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Abstract

Opportunistic fungal infections are an increasing threat for global health, and for immunocompromised patients in
particular. These infections are characterized by interaction between fungal pathogen and host cells. The exact
mechanisms and the attendant variability in host and fungal pathogen interaction remain to be fully elucidated.
The field of systems biology aims to characterize a biological system, and utilize this knowledge to predict the
system’s response to stimuli such as fungal exposures. A multi-omics approach, for example, combining data from
genomics, proteomics, metabolomics, would allow a more comprehensive and pan-optic “‘two systems’’ biology
of both the host and the fungal pathogen. In this review and literature analysis, we present highly specialized and
nascent methods for analysis of multiple -omes of biological systems, in addition to emerging single-molecule
visualization techniques that may assist in determining biological relevance of multi-omics data. We provide an
overview of computational methods for modeling of gene regulatory networks, including some that have been
applied towards the study of an interacting host and pathogen. In sum, comprehensive characterizations of host—
fungal pathogen systems are now possible, and utilization of these cutting-edge multi-omics strategies may yield

advances in better understanding of both host biology and fungal pathogens at a systems scale.

Introduction

INVASIVE FUNGAL INFECTIONS (IFIs) are caused by op-
portunistic fungi such as the filamentous Aspergillus
fumigatus or the yeasts Candida albicans and Cryptococcus
neoformans (Enoch et al., 2006). Though not typically a con-
cern in healthy individuals, IFIs are able to afflict ill or immu-
nocompromised patients severely, including individuals with
leukemia, transplant recipients, and those with HIV/AIDS
(Comely et al., 2015; de Oliveira et al., 2014; Klingspor et al.,
2015; Neofytos et al., 2013).

The incidence of IFIs is increasing, and a large proportion
of these IFIs are nosocomial (Beck-Sagué and Jarvis, 1993;
Lehrnbecher et al., 2010). This is believed to be due to an
increase in the population of immunocompromised individ-
uals ( Lehrnbecher et al., 2010; Warnock, 2007). IFIs tend to
have high mortality rates (Comely et al., 2015; Lehrnbecher
et al., 2010), and as a result the improvement of current
prophylactic and curative treatments is of increasing interest.
It is essential that we understand the fundamental and dy-
namic biological interactions between host and fungal cells in
order to advance the care and treatment of patients with IFIs.

Pathogenesis requires an interaction between a pathogen
and its host. There are numerous examples of host—fungal
interactions in the context of organisms causing IFIs. As-
pergillus fumigatus has been shown to adhere to extracellular
matrix of the lung as well as the surface of human lung epi-
thelial cells (Gil et al., 1996, Sheppard, 2011). Additionally,
the internalization of A. fumigatus spores by epithelial cells
in vitro has been observed numerous times (Gomez et al.,
2010; Oosthuizen et al., 2011; Wasylnka and Moore, 2003).

Candida albicans has been observed to invade host cells
by inducing endocytosis (Dalle et al., 2010) or through ac-
tive invasion, a process by which hyphae breach epithe-
lial cell membranes (Dalle et al., 2010, Wichtler et al.,
2011). It has been demonstrated that C. neoformans infects
its host through an actin-dependent internalization mecha-
nism (Guerra et al., 2014). These initial interactions often
lead to other interactions between the host and fungus on
numerous levels. Host—fungal interaction networks are ex-
tremely complex, as there are many inherent differences
between mammalian cells and fungal cells. A compre-
hensive analysis of these networks would entail the use of
““-omics”’-wide techniques in order to capture both the drastic
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and the subtle dynamic biological perturbations within both
host and pathogen.

The study of various biological ““-omics” is generally seg-
regated into several major fields of high-throughput biology,
notably genomics, transcriptomics, proteomics, and metabo-
lomics. An ideal -omic analysis of an organism involves col-
lection of complete and unbiased datasets representative of the
entire set of biomolecules of interest. Techniques that do not
select specific, or candidate, targets are of particular value as
they permit identification of novel biological networks without
prior knowledge. The use of high-throughput techniques such
as these has recently become far more commonplace as they
can provide a more complete picture of the complexities of
an organism’s or cell’s responses to experimental or envi-
ronmental conditions. More prevalent quantitative techniques
such as western blots and reverse transcription quantitative
PCR are only able to analyze specific targets and are thus
unable to detect unexpected changes.

