-
diction performance.

The underlying procedure for predicting quality deg-
radations produced by spectral distortions is identical
for GPSMq and MoBi-Q. Prediction differences can be
explained by (a) an additional effect of binaural distor-
tions accounted for by MoBi-Q, (b) a slightly modified
GPSMq front end (see Fleßner et al., 2019) in MoBi-Q
that is largely insensitive to binaural cues, and (c) to
obtain the overall quality measure of MoBi-Q, the
GPSMq output measure OPM was modified for combi-
nation with the binaural output measure binQ.

HASQIv2 applies a slightly modified version of D to
account for spectral distortions. The main differences
between these models are additional auditory processing
stages applied by HASQIv2 for the analysis of TFS and
spectral envelope differences.
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The spectral cue analysis of GPSMq and MoBi-Q on

one hand, and HASQIv2 and D on the other hand,

mainly differs in auditory frequency range and in the

postprocessing of auditory excitation patterns. Both

GPSMq and MoBi-Q calculate auditory excitation pat-

terns, for filter center frequencies from 315 to 12 500Hz,

while for D the center frequencies range from 55 to 16

800Hz (Moore & Tan, 2004, suggested that speech is

evaluated with a filter range from 123 to 10 900Hz).

The lowest auditory filter center frequency of 55Hz for

D agrees with recent findings of Jurado and Moore

(2010) suggesting that there are no auditory filters with

center frequencies below about 50Hz. For HASQIv2,

intended to predict speech quality, center frequencies

range from 80 to 8000Hz.
To examine the effect of auditory filter center fre-

quency range on prediction performance, GPSMq

(large symbols) and D predictions (small symbols) for

the HTM database were calculated for different frequen-

cy ranges, as shown in Figure 5. Right-pointing triangles

(gray; red online) are for the lowest auditory filter center

frequency, as indicated on the x axis, while the highest

auditory filter was always centered at 16 kHz for

GPSMq
DC and 16.8 kHz for D. The leftmost, small,

closed right-pointing triangle represents the

Monotonicity value of D for a filter range from 55 to

16 800Hz. Left-pointing triangles (black) are for the

highest auditory filter center frequency indicated on

the x axis, while the center frequency of the lowest audi-

tory filter was always set to 63Hz for GPSMq
DC and

55Hz for D. The rightmost, small, closed left-pointing

triangle represents the Monotonicity value of D for a

filter range from 55 to 16 800Hz. The left abscissa indi-

cates Accuracy (open symbols), while the right abscissa

indicates Monotonicity (closed symbols). To make

GPSMq predictions comparable to those for the linear

measure D, GPSMq predictions are here based on local

power-based SNRs, and thus named GPSMq
DC in the

following. This GPSMq
DC accounts only for spectral

(linear) distortions, while modulation-based features

are not considered. Because the GPSMq
DC output was

not transformed by a logarithmic function, as is done

for the overall GPSMq measure (see Equation 6 in

Biberger et al., 2018), subjective and objective quality

scores show a curvilinear relationship. Therefore, in

the following mainly the Monotonicity (Spearman rank
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Figure 4. The Bars Show Mean Accuracy (Upper Left Panel), Mean Monotonicity (Upper Right Panel), Mean Consistency (Lower Left Panel),
and Mean RMSE* (Lower Right Panel) for the Instrumental Measures Across the AFC, ATHD, and HTM Databases. The error bars
indicate� one standard deviation for Accuracy, Monotonicity, Consistency, and RMSE* across the three databases. In each panel, the four best
performing instrumental measures are highlighted in green.
PEAQ¼ Perceptual Evaluation of Audio Quality; HASQI¼Hearing-Aid Speech Quality Index; HASQIv2¼Hearing-Aid Speech Quality
Index version 2; PEMO-Q¼ Perception Model based Quality assessment; CASP-Q¼Computational Auditory Signal processing and
Perception model based Quality assessment; GPSMq¼Generalized Power Spectrum Model for quality; RMSE*¼ epsilon-insensitive root
mean square error.
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correlation coefficient) values are considered, as they
are not affected by such a curvilinear relationship.

GPSMq
DC reached the highest Monotonicity values

from 0.90 to 0.91 (Accuracy: 0.87 – 0.90) when the
center frequency of the lowest auditory filter
was	 315Hz as shown by large diamonds in Figure 5.
The Monotonicity dropped to 0.88 when the center fre-

quency of the lowest auditory filter was 400Hz and
dropped from 0.79 to 0.72 when the center frequency
of the lowest auditory filter was changed from 4000 to
5000Hz. GPSMq

DC reached the highest Monotonicity
values from 0.91 to 0.93 (Accuracy: 0.89 – 0.90) when

the center frequency of the highest auditory filter
was
 3150Hz (see large, closed left-pointing triangles
in Figure 5). The Monotonicity of GPSMq

DC was reduced
from 0.91 to 0.85 when the center frequency of the high-
est auditory filter was changed from 3150 to 2500Hz and
dropped further from 0.75 to 0.64 when the center fre-

quency was changed from 1250 to 1000Hz. To summa-
rize, GPSMq

DC predictions suggest that best performance
is achieved with a center frequency	 315Hz for the
lowest auditory filter and a center frequency
 4 kHz
for the highest auditory filter. A similar result was

observed for the original GPSMq, where predictions sug-
gest greatest accuracy for a center frequency	 315Hz
for the lowest auditory filter and a center
frequency
 4 kHz for the highest auditory filter. As
the original center frequencies of the lowest (315Hz)

and highest (12 500Hz) auditory filters of GPSMq
DC

(Monotonicity: 0.9) lie within the suggested range of
auditory filter bandwidths, a wider bandwidth, for

example, from 63 to 16 000Hz (Monotonicity of
GPSMq

DC: 0.91) as it is used by D, would not degrade
the prediction performance of GPSMq

DC, at least for the
HTM database.

D reached the highest Monotonicity value of 0.87
(Accuracy: 0.85 – 0.86) when the center frequency of
the lowest auditory filter was	 63Hz, as shown by the
small, closed right-pointing triangles in Figure 5.
Monotonicity dropped to 0.84 when the center frequency
of the lowest auditory filter was 200Hz and dropped
from 0.74 to 0.53 when the center frequency of the
lowest auditory filter was changed from 2500 to
3150Hz. D reached the highest Monotonicity values
from 0.83 to 0.87 (Accuracy: 0.83 – 0.86) when the
center frequency of the highest auditory filter
was> 8000Hz (see small, closed left-pointing triangles
in Figure 5). The Monotonicity of D was reduced from
0.80 to 0.76 when the center frequency of the highest
auditory filter was changed from 8000 to 6300Hz and
dropped further from 0.7 to 0.64 when the center fre-
quency was changed from 3150 to 2500Hz. Figure 5
shows that predictions for D are more sensitive to fre-
quency range variations than to predictions for
GPSMq

DC. This implies that there might be more redun-
dant information in GPSMq than in D, which allows
reduction of the frequency range of GPSMq without a
significant degradation of prediction performance.
Further, the results in Figure 5 confirm that a frequency
range from 55 to 16 800Hz (2 to 40 ERB), as suggested
by Moore and Tan (2004), gave the highest Accuracy
and Monotonicity values for D.

The earlier analysis implies that differences in fre-
quency range are probably not the reason for perfor-
mance differences between GPSMq and D, but rather
differences in the postprocessing of auditory excitation
patterns. GPSMq and MoBi-Q assess (first-order) exci-
tation differences between the reference and the target
signals. HASQIv2 and D evaluate a weighted sum of the
standard deviation of the first-order and second-order
excitation differences. A comparison of the mean
Accuracy (GPSMq

DC: 0.88; D: 0.90) and mean
Monotonicity (GPSMq

DC: 0.91; D: 0.91) for
GPSMq

DC and D across the AFC, ATHD, and HTM
databases indicates that both first-order and second-
order auditory excitation differences are suitable for cap-
turing the spectral distortions in the databases used in
this study.