Historically, high-throughput biology has been associated
with a prohibitive monetary cost, rendering many of these tech-
niques inaccessible to most researchers. Despite this, high-
throughput biology has undeniable potential for the systematic
analysis of a complex biological system, such as a host—pathogen
interaction (Fig. 1). Researcher uptake has been aided by an
increase in affordability of several high-throughput biology
techniques in recent years. A notable example is the price of
commercial genome sequencing, with the full sequencing of
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a human genome now as low as US $1000 (Veritas Geno-
mics, 2015).

There are previous reviews on topics related to the host—
fungal interaction (Durmusg et al., 2015; Horn et al., 2012;
Santamaria et al., 2011), and our review builds upon these by
outlining and integrating both experimental and computa-
tional methods in high-throughput biology. We place par-
ticular emphasis on recent innovations in technology that
promise to yield valuable insights into the relatively limited
field of host—fungal interactions.

The “Omics”
Genomics

Early genomic studies of host—pathogen interactions in-
volved molecular genetics and classical mutagenesis-screening-
cloning experiments in order to link a gene to a phenotype
(Fromtling et al., 1982; Kwon-Chung et al., 1982; Sandhu
et al., 1976). These studies allowed the identification of
essential genes and virulence factors (Chang and Kwon-
Chung, 1994; Kwon-Chung et al., 1982). However, as these
scientists did not have access to the same types of omics-
platforms and data as we have today, their studies were
necessarily more limited in their scope.

Today there are many fully sequenced genomes with at least
some annotations, allowing for a ‘“‘forward genetics” ap-
proach, looking for protein-coding genes based on predicted

-

Host-Pathogen System

N
& 4

|

Further Study

\

y

Validated System Model

Experiments
Data Collection

Data Analysis

Validation and Replication

FIG. 1.

Systems biology of dual-organism interactions. A defined experimental host—

pathogen system is analyzed using high-throughput methods. Collected data are subjected to
computational statistical analysis, and the results are analyzed using a number of bioinfor-
matics technologies. Data analysis yields a model for the biological interaction. Replication
results in a robust and validated model for the biological system. This validated model is then
used to determine aspects of the system requiring further study and refinement.
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open reading frames, as opposed to simply a ‘‘reverse genet-
ics” approach through the prediction of gene products based
on inferred amino acid sequences from cDNAs (Paddison
et al., 2002). The genomes of a number of species of patho-
genic fungi have now been sequenced (Table 1) and forward
genetics approaches can be applied to the study of host—fungal
interactions.

Sequenced genomes have opened up many new avenues of
research into the analysis of host—fungal interactions. Using
more modern methods, functional analyses of the genomes
of both organisms have been conducted alongside targeted
genomic experiments to examine host—fungal interactions.
These targeted experiments have also been able to make use
of newly developed gene knockdown techniques. One such
method is RNA interference (RNAi); the use of double-
stranded RNA that binds to a specific mRNA transcript of
interest, inhibiting translation (Hannon, 2002). RNAi has
been used to great effect in the study of fungi alone (Eslami
et al., 2014; Kalleda et al., 2013) and in the context of in-
teraction with a host ( Chen et al., 2015b; Hu et al., 2008; Qin
et al., 2011; Stroschein-Stevenson et al., 2009).

RNAIi has numerous strengths when compared to a knock-
out by gene editing, such as simplicity and a relatively low
cost, but comes with some significant challenges. Its primary
weakness in some respects is its transience; high-turnover
transcripts cannot be silenced effectively as the rapid pro-
duction of mRNA quickly overwhelms the experimentally
introduced silencing RNA (Larsson et al., 2010). Furthermore,
RNAI is a knock-down, rather than a true knock-out. Protein
function may not be completely abolished within the organ-
ism, and can affect experimental results (Moore et al., 2010).

A relatively new technique, the CRISPR/Cas9 gene editing
system, has been developed for true gene knockout in eu-
karyotic cells (Wang et al., 2013). It has been shown that
A. fumigatus and C. albicans are both compatible with the use
of the CRISPR/Cas9 system (Fuller et al., 2015; Vyas et al.,
2015), illustrating proof-of-concept for use of the CRISPR/
Cas9 system in the study of host—pathogen interactions.
Despite its many potential applications, CRISPR/Cas9 is still
in its infancy and has been plagued with issues such as low
rates of uptake of the CRISPR/Cas9 machinery and off-target
reactions. Further optimization of the basic molecular ma-
chinery of the CRISPR/Cas9 system is still underway
(Zetsche et al., 2015).

Epigenetic modifications are another important aspect to
consider when characterizing an organism’s response, as they

TABLE 1. SEQUENCED GENOMES OF PATHOGENIC FUNGI

Species Reference

Aspergillus sp.

Aspergillus fumigatus Nierman et al., 2005
Aspergillus nidulans Galagan et al., 2005
Aspergillus flavus Nierman et al., 2015
Candida sp.

Candida albicans Jones et al., 2004

Cryptococcus sp.
Cryptococcus neoformans
Cryptococcus gatti

Loftus et al., 2005
D’Souza et al., 2011

Opportunistic pathogenic fungi are subdivided by genus, and
individual species’ genome sequences are cited as shown.
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have an effect on the rate of gene expression. A major tech-
nique used to analyze distribution of DNA-binding proteins is
CHiP-seq; chromatin immunoprecipitation coupled to high-
throughput parallel sequencing (Robertson et al., 2007).
ChiP-seq has been used extensively to examine the epige-
nomic profiles of fungi such as C. neoformans and A. fumi-
gatus, under various experimental conditions (Chung et al.,
2014; Toh-€ et al., 2015).

Other forms of epigenetic modification represent interesting
fields of research; some, such as DNA methylation, have been
investigated in pathogenic fungi (Liu et al., 2012; Mishra et al.,
2011). Of note is the recently reported ability of some patho-
genic bacteria to modify a host’s gene expression through his-
tone modifications and DNA methylation. A study by Sharma
and colleagues (2015) determined that secreted bacterial me-
thyltransferases were binding to host genes involved in the in-
nate immune response. These observations corroborate a study
that observed a downregulation of specific immune response
genes due to a direct interaction between a pathogenic bacterial
protein and host chromatin (Rennoll-Bankert et al., 2015).

In addition to its possible effects on pathogenesis, the
ability to alter a host’s epigenome could have arisen from
host—pathogen co-evolution. Observation of this behavior in
a bacterial host—pathogen system provides biological prece-
dent for the possibility of a similar interaction between a
fungus and its host. Such mechanisms could present targets
for future study in antifungal treatment.

Transcriptomics

The transcriptome of a cell can provide useful insights into
differences in an organism’s gene expression under varying
environmental conditions. The DNA microarray has allowed
researchers to carry out analyses of the transcriptome of an
organism for some time now (Schena et al., 1995), and has
been applied extensively to the study of host—fungal inter-
actions and changes in gene expression (Chow et al., 2007,
Gomez et al., 2010; Kraus et al., 2004; Oosthuizen et al.,
2011; Pukkila-Worley et al., 2005). Despite the many bene-
fits, primarily ease of analysis and relatively low cost, mi-
croarrays have several limitations. Microarrays only detect
selected gene transcripts that are based on the specific probes
used on the array, preventing the discovery of novel tran-
scripts and limiting the amount of data obtainable.

The more recently developed technique of RNA se-
quencing (RNA-seq) has provided a new way to analyze the
transcriptome of an organism in more unbiased fashion
(Mortazavi et al., 2008). Several studies have been conducted
using RNA-seq to investigate dual-organism interactions
(Chen et al., 2014; 2015a; Tierney et al., 2012), demon-
strating its suitability as a tool for the analysis of host—fungal
interactions from a transcriptomic perspective.