Prediction Performance of the Instrumental Measures. PEMO-
Q, CASP-Q, and Rnonlin by design do not explicitly
account for spectral distortions and thus gave on aver-
age poor to moderate prediction performance for the
three databases of this study. They have been demon-
strated to give accurate predictions for nonlinear distor-
tions (see Harlander et al., 2014; Huber & Kollmeier,
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Figure 5. Effect of the Range of Auditory Filter Center
Frequencies on Accuracy (Open Symbols) and Monotonicity (Closed
Symbols) for GPSM

q
DC (Large Symbols), Purely Based on Local

Power-Based SNRs, and D (Small Symbols). Right-pointing trian-
gles show the effect of varying the center frequency of the lowest
auditory channel, while the center frequency of the highest audi-
tory channel is fixed at 16 kHz for GPSM

q
DC and 16.8 kHz for D.

The left-pointing triangles are for a variation of the highest audi-
tory channel, while the lowest auditory channel has a fixed center
frequency of 63Hz for GPSM

q
DC and 55Hz for D.
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2006; Tan et al., 2004), but this is less relevant for audio
quality predictions of the AFC, ATHD, and HTM
databases.

PEAQ gave a very high Monotonicity value of 0.97
but a substantially lower Accuracy value of 0.78 for the
AFC database. This indicates a curvilinear relationship
between subjective and objective quality ratings (see
Figure 1), while the selected MOVs captured most of
the signal degrading aspects. The audio quality of the
stimuli in the ATHD and HTM databases was often
rated as intermediate, while PEAQ was intended to pre-
dict quality for small signal degradations of audio
codecs, which could explain the poor prediction perfor-
mance. Creusere et al. (2007) demonstrated that the pre-
diction performance of PEAQ substantially increased
when the MOVs were individually weighted for audio
sequences with small (sequences compressed at 32 to
64 kb/s, resulting in good to excellent subjective quality
ratings) and large (sequences compressed at 8 to 16 kb/s,
resulting in poor to fair subjective quality ratings) dis-
tortions. Applying such a recalculated weighting of the
MOVs might also help to increase the prediction perfor-
mance of PEAQ.

HASQI (mean Accuracy: 0.53) achieved substantially
lower average prediction performance than HASQIv2
(mean Accuracy: 0.82). This is surprising because the
two models apply the same concept, while using different
models of auditory periphery, to account for linear dis-
tortions, which are dominant for the three databases
used in this study. A comparison of the mean
Accuracy across the three databases only based on the
linear parts clearly demonstrates the advantage of the
revised peripheral stages in HASQIv2 (mean Accuracy:
0.64; mean Monotonicity: 0.67) compared with HASQI
(mean Accuracy: 0.5; mean Monotonicity: 0.54) but does
not explain such big differences in the overall perfor-
mance. Motivated by the work of Tan et al. (2004),
HASQIv2 includes a short-time correlation-based anal-
ysis of the TFS that is absent in HASQI. The combined
TFS and cepstrum correlation analysis, representing the
nonlinear analysis of HASQIv2, captured the effects of a
large number of distortions in this study, as the mean
Accuracy across the three databases was larger for the
nonlinear part (mean Accuracy: 0.79; mean
Monotonicity: 0.77) than for the linear part (mean
Accuracy: 0.64; mean Monotonicity: 0.67). For each of
the three databases, HASQIv2 predictions based on
cepstrum correlation (mean Accuracy: 0.76) achieved
higher Accuracy values than predictions based on TFS
analysis (mean Accuracy: 0.62), while the highest
Accuracy was obtained by combining the two features.
Moreover, cepstrum correlation based predictions of
HASQIv2 gave considerably better performance than
cepstrum correlation based predictions of HASQI,
which underlines the importance of the revised

peripheral stages in HASQIv2. Therefore, the joint ceps-
trum correlation and TFS analysis in HASQIv2, in com-
bination with the revised model of auditory periphery,
explain the differences in prediction performance
between HASQI and HASQIv2. While the linear part
of HASQI (a modified version of D) has moderate pre-
diction performance, the original version of D (mean
Accuracy: 0.90, mean Monotonicity: 0.91) gave very
accurate predictions. The comparison of these two meas-
ures implies a nonoptimal modification of D in HASQI
for the databases tested in this study.

BAM-Q predictions were calculated only for the
HTM database, for which some hearables had substan-
tial interaural distortions, while the other databases do
not have or have only slight binaural distortions. The
poor prediction performance of BAM-Q indicates that
binaural distortions are not the dominant factor for
audio quality degradations in the HTM database.

The combined monaural and binaural model MoBi-Q
was one of the four best performing instrumental meas-
ures, as shown in Figure 4. The accurate predictions of
MoBi-Q for the AFC (Accuracy: 0.96; Monotonicity:
0.97) and ATHD (Accuracy: 0.83; Monotonicity: 0.8)
databases with no or limited binaural distortions indi-
cate that the modified monaural GPSMq captures most
of the relevant distortions. The technical evaluation of
Denk et al. (2020) for the hearables of the HTM data-
base revealed large interaural differences for some devi-
ces, which, however, were subject to large monaural
distortions as well. An audio quality model that com-
bines monaural and binaural aspects of audio quality
may give more accurate quality predictions for a data-
base containing both monaural and binaural distortions
than a quality model that considers either monaural or
binaural distortions. The monaural GPSMq provided
the most accurate prediction performance (Accuracy:
0.93) for the HTM database. The reason why MoBi-Q
(Accuracy: 0.83) predictions were less accurate for that
database is further examined in the two last subsections
within the discussion.

Despite the success of purely monaural audio quality
models in this study, it should be mentioned that such
approaches are not expected to give sufficiently reliable
quality ratings for applications such as spatial sound
reproduction or binaural algorithms in hearing aids,
where signal processing strategies might introduce stron-
ger interaural differences than in the current study. Only
instrumental measures that additionally capture binau-
ral quality aspects are expected to accurately predict
audio quality for such applications as listeners also use
monaural and binaural information to make their qual-
ity judgment. Thus, an instrumental quality measure
combining monaural and binaural cues is in principle
more powerful as a purely monaural quality measures,
as it covers additional quality aspects. On the other
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hand, purely monaural quality measures can give accu-
rate quality predictions when monaural distortions are
dominant as shown in this study.

Influence of Training Data Sets

One goal of this study was to assess the applicability of
instrumental quality measures to distortions typically
occurring in hearables for both music and speech signals.
Besides aiming at accurate predictions for certain types
of distortion, many instrumental measures are designed
to predict aspects of either speech or audio (music) qual-
ity. Accordingly, different data sets have been used by
the developers to optimize their instrumental quality
measures, as described earlier.

As reported by Kates and Arehart (2010, 2014a),
HASQI and HASQIv2 were trained with speech stimuli
to predict effects on speech quality. Hearing-Aid Audio
Quality Index (not included in this study) is an adapted
instrumental measure, closely related to the HASQI
measures, but intended to predict audio quality.
Because all three databases used in this study contain
music and speech stimuli, while the HASQI measures
were originally designed for speech quality, better over-
all performance can be expected when only speech stim-
uli are considered. Indeed, HASQIv2 applied to the
speech signals only achieved higher Accuracy values
(AFC: 0.97; ATHD: 0.94; HTM: 0.66) than shown in
Table 1. Interestingly, applying HASQIv2 exclusively
to music signals resulted in only slightly lower
Accuracy values (AFC: 0.97; ATHD: 0.88; HTM: 0.63)
than for the speech quality predictions. Thus, HASQIv2
is able to capture relevant signal degrading aspects for
distortions occurring in this study for music and speech
signals, while the most critical point for performance
when applied to both types of signals seems to be the
joint representation of predictions for speech and music
quality.

Predictions of the linear measure D are based on the
final fitting parameters suggested in Table 1 of Moore
and Tan (2004), which can be expected to give reason-
able predictions for speech and music signals with linear
distortions. However, in the current study, D was always
based on center frequencies from 55 to 16 800Hz, which
agrees with the findings of Moore and Tan (2003) for
music signals, while according to that study frequencies
below about 123Hz and above 10 900Hz do not con-
tribute much to quality ratings for linearly distorted
speech signal. Thus, a narrower frequency range in com-
bination with speech-optimized fitting parameters given
in Table 1 of Moore and Tan (2004) might further
improve the prediction performance of D.

In this study, the same fitting parameters as used in
Biberger et al. (2018), derived by averaging the fitting
parameters for speech and music given in Figure 2 of

Tan et al. (2004), were applied to Rnonlin. Such averaged
parameters were used to enable a fair comparison to
other out-of-the-box models, while in Tan et al. (2004),
the fitting was done separately for the speech and music
signals for each database, to linearize the relationship
between subjective and objective ratings. As can be
expected, optimization of Rnonlin to the AFC database
improved Accuracy from 0.83 to 0.96, while
Monotonicity values were not affected. Accordingly, pre-
diction performance of Soverall, representing the combi-
nation of the linear measure D and the nonlinear
measure Rnonlin, was also improved (Accuracy: 0.98;
Monotonicity: 0.95; Consistency: 0.82; RMSE*: 1.4) by
applying the optimized Rnonlin. However, optimizing
Rnonlin to the ATHD and HTM databases did not sub-
stantially improve the prediction performance of Rnonlin

and Soverall. Distortions occurring in those databases
might not be sufficiently captured by Rnonlin.

As reported by Huber and Kollmeier (2006) and
Thiede et al. (2000), PEMO-Q and PEAQ were both
mainly optimized for music signals and for low-bit rate
audio codecs, which often introduced smaller signal deg-
radations than the algorithms and devices considered in
the current study. Although PEMO-Q does not explicitly
account for spectral cues, which are important here, it
can be expected that PEMO-Q and PEAQ would benefit
from recalibration with a data set containing similar
distortions as used in this study.

GPSMq was trained with music and speech signals
and a large variety of distortions. This might explain
why it accounts well for the variety of distortions occur-
ring in the current study. As for the other instrumental
measures, adjusting model parameters for speech and
music signals or optimizing the combination of auditory
features according to the distortions in the current data
sets is also expected to improve prediction results.

A more detailed assessment of the influence of the
databases used for optimizing the models is beyond the
scope of this article. However, it can be concluded that
besides the auditory feature representation in the
models, the data sets used for model calibration have a
strong impact on prediction performance, as they define
stimulus properties and the perceptual range of signal
impairments, where both aspects influence the fitting
or learning procedure used to derive an optimal feature
combination.

Effects of Room Reflections on Instrumental Quality
Ratings

To represent realistic room situations, the recording
rooms of the ATHD and HTM databases had reverber-
ation times (T60) ranging from about 0.35 s to 1.4 s. In
the MUSHRA evaluation, listeners compared the audio
quality of a reverberant reference signal with that of a
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reverberant signal processed by algorithms or hearables.

To assess the influence of T60 on the four best perform-

ing instrumental measures, the female speech and

jazz music samples recorded in rooms with T60 of

about 0.35 s, 0.45, and 1.4 s from the ATHD databases

were used.
GPSMq, D, MoBi-Q, and HASQIv2 were not explic-

itly trained with reverberant signals, and it was stated in

the original publications that effects of reverberation

were not considered during model development.

Nevertheless, the prediction performance of GPSMq,

D, and MoBi-Q for distortions in the ATHD database

was not degraded by increasing reverberation, as shown

by Accuracy and Monotonicity in Table 3, while the per-

formance of HASQIv2 dropped for the longest reverber-

ation time of about 1.4 s. Considering the importance of

spectral cues for GPSMq, D, and MoBi-Q predictions in

this study, it seems that spectral cues are hardly affected

by reverberation. As already mentioned for HASQIv2,

the nonlinear part appears to be more important for

quality predictions of distortions occurring in this

study than the linear part. For the echoic recording

room with T60 � 1.4 s, prediction performance of this

nonlinear part of HASQIv2 (HASQIv2nonlin) was clearly

degraded, as shown by the Accuracy and Monotonicity

values in Table 3, while the performance of the linear

part was barely degraded by reverberation. The severely

degraded prediction performances of HASQIv2TFS and

HASQIv2CepCorr for T60 � 1.4 s indicate that both TFS

and cepstral correlation features may be unreliable pre-

dictors of audio quality in rooms with moderate rever-

beration. This implies that, at least for the ATHD

database, spectral cues are more reliable for audio qual-

ity prediction of sounds in reverberant conditions than

cues based on TFS or cepstrum correlation.

Comparison of the HTM Database With Technical

Measures

Denk et al. (2020) technically evaluated the hear-through

mode of the hearing devices from the HTM database to

identify artefacts that potentially impair audio quality.

Hear-through impulse responses, the (hear-through) fre-

quency response at the eardrum, conservation of binau-

ral cues, and self-noise were measured. These measures

revealed large differences between the HTMs of the

Table 1. Accuracy (Acc), Monotonicity (Mon), Consistency (Con), and RMSE* Results for Different Instrumental Measures (Rows) for the
Adaptive Feedback Cancelation (AFC), Acoustically Transparent Hearing Device (ATHD), and Hear-Through Mode (HTM) Databases (Columns).

DB

Measure

AFC ATHD HTM

Acc Mon Con RMSE* Acc Mon Con RMSE* Acc Mon Con RMSE*

PEAQ 0.78 0.97 0.30 3.8 0.49 0.45 0.48 3.4 0.20 0.10 0.45 3.3

D 0.95 0.95 0.66 2.1 0.90 0.90 0.78 1.9 0.86 0.87 0.81 1.9

Rnonlin 0.83 0.91 0.42 3.4 0.17 0.01 0.43 3.9 0.18 0.14 0.44 3.5

Soverall 0.92 0.94 0.48 2.6 0.73 0.79 0.56 2.7 0.34 0.73 0.44 3.3

HASQI 0.92 0.94 0.45 2.7 0.52 0.46 0.53 3.3 0.15 0.14 0.38 3.6

HASQIv2 0.95 0.94 0.40 2.2 0.89 0.87 0.84 1.7 0.62 0.56 0.59 2.9

PEMO-Q 0.78 0.82 0.48 3.6 0.21 0.12 0.46 3.8 0.19 0.06 0.43 3.3

PEMO-QISO 0.80 0.86 0.45 3.5 0.21 0.11 0.46 3.9 0.16 0.23 0.47 3.5

CASP-QISO 0.50 0.55 0.38 4.4 0.41 0.22 0.46 3.6 0.11 0.16 0.45 3.5

CASP-QnoExp 0.21 0.11 0.30 5.0 0.37 0.21 0.46 3.7 0.08 0.09 0.45 3.5

GPSMq 0.95 0.91 0.70 2.0 0.87 0.86 0.78 2.0 0.93 0.91 0.91 1.3

BAM-Q – – – – – – – – 0.33 0.27 0.48 3.4

MoBi-Q 0.96 0.97 0.67 2.2 0.83 0.8 0.73 2.3 0.79 0.81 0.78 2.2

Note. Bold font indicates the best performing measure for Accuracy, Monotonicity, Consistency, and RMSE* for each database. ATHD¼ acoustically transparent

hearing device; CASP-Q¼Computational Auditory Signal processing and Perception model based Quality assessment; GPSMq¼Generalized Power

Spectrum Model for quality; BAM-Q¼Binaural Auditory Model for audio Quality; AFC¼ adaptive feedback cancelation; HTM¼ hear-through mode;

PEAQ¼ Perceptual Evaluation of Audio Quality; HASQI¼Hearing-Aid Speech Quality Index; HASQIv2¼Hearing-Aid Speech Quality Index version 2;

PEMO-Q¼ Perception Model based Quality assessment.