Validation of high-throughput transcriptomic data is es-
sential for confidence in reported results. Quantitative PCR is
a common method used to support the validity of RNA-
sequencing and microarray data (Chen et al., 2015b; Gomez
et al., 2010, Oosthuizen et al., 2011). While the need for val-
idation has been questioned by some (Fang and Cui, 2011),
many journals still require some form of validation of results
obtained using these high-throughput methods.

Whilst quantitative PCR is limited in its multiplexity, there
are other recently developed techniques capable of quantifying
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up to a few hundred different targets, simultaneously. One
notable example of this technology is the nanoString nCounter
technology (Geiss et al., 2008), which can assay hundreds of
different gene RNA targets within a single sample. Com-
mercially available multiplexed quantitative PCR is simi-
larly capable of assaying a large number of genes. These
two technologies have been shown to be comparable to one
another and to single-plex quantitative PCR (Prokopec et al.,
2013). The ability to assay the expression of hundreds of
genes of interest allows for a streamlined validation process.

Visualization of RNA molecules in situ is an area that has
developed extensively in recent years. Fluorescent in situ
hybridization (FISH) technology, wherein a probe comple-
mentary to a desired RNA target is bound to a fluorophore
and allowed to hybridize with a cell sample prior to visuali-
zation with microscopy (Femino et al., 1998), has recently
been refined into a number of specialized applications.

FISSEQ (fluorescent in situ sequencing) is a recently de-
veloped technique that enables in situ sequencing of RNA
transcripts (Lee et al., 2014). This permits quantitative analysis
of RNA transcripts within a single cell, and does not rely on a
targeted search. As a new technique, FISSEQ still requires
much optimization; the number of sequence reads is small
compared to single-cell RNA-seq and requires a larger sample
size and additional validation (Lee et al., 2015). Furthermore,
the protocol appears to enrich for biologically active tran-
scripts, introducing a potential for bias (Lee et al., 2015).

Another option would be for scientists to go “MERFISH-
ing.”” Multiplexed error-robust FISH (MERFISH) is a novel
technique recently developed by Chen and colleagues (2015a),
which combines visualization of RNA molecules in sifu sim-
ilar to FISSEQ, with a combinatorial protocol, reducing the
false discovery rate. MERFISH is a targeted search, limiting its
ability to discover novel responses of the organism to an ex-
perimental condition. A potential solution would be the use of
RNA-seq to identify targets of interest prior to conducting a
MERFISH experiment.

To our knowledge, neither FISSEQ nor MERFISH has
been applied towards the study of fungal pathogens; they
do however show promise in the spatial resolution of tran-
scriptomic perturbations, and could be coupled with the more
standard RNA-seq or microarray methodologies to provide
comprehensive insights.

Proteomics

While transcriptomic studies provide one view of gene
expression, proteomics is another useful tool for the exami-
nation of a system’s gene expression patterns. The gold
standard for proteomic analysis, particularly in the field of
systems biology, remains mass spectrometry (Sabid¢ et al.,
2012). Large-scale quantitative proteomics is of interest as it
enables the determination of relative expression changes
between different conditions.

Three label-based, quantitative proteomics techniques are of
particular note; SILAC, iTRAQ, and PUNCH-P. Stable iso-
tope labeling of amino acids in cell culture (SILAC) compares
protein expression between samples due to experimental con-
ditions through the incorporation of stable, heavy isotopes of
amino acids into a cell’s proteins (Ong et al., 2002). Further-
more, SILAC can examine protein expression changes over
specific time-points through ‘“‘pulsing,” a process whereby
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cells are transferred to SILAC media at certain stages of ex-
perimental treatment (Schwanhausser et al., 2009). SILAC is
only compatible with cells that can be cultured for extended
periods of time; pulsed-SILAC requires 6 hours at the mini-
mum to provide meaningful data (Schwanhausser et al., 2009).