Table 2. Mean Accuracy (Acc), Monotonicity (Mon), Consistency
(Con), and RMSE� and the Corresponding Standard Deviation for
the Four Best Performing Instrumental Measures Calculated
Across the AFC, ATHD, and HTM Databases.

Acc Mon Con RMSE�

GPSMq 0.92� 0.04 0.89� 0.03 0.80�0.10 1.8�0.40

D 0.90� 0.05 0.91� 0.04 0.75� 0.08 2.0� 0.12

MoBi-Q 0.86� 0.09 0.86� 0.10 0.73� 0.09 2.2� 0.09

HASQIv2 0.82� 0.18 0.79� 0.20 0.61� 0.22 2.3� 0.60

Note. Bold font indicates the best performing instrumental measure for

Accuracy,Monotonicity, Consistency, and RMSE*. GPSMq¼Generalized Power

Spectrum Model for quality; HASQIv2¼Hearing-Aid Speech Quality Index

version 2; RMSE*¼ epsilon-insensitive root mean square error.
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devices and the open ear, potentially affecting perceived
acoustic transparency.

In the following, auditory-model-based quality pre-
dictions are compared with the technical measures used
by Denk et al. (2020) and corresponding subjective data
of Schepker et al. (2020), to assess whether the measured
differences between the hearing devices are reflected in
the predictions of the audio quality models. For this
comparison, the focus lay on the monaural models
GPSMq and D, as they provided accurate predictions
for the HTM database, and the MoBi-Q that accounts
for monaural and binaural distortions.

Device F gave the lowest subjective quality scores,
which could be explained by large delay differences
(left: 0.8ms, right: 10.4ms) between the left and right
devices, poor conservation of ILDs and ITDs, and spec-
tral ripples in the hear-through (diffuse-field) frequency
response of the right channel (see Figures 4, 6, and 7 in
Denk et al., 2020). Device F gave the lowest scores for
the binaural quality model BAM-Q. When only monau-
ral aspects were considered, Devices F, D, and K
(occluded ear, served as anchor signal) were given low
scores by the monaural audio quality models GPSMq

and D. These models did not correctly rank the scores
for Devices F, D, and K. This indicates either that mon-
aural distortions were insufficiently represented by the
monaural models or that binaural distortions signifi-
cantly contributed to perceived audio quality. If the
latter is true, audio quality predictions of the combined
monaural and binaural model MoBi-Q should reflect the
subjective ranking of Devices F, D, and K, but it did not.
This can be explained by the method of combining mon-
aural and binaural quality predictions, where only the
domain (either monaural or binaural) with dominant
quality differences was taken into account. As is
shown in the following section, an additive combination

of monaural and binaural objective ratings gave more
accurate quality predictions.

Device C achieved the highest subjective quality
rating. The technical evaluation of Denk et al. (2020)
revealed no significant delay differences and only slightly
distorted ITDs and ILDs for Device C compared with
the open-ear reference. The measurements of Denk et al.
further showed very good binaural cue conservation for
Devices A and B. These measurements agree well with
quality predictions of the binaural BAM-Q, where
Devices A to C showed on average the highest and sim-
ilar quality scores (see Figure 3). The differences in the
subjective quality ratings for Devices A to C must be
explained by monaural differences, which can be
observed in the middle panel of Figure 6 in Denk et al.
(2020), showing HRTFs at the eardrum for the hear-
through case. The hear-through response of Device C
matched the open-ear response over a large frequency
range. Large deviations from the open-ear response
only occurred at frequencies above 10 kHz. The hear-
through response of Device A showed spectral ripples
below 1 kHz, while the response of Device B showed a
large attenuation below 0.5 kHz and above 10 kHz com-
pared with the open-ear response. All of the three best
performing monaural models GPSMq, D, and
HASQIv2, which correctly predicted higher scores for
Device C than for Devices A and B, explicitly account
for (monaural) spectral cues. Other audio quality models
that do not explicitly represent (monaural) spectral cues,
such as PEMO-Q, CASP-Q and Rnonlin, failed to
account for such distortions.

Device J (denoted as UOL Tr. Earpiece in Denk et al.,
2020) included some distortions of ITDs and ILDs.
Despite the fact that the hear-through response of the
right channel of Device J showed a substantial comb-
filter effect for frequencies< 1 kHz (see Figure 6 in

Table 3. Accuracy (Acc) and Monotonicity (Mon) Results for GPSMq, D, MoBi-Q, and HASQIv2 Across Female Speech and Jazz Music
Samples for Different Reverberation Times (T60).

T60 �0:35 s T60 �0:45 s T60 �1:4 s

Acc Mon Acc Mon Acc Mon

GPSMq 0.86 0.81 0.93 0.96 0.88 0.91

D 0.92 0.89 0.95 0.94 0.90 0.92

MoBi-Q 0.83 0.79 0.91 0.93 0.83 0.84

HASQIv2 0.94 0.89 0.94 0.93 0.81 0.76

HASQIv2lin 0.89 0.86 0.87 0.89 0.82 0.86

HASQIv2nonlin 0.89 0.87 0.86 0.79 0.67 0.64

HASQIv2TFS 0.75 0.70 0.78 0.80 0.55 0.54

HASQIv2CepCorr 0.80 0.82 0.75 0.74 0.56 0.54

Note. Predictions based on the linear part of HASQIv2, denoted HASQIv2lin, and predictions based on the nonlinear part denoted HASQIv2nonlin are shown.

Predictions of the nonlinear part of HASQIv2 are based on TFS and cepstrum correlation features. To disentangle their contribution to HASQIv2nonlin,
prediction results of HASQIv2TFS and HASQIv2CepCorr are also provided. Bold values indicate the best performing objective measure for Accuracy and

Monotonicity. GPSMq¼Generalized Power Spectrum Model for quality; HASQIv2¼Hearing-Aid Speech Quality Index version 2.
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Denk et al., 2020), it achieved fairly high subjective qual-
ity ratings, as predicted by GPSMq and D. This demon-
strates the importance of using auditory-based quality
models, as technical measures can show large differences
between the processed (Device J) and the unprocessed
(open-ear) signals, which might have only a minor
impact on subjective quality ratings.

Self-noise was another factor measured by Denk et al.
(2020) to characterize hearing device performance. This
measure makes sense in a quiet environment, where self-
noise generated by the devices might disturb listeners
and thus reduce audio quality. However, quality rating
scores were obtained for speech and music signals in
rooms with mild reverberation (T60 � 0.45 s), where it
was not expected that self-noise would influence quality
ratings. This is supported by the fact that Device C
received the highest subjective quality score but had
the highest self-noise. It is not expected that self-noise
had an effect on the audio quality predictions in this
study. Further, it should be mentioned that no self-
noise normalization was carried out in the study of
Schepker et al. (2020), to preserve potential effects of
self-noise in realistic situations.

As shown in this section, it may be beneficial for algo-
rithm developers as well as for the developers of auditory
models to jointly compare measures that technically
describe system properties with predictions from (reli-
able) audio quality models.

Implication for Joint Predictions of Monaural and
Binaural Distortions Occurring in Hearing Devices

MoBi-Q predictions for the HTM database showed
some deviations from subjective scores, which might be
explained by the method of combining the outputs of the
monaural GPSMq (OPMdual; with binaural modification
to reduce its sensitivity to ILD and ITD differences) and
the binaural BAM-Q (binQ), as mentioned in the previ-
ous section.

Here, two modifications of MoBi-Q are suggested.
First, sigmoid functions were applied to OPMdual and
binQ, where the slope and the sigmoid’s midpoint were
fitting parameters. The values of these parameter as
shown in the denominators of Equation 2, resulted
from a least-squares fitting procedure to the subjective
quality ratings for the HTM database.

Overall quality ¼ 1

1þ e�0:1188�ðOPMdual�38:9817Þ

þ 1

1þ e�0:0192�ðbinQþ20:8263Þ (2)

Second, the transformed OPMdual and binQ values
were added to predict overall quality. It should be
noted that Equation 2 is used for all stimulus types.

The sigmoid function of Equation 2, shown in
Figure 7, allows overall quality to range from 0.6 (very
strong differences between reference and test signals) to
about 1.9 (no perceptible differences). A rescaling was
applied to bound the MoBi-Qadd quality scores between
0 and 1.

The sigmoid transformation adapts the OPMdual and
binQ scores, which were originally calibrated to exclu-
sively monaural and binaural distortions in the database
of Fleßner et al. (2019), to the current HTM database.
The fitted sigmoid function parameters allow assessment
of the contribution of monaural and binaural quality
aspects. The revised MoBi-Q version is denoted MoBi-
Qadd in the following.

MoBi-Qadd achieved better prediction performance
for the HTM database (Accuracy: 0.92; Monotonicity:
0.9, Consistency: 0.93, RMSE*: 1.3 dB) than MoBi-Q
(Accuracy: 0.79; Monotonicity: 0.81; Consistency: 0.78;
RMSE*: 2.2 dB).

As shown in Figure 6, MoBi-Qadd also gave very good
prediction performance for the AFC (Accuracy: 0.95;
Monotonicity: 0.96; Consistency: 0.62; RMSE*: 2.1 dB)
and ATHD (Accuracy: 0.85; Monotonicity: 0.82;
Consistency: 0.75; RMSE*: 2.2 dB) databases, resulting
in better overall performance (Acc: 0.91; Mon: 0.89; Con:
0.77; RMSE� : 1.9 dB) of MoBi-Qadd than for MoBi-Q
(see Table 2). The sigmoid functions of Equation 2,
shown in Figure 7, indicate that overall quality was
mainly driven by the monaural GSPMq. Further, the
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Figure 6. Predictions From MoBi-Qadd for the AFC, ATHD, and
HTM Databases. The x axis represents subjective ratings, while the
abscissa represents model predictions.
AFC¼ adaptive feedback cancelation; ATHD¼ acoustically trans-
parent hearing device; HTM¼ hear-through mode.
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contribution of the binaural BAM-Q to overall quality
was strongest for strong signal degradations.

To assess MoBi-Qadd for other signal distortions, the
database of Fleßner et al. (2019) was used, which intro-
duced a variety of monaural and binaural distortions to
music, noise, and speech signals. Here, MoBi-Qadd

(Accuracy: 0.83; Monotonicity: 0.79; Consistency: 0.92;
RMSE*: 1.4 dB) gave slightly lower prediction perfor-
mance than MoBi-Q (Accuracy: 0.86; Monotonicity:
0.8; Consistency: 0.95; RMSE*: 1.3 dB). This can be
explained by differences in the contribution of monaural
and binaural distortions between the two databases:
Fleßner et al. (2019) used artificial monaural and binau-
ral distortions that gave comparable subjective quality
ratings and thus similar perceptual salience of monaural
and binaural distortions. The model predictions in this

study indicate that the devices in the HTM database

mainly introduced monaural distortions, while binaural

distortions were of minor importance. Because MoBi-

Qadd was optimized using the HTM database, a strong

contribution of monaural distortions is also represented

in the combination of the monaural and binaural model

pathways in MoBi-Qadd. For that reason, MoBi-Qadd

slightly underestimated quality degradations from bin-

aural distortions in the database of Fleßner et al. (2019).
A further relevant aspect concerns differences of the

monaural component of MoBi-Q from the monaural

GPSMq (Biberger et al., 2018). The monaural GPSMq

in MoBi-Q is applied to the reference and the test signals

from the left and the right ears and thus potentially

shows some sensitivity to interaural differences mediated

by monaural signal features and artifacts. A modified

GPSMq was used in MoBi-Q to reduce its sensitivity

to ILDs and ITDs and to ensure that the binaural fea-

tures ILDs and ITDs were only captured by the binaural

component of the model BAM-Q (see Figure 4 in

Fleßner et al., 2019). Because GPSMq provided very

accurate predictions for the three databases used here,

the question arises whether the modified GPSMq in

MoBi-Q can be replaced by the original GPSMq without

impairing the prediction performance of MoBi-Q. To

assess this, an additive combination applying the sig-

moid functions of Equation 2, but using different fitting

parameters to combine the outputs of the original

GPSMq (without binaural modification) and BAM-Q,

was tested (MoBi-Qadd,origGPSMq). The results given in

Table 4 indicate slightly better prediction performance

for the current AFC, ATHD, and HTM databases.

However, across all four databases (AFC, ATHD,

HTM, and Fleßner et al., 2019), MoBi-Qadd provided

consistently high prediction performance achieving

Accuracy values
 0.83 and a mean Accuracy of 0.89

for all databases, and so this appears to be the best

broadly applicable model version. It should be
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Figure 7. Sigmoid Functions (see Equation 2) Applied to the
Monaural GPSMq With Binaural Modification and the Binaural
BAM-Q in MoBi-Qadd. The x axis represents the objective quality
score from the original model, while the abscissa represents the
transformed quality score.

Table 4. Accuracy (Acc), Monotonicity (Mon), Consistency (Con), and RMSE* Results for the Suggested Additive Combination of the Outputs
of GPSMq With Binaural Modification (Fleßner et al., 2019) and BAM-Q (Denoted as MoBi-Qadd) and for an Alternative Approach That
Also Applies an Additive Combination, but Using the Outputs of the Original GPSMq (Biberger et al., 2018) Without Binaural Modification
and BAM-Q (Denoted MoBi-Qaddd,origGPSMq).

Measure

DB

MoBi-Qadd MoBi-Qadd,origGPSMq MoBi-Q

Acc Mon Con RMSE* Acc Mon Con RMSE* Acc Mon Con RMSE*

AFC 0.95 0.96 0.62 2.1 0.96 0.94 0.70 1.8 0.96 0.97 0.67 2.2

ATHD 0.85 0.82 0.75 2.2 0.86 0.87 0.74 2.0 0.83 0.80 0.73 2.3

HTM 0.92 0.90 0.93 1.3 0.93 0.92 0.94 1.2 0.79 0.81 0.78 2.2

Fleßner et al. (2019) 0.83 0.79 0.92 1.4 0.74 0.75 0.87 1.8 0.86 0.80 0.95 1.3

Note. For comparison, results for the original MoBi-Q (Fleßner et al., 2019), which were presented in Table 1 and in the text, are reproduced in this table.

Bold values indicate the best performing objective measure for Accuracy, Monotonicity, Consistency, and RMSE*. ATHD¼ acoustically transparent hearing

device; AFC¼ adaptive feedback cancelation; HTM¼ hear-through mode.
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mentioned that the other instrumental measures used in
this study, as far as they provide a proper feature repre-
sentation, are expected to improve their prediction per-
formance as well, when they are optimized for the
distorted signals of the HTM database. However, it
cannot be expected that monaural instrumental meas-
ures achieve better performance than MoBi-Qadd for
the distortions used for the database of Fleßner et al.
(2019). This was confirmed for GPSMq, D, and
HASQIv2 which obtained Accuracy values of 0.75,
0.64, and 0.18, respectively. Consequently, MoBi-Qadd

shows the highest mean Accuracy across the AFC,
ATHD, HTM and Fleßner et al. (2019) databases.