Isobaric tags for absolute and relative quantitation (iTRAQ)
is another tag-based proteomics technique that tags peptide
fragments at their N-terminus after digestion (Ross et al., 2004;
Wiese et al., 2007). The specific advantage of iTRAQ is its
versatility; unlike SILAC, iTRAQ is capable of analyzing
protein expression changes over short periods of time, as
incorporation of metabolic tags into proteins is not required.
SILAC and iTRAQ have been used to study fungi in detail
alone (Cagas et al., 2011; Georgianna et al., 2008; Zhang
etal., 2015), and in a dual-organism setting (Reales-Calder6n
et al., 2013).

Puromycin-assisted nascent chain proteomics (PUNCH-P)
is another recently developed technique able to detect newly
synthesized proteins over short time periods with high ac-
curacy through incorporation of puromycin into polypeptide
chains (Aviner et al., 2013). Puromycin, a protein synthesis
inhibitor, can be integrated into polypeptide chains when
present in low concentrations. A chimeric puromycin-biotin
“‘tag”’ then allows for purification of the tagged polypeptides
by use of solid-phase streptavidin beads. Digestion of puro-
mycin containing proteins prior to elution followed by mass
spectrometry then yields analysis of newly synthesised pep-
tides. While this technique has not yet been applied to my-
cology, PUNCH-P is a viable alternative to iTRAQ for
analysis of short-term protein expression changes.

The localization of proteins is essential to understand their
function and the interactions they have with proteins of the
cell or pathogen. In addition, the localization of newly syn-
thesized proteins can provide useful information about the
proteomic response of one organism to another. Green fluo-
rescent protein (GFP) constructs have been the method of
choice for in situ visualization of proteins for some time
(Chalfie et al., 1994). While GFP is useful for long-term study
of steady-state systems, limited multiplexity and the inability
to monitor differential expression decreases its usefulness for
proteomic studies.

Multiplexed protein localization using GFP constructs
has been investigated through a number of methods, such as
subcellular fractionation for organelle-level spatial resolution
(Zimmermann et al., 2010), or through the lengthy process of
producing many GFP—protein constructs (Dénervaud et al.,
2013). While indirect visualization through fractionation
or direct visualization through transfection with engineered
plasmid constructs is useful for determining spatial locali-
sation of specific proteins upon a given treatment, the ability
to directly visualize a variety of specific proteins and peptides
in a high-throughput manner could be applied to numerous
areas of research.

Surface sensing of translation (SUnSET) is a recently de-
veloped method that, like PUNCH-P, makes use of puromycin
incorporation into a polypeptide chain, but follows this with
anti-puromycin immunostaining for visualization of all newly
synthesised proteins within a cell (Goodman et al., 2011;
Schmidt et al., 2009). Recently, this has been refined to label
specific proteins of interest in vivo by using an antibody pair:
one anti-puromycin antibody, and one antibody against the
target protein, and combining this approach with a proximity
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ligation assay (Tom Dieck et al., 2015). The use of puromycin
for visualization is particularly advantageous as it allows for
simultaneous PUNCH-P analysis of protein expression.

In addition to this antibody-based method, mass spectrom-
etry can also be utilized for detailed analysis of a cell’s pro-
teome. A number of different methods have been developed
for cellular mass spectrometry imaging, which have been de-
scribed and summarized in a thorough review by Pdl et al.
(2010). The biologically relevant techniques described employ
a precise laser that ionizes the surface of a biological sample,
generating ions detectable through mass spectrometry.

Of particular interest is secondary ion mass spectrometry
(SIMS), which provides a 2D resolution of below 1 um, al-
lowing for subcellular resolution (Pdl et al., 2010). Stable iso-
tope labeling has been combined with SIMS, resulting in multi-
isotope imaging mass spectrometry (MIMS) (Steinhauser et al.,
2012). MIMS has been used to analyze protein content in single
cells, including within dendritic spines (