This analysis demonstrated why it is important to test
instrumental measures with artificial signals, as well as
with real algorithms or devices, to achieve a large variety
of distortions with different monaural and binaural con-
tributions. Although the proposed instrumental measure
MoBi-Qadd was evaluated using four databases with dif-
ferent monaural and binaural distortions occurring in
music, speech, and noise signals, further databases with
other types of distortions (e.g., from noise reduction
algorithms) related to hearables should be assessed in
the future, to draw a more conclusive picture about its
predictive power and limitations.

Summary and Conclusions

Thirteen auditory-based instrumental audio quality
measures were evaluated using three databases including
music, noise, and speech signals impaired by distortions
that typically occur in smart headphones or hearables.
The following conclusions can be drawn:

• The monaural GPSMq (Biberger et al., 2018) and the
measure of perceived naturalness D (Moore & Tan,
2004) achieved better average prediction performance
across a large variety of signal distortions related to
hearables than the other auditory-based quality
models tested in this study. Two other quality meas-
ures, MoBi-Q (Fleßner et al., 2019) and HASQIv2
(Kates & Arehart, 2014a), also achieved high predic-
tion performance for the distortions considered in this
study.

• Accurate predictions of the perceptual effects of spec-
tral distortions in instrumental quality measures are
important for application to algorithms in smart
headphones or hearables. Binaural distortions made
lower contribution to perceived overall audio quality
than monaural distortions.

• Audio quality predictions for distorted signals
recorded in rooms with different reverberation times
implied that spectral cues are more reliable for quality
prediction in reverberation than cues based on TFS or
cepstrum correlation.

• A modified and additive combination of the monau-

ral and binaural quality components (GPSMq and

BAM-Q outputs) in MoBi-Qadd based on Fleßner

et al. (2019) is suggested. MoBi-Qadd provided the

best, consistently and homogeneously high prediction

performance, achieving Pearson linear correlation

coefficient values 
 0.83 (a mean Pearson linear cor-

relation coefficient value of 0.89) for the current three

databases and the database of Fleßner et al. (2019).

The suggested MoBi-Qadd will be made publicly

available.1

Acknowledgments

The authors would like to thank the members of Medizinische

Physik and Birger Kollmeier for continued support. The

authors would also like to thank James Kates and Kathryn

Arehart for providing the HASQI and HASQIv2 code,

Rainer Huber for providing his implementations of D and

Rnonlin, and J.-H. Fleßner for helpful discussions regarding

predictions of BAM-Q and MoBi-Q. Further, the authors

would like to thank Brian C. J. Moore and the two anonymous

reviewers for their helpful comments on an earlier version of

the article.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The authors disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This work was supported by the Deutsche

Forschungsgemeinschaft (DFG – 352015383 – SFB1330 A2

and additionally, A4, and C1).

ORCID iDs

Thomas Biberger https://orcid.org/0000-0002-6314-1914

Florian Denk https://orcid.org/0000-0003-3490-123X

Notes

1. A MATLAB implementation of the MoBi-Qadd with revised

back end is provided under: www.faame4u.com
2. The MUSHRA drag and drop (V€olker et al., 2018) was

designed to maximize the accessibility of MUSHRA for

elderly and technically nonexperienced listeners, who con-

stitute the typical target group in hearing aid evaluation. As

shown in Figure 3 in V€olker et al. (2018), the buttons rep-

resenting the test items are placed via drag and drop within

a rating field ranging from bad to excellent.

References

Ando, Y., & Kurihara, Y. (1986). Nonlinear response in eval-

uating the subjective diffuseness of sound fields. Journal of

Biberger et al. 19

https://orcid.org/0000-0002-6314-1914
https://orcid.org/0000-0002-6314-1914
https://orcid.org/0000-0003-3490-123X
https://orcid.org/0000-0003-3490-123X
http://www.faame4u.com


the Acoustical Society of America, 80(3), 833–836. https://

doi.org/10.1121/1.393906
Beerends, J. G., Hekstra, A. P., Rix, A. W., & Hollier, M. P.

(2002). Perceptual evaluation of speech quality (PESQ): The

new ITU standard for end-to-end speech quality assessment

part II - Psychoacoustic model. Journal of the Audio

Engineering Society, 50(10), 765–778.
Beerends, J. G., Schmidmer, C., Berger, J., Obermann, M.,

Ullmann, R., Pomy, J., & Keyhl, M. (2013a). Perceptual

objective listening quality assessment (POLQA), the third

generation ITU-T standard for end-to-end speech quality

measurement part I - temporal alignment. Journal of the

Audio Engineering Society, 61(6), 366–384.
Beerends, J. G., Schmidmer, C., Berger, J., Obermann, M.,

Ullmann, R., Pomy, J., & Keyhl, M. (2013b). Perceptual

objective listening quality assessment (POLQA), the third

generation ITU-T standard for end-to-end speech quality

measurement part II - perceptual model. Journal of the

Audio Engineering Society, 61(6), 385–402.
Beerends, J. G., & Stemerdink, J. A. (1992). A perceptual

audio quality measure based on a psychoacoustic sound

representation. Journal of the Audio Engineering Society,

40(12), 963–978.
Beerends, J. G., & Stemerdink, J. A. (1994). A perceptual

speech-quality measure based on a psychoacoustic sound

representation. Journal of the Audio Engineering Society,

42(3), 115–123.
Biberger, T., & Ewert, S. D. (2016). Envelope and intensity

based prediction of psychoacoustic masking and speech

intelligibility. Journal of the Acoustical Society of America,

140(2), 1023–1038. http://dx.doi.org/10.1121/1.4960574
Biberger, T., & Ewert, S. D. (2017). The role of short-time

intensity and envelope power for speech intelligibility and

psychoacoustic masking. Journal of the Acoustical Society of

America, 142(2), 1098–1111. http://dx.doi.org/10.1121/1.

4999059
Biberger, T., Fleßner, J.-H., Huber, R., & Ewert, S. D. (2018).

An objective audio quality measure based on power and

envelope power cues. Journal of the Audio Engineering

Society, 66(7/8), 578–593. https://doi.org/10.17743/jaes.

2018.0031
Blauert, J., & Lindemann, W. (1986). Spatial mapping of intra-

cranial auditory events for various degrees of interaural

coherence. Journal of the Acoustical Society of America,

79(3), 806–813. https://doi.org/10.1121/1.393471
Creusere, C. D., Kallakuri, K. D., & Vanam, R. (2007). An

objective metric of human subjective audio quality opti-

mized for a wide range of audio fidelities. IEEE

Transactions on Audio, Speech and Language Processing,

16(1), 129–136. https://doi.org/10.1109/TASL.2007.907571
Damaske, P., & Ando, Y. (1972). Interaural crosscorrelation

for multichannel loudspeaker reproduction. Acustica, 27(4),

232–238.
Dau, T., Kollmeier, B., & Kohlrausch, A. (1997a). Modeling

auditory processing of amplitude modulation. I. Detection

and masking with narrow-band carriers. Journal of the

Acoustical Society of America, 102(5), 2892–2905. http://

dx.doi.org/10.1121/1.420344

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997b). Modeling

auditory processing of amplitude modulation. II. Spectral

and temporal integration. Journal of the Acoustical Society

of America, 102(5), 2906–2919. http://dx.doi.org/10.1121/1.

420345
Denk, F., Hiipakka, M., Kollmeier, B., & Ernst, S. M. A.

(2018). An individualised acoustically transparent earpiece

for hearing devices. International Journal of Audiology, 57,

62–70. http://dx.doi.org/10.1080/14992027.2017.1294768
Denk, F., Schepker, H., Doclo, S., & Kollmeier, B. (2020).

Acoustic transparency in concurrent hearables – Technical

evaluation. Journal of the Audio Engineering Society, 68(7/

8), 508–521. https://doi.org/10.17743/jaes.2020.0042
Dietz, M., Ewert, S. D., & Hohmann, V. (2011). Auditory

model based direction estimation of concurrent speakers

from binaural signals. Speech Communication, 53(5),

592–605. https://doi.org/10.1016/j.specom.2010.05.006
Emiya, V., Vincent, E., Harlander, N., & Hohmann, V. (2011).

Subjective and objective quality assessment of audio source

separation. IEEE Transactions on Audio, Speech and

Language Processing, 19(7), 2046–2057. https://doi.org/10.

1109/TASL.2011.2109381
Ewert, S. D., & Dau, T. (2000). Characterizing frequency selec-

tivity for envelope fluctuations. Journal of the Acoustical

Society of America, 108(3), 1181–1196. http://dx.doi.org/

10.1121/1.1288665
Fletcher, H. (1940). Auditory patterns. Reviews of Modern

Physics, 12(47), 47–65. https://doi.org/10.1103/RevModPh

ys.12.47
Fleßner, J.-H., Biberger, T., & Ewert, S. D. (2019). Subjective

and objective assessment of monaural and binaural aspects

of audio quality. IEEE Transactions on Audio, Speech and

Language Processing, 27(7), 1112–1125. https://doi.org/10.

1109/TASLP.2019.2904850
Fleßner, J.-H., Huber, R., & Ewert, S. D. (2017). Assessment

and prediction of binaural aspects of audio quality. Journal

of the Audio Engineering Society, 65(11), 929–942. https://

doi.org/10.17743/jaes.2017.0037
Glasberg, B. R., & Moore, B. C. J. (1990). Derivation of audi-

tory filter shapes from notched-noise data. Hearing

Research, 47(1–2), 103–138. https://doi.org/10.1016/0378-

5955(90)90170-T
Glasberg, B. R., & Moore, B. C. J. (2005). Development and

evaluation of a model for predicting the audibility of time-

varying sounds in the presence of background sounds.

Journal of the Audio Engineering Society, 53(10), 906–918.
Harlander, N., Huber, R., & Ewert, S. D. (2014). Sound qual-

ity assessment using auditory models. Journal of the Audio

Engineering Society, 62(5), 324–336. https://doi.org/10.

17743/jaes.2014.0020
Hoffmann, P., Christensen, F., & Hammershøi D. (2013,

August). Insert earphone calibration for hear-through

options. Proceedings of the Audio Engineering Society

Conference 51: Loudspeakers and Headphones, Helsinki,

Finland.
Hu, Y., & Loizou, P. C. (2007). A comparative intelligibility

study of single-microphone noise reduction algorithms.

Journal of the Acoustical Society of America, 122(3),

1777–1786. https://doi.org/10.1121/1.2766778

20 Trends in Hearing

https://doi.org/10.1121/1.393906
https://doi.org/10.1121/1.393906
http://dx.doi.org/10.1121/1.4960574
http://dx.doi.org/10.1121/1.4999059
http://dx.doi.org/10.1121/1.4999059
https://doi.org/10.17743/jaes.2018.0031
https://doi.org/10.17743/jaes.2018.0031
https://doi.org/10.1121/1.393471
https://doi.org/10.1109/TASL.2007.907571
http://dx.doi.org/10.1121/1.420344
http://dx.doi.org/10.1121/1.420344
http://dx.doi.org/10.1121/1.420345
http://dx.doi.org/10.1121/1.420345
http://dx.doi.org/10.1080/14992027.2017.1294768
https://doi.org/10.17743/jaes.2020.0042
https://doi.org/10.1016/j.specom.2010.05.006
https://doi.org/10.1109/TASL.2011.2109381
https://doi.org/10.1109/TASL.2011.2109381
http://dx.doi.org/10.1121/1.1288665
http://dx.doi.org/10.1121/1.1288665
https://doi.org/10.1103/RevModPhys.12.47
https://doi.org/10.1103/RevModPhys.12.47
https://doi.org/10.1109/TASLP.2019.2904850
https://doi.org/10.1109/TASLP.2019.2904850
https://doi.org/10.17743/jaes.2017.0037
https://doi.org/10.17743/jaes.2017.0037
https://doi.org/10.17743/jaes.2014.0020
https://doi.org/10.17743/jaes.2014.0020
https://doi.org/10.1121/1.2766778


Huber, R., & Kollmeier, B. (2006). PEMO-Q - A new method

for objective audio quality assessment using a model of

auditory perception. IEEE Transactions on Audio, Speech

and Language Processing, 14(6), 1902–1911. https://doi.

org/10.1109/TASL.2006.883259
ISO 226. (2003). Acoustics – Normal equal-loudness-level con-

tours. Geneva, Switzerland: International Organization for

Standardization.
TU-R BS.1116-1. (1997). Methods for the subjective assessment

of small impairments in audio systems including multichannel

sound systems. Geneva, Switzerland: International

Telecommunications Union.
ITU-R BS.1387. (2001). Method for objective measurements of

perceived audio quality. Geneva, Switzerland: International

Telecommunications Union.
ITU-R BS.1534. (2014). Method for the subjective assessment of

intermediate quality levels of coding systems. Geneva,

Switzerland: International Telecommunications Union.
ITU-R BS.1534-1. (2003). Method for the subjective assessment

of intermediate quality levels of coding systems. Geneva,

Switzerland: International Telecommunications Union.
ITU-T. P800. (1996). Methods for subjective determination of

transmission quality. Geneva, Switzerland: International

Telecommunications Union.
ITU-T P.862. (2001). Perceptual evaluation of speech quality

(PESQ): An objective method for end-to-end speech

quality assessment of narrow-band telephone networks and

speech codecs. Geneva, Switzerland: International

Telecommunications Union.
ITU-T Rec P.1401. (2012). Methods, metrics and procedures for

statistical evaluation, qualification and comparison of objec-

tive quality prediction models. Geneva, Switzerland:

International Telecommunications Union.
Jepsen, M. L., Ewert, S. D., & Dau, T. (2008). A computation-

al model of human auditory signal processing and percep-

tion. Journal of the Acoustical Society of America, 124(1),

422–438. http://dx.doi.org/10.1121/1.2924135
Jørgensen, S., Ewert, S. D., & Dau, T. (2013). A multi-

resolution envelope-power based model for speech intelligi-

bility. Journal of the Acoustical Society of America, 134(1),

436–446. http://dx.doi.org/10.1121/1.4807563
Jurado, C., & Moore, B. C. J. (2010). Frequency selectivity for

frequencies below 100 Hz: Comparisons with mid-frequen-

cies. Journal of the Acoustical Society of America, 128(6),

3585–3596. https://doi.org/10.1121/1.3504657
Kates, J. M., & Arehart, K. H. (2010). The hearing-aid speech

quality index (HASQI). Journal of the Audio Engineering

Society, 58(5), 363–381.
Kates, J. M., & Arehart, K. H. (2014a). The hearing-aid speech

quality index (HASQI) version 2. Journal of the Audio

Engineering Society, 62(3), 99–116. https://doi.org/10.

17743/jaes.2014.0006
Kates, J. M., & Arehart, K. H. (2014b). The hearing-aid speech

perception index (HASPI). Speech Communication, 65,

75–93. https://doi.org/10.1016/j.specom.2014.06.002
Kates, J. M., & Arehart, K. H. (2016). The hearing-aid audio

quality index (HAAQI). IEEE Transactions on Audio,

Speech and Language Processing, 24(2), 354–365. https://

doi.org/10.1109/TASLP.2015.2507858

Kendall, G. S. (1995). The decorrelation of audio signals and

its impact on spatial imagery. Computer Music Journal,

19(4), 71–87. https://doi.org/10.2307/3680992

Madsen, S. M. K., & Moore, B. C. J. (2014). Music and hear-

ing aids. Trends in Hearing, 18, 1–29. https://doi.org/10.

1177/2331216514558271
Marentakis, G., & Liepins, R. (2014). Evaluation of hear-

through sound localization. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems ACM,

Toronto, Canada (pp. 267–270). Association for Computing

Machinery.
Maxwell, J. A., & Zurek, P. M. (1995). Reducing acoustic

feedback in hearing aids. IEEE Transactions on Speech

and Audio Processing, 3(4), 304–313. https://doi.org/10.

1109/89.397095
Moore, B. C. J., & Glasberg, B. R. (1983). Suggested formulae

for calculating auditory filter bandwidths and excitation

patterns. Journal of the Acoustical Society of America,

74(3), 750–753. http://dx.doi.org/10.1121/1.389861
Moore, B. C. J., & Tan, C.-T. (2003). Perceived naturalness of

spectrally distorted speech and music. Journal of the

Acoustical Society of America, 114(1), 408–419. https://

doi.org/10.1121/1.1577552
Moore, B. C. J., & Tan, C.-T. (2004). Development and vali-

dation of a method for predicting the perceived naturalness

of sounds subjected to spectral distortion. Journal of the

Audio Engineering Society, 52(9), 900–914.
Moore, B. C. J., Tan, C.-T., Zacharov, N., & Mattila, V.-V.

(2004). Measuring and predicting the perceived quality of

music and speech subjected to combined linear and non-

linear distortion. Journal of the Audio Engineering Society,

52(12), 1228–1244.
Muller, M., Robertson, D., & Yates, G. K. (1991). Rate-

versus-level functions of primary auditory nerve fibres:

Evidence for square law behaviour of all fibre categories

in the guinea pig. Hearing Research, 55(1), 50–56. https://

doi.org/10.1016/0378-5955(91)90091-M
Munson, W. A., & Gardner, M. B. (1950). Standardizing audi-

tory tests. Journal of the Acoustical Society of America, 22,

675. http://dx.doi.org/10.1121/1.1917190
Nordholm, S., Schepker, H., Tran, L. T. T., & Doclo, S.

(2018). Stability-controlled hybrid adaptive feedback can-

cellation scheme for hearing aids. Journal of the Acoustical

Society of America, 143(1), 150–166. https://doi.org/10.

1121/1.5020269
Patterson, R. D., &Moore, B. C. J. (1986). Auditory filters and

excitation patterns as representations of frequency resolu-

tion. In B. C. J. Moore (Ed.), Frequency selectivity in hear-

ing (pp. 123–177). New York: Academic.
Rix, A.W., Hollier, M. P., Hekstra, A. P., & Beerends, J. G.

(2002). Perceptual evaluation of speech quality (PESQ). The

new ITU standard for end-to-end speech quality assessment

part I - Time-delay compensation. Journal of the Audio

Engineering Society, 50(10), 755–765.
Rumsey, F. (2019). Headphone technology: Hear-through,

bone conduction, noise canceling. Journal of the Audio

Engineering Society, 67(11), 914–919.
Sch€afer, M., Bahram, M., & Vary, P. (2013, May). An exten-

sion of the PEAQ measure by a binaural hearing model.

Biberger et al. 21

https://doi.org/10.1109/TASL.2006.883259
https://doi.org/10.1109/TASL.2006.883259
http://dx.doi.org/10.1121/1.2924135
http://dx.doi.org/10.1121/1.4807563
https://doi.org/10.1121/1.3504657
https://doi.org/10.17743/jaes.2014.0006
https://doi.org/10.17743/jaes.2014.0006
https://doi.org/10.1016/j.specom.2014.06.002
https://doi.org/10.1109/TASLP.2015.2507858
https://doi.org/10.1109/TASLP.2015.2507858
https://doi.org/10.2307/3680992
https://doi.org/10.1177/2331216514558271
https://doi.org/10.1177/2331216514558271
https://doi.org/10.1109/89.397095
https://doi.org/10.1109/89.397095
http://dx.doi.org/10.1121/1.389861
http://dx.doi.org/10.1121/1.1917190
https://doi.org/10.1121/1.5020269
https://doi.org/10.1121/1.5020269


Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, Vancouver,
Canada. https://doi.org/10.1109/icassp.2013.6639256

Schepker, H., Denk, F., Kollmeier, B., & Doclo, S. (2019,
August). Subjective sound quality evaluation of an acousti-

cally transparent hearing device. Proceedings of the 2nd AES
Conference on Headphone Technology, San Francisco,
USA.

Schepker, H., Denk, F., Kollmeier, B., & Doclo, S. (2020).
Subjective quality evaluation of commercial hearing assis-
tive devices with transparency features. Journal of the Audio
Engineering Society, 68(7/8), 495–507. https://doi.org/10.
17743/jaes.2020.0045

Seo, J.-H., Chon, S. B., Sung, K.-M., & Choi, I. (2013).
Perceptual objective quality evaluation method for high
quality multichannel audio codecs. Journal of the Audio

Engineering Society, 61(7/8), 535–545.
Takanen, M., Wierstorf, H., Pulkki, V., & Raake, A. (2014,

August). Evaluation of sound field synthesis techniques with a

binaural auditory model. Proceedings of the 55th AES
Conference, Helsinki, Finland.

Tan, C.-T., Moore, B. C. J., & Zacharov, N. (2003). The effect

of nonlinear distortion on the perceived quality of music
and speech signals. Journal of the Audio Engineering

Society, 51(11), 1012–1031.

Tan, C.-T., Moore, B. C. J., Zacharov, N., & Mattila, V.-V.

(2004). Predicting the perceived quality of nonlinearly dis-

torted music and speech signals. Journal of the Audio

Engineering Society, 52(7/8), 699–711.
Temme, S. F. (2019, November). Testing audio performance

of hearables. Proceedings of the 2nd AES Conference on

Headphone Technology, San Francisco, USA.

Thiede, T., Treurniet, W. C., Bitto, R., Schmidmer, C., Sporer,

T., Beerends, J. G., Colomes, C., Keyhl, M., Stoll, G.,

Brandenburg, K., & Feiten, B. (2000). PEAQ - The ITU

standard for objective measurement of perceived audio qual-

ity. Journal of the Audio Engineering Society, 48(1/2), 3–29.
V€olker, C., Bisitz, T., Huber, R., Kollmeier, B., & Ernst,

S. M. A. (2018). Modifications of the MUlti Stimulus

Test with Hidden Reference and Anchor (MUSHRA) for

use in audiology. International Journal of Audiology, 57,

92–104. https://doi.org/10.1080/14992027.2016.1220680
Yates, G. K., Winter, I. M., & Robertson, D. (1990). Basilar

membrane nonlinearity determines auditory nerve rate-

intensity functions and cochlear dynamic range. Hearing

Research, 45(3), 203–220. https://doi.org/10.1016/0378-

5955(90)90121-5

22 Trends in Hearing

https://doi.org/10.1109/icassp.2013.6639256
https://doi.org/10.17743/jaes.2020.0045
https://doi.org/10.17743/jaes.2020.0045
https://doi.org/10.1080/14992027.2016.1220680

	table-fn1-23312165211001219
	table-fn2-23312165211001219
	table-fn3-23312165211001219
	table-fn4-23312165211001219

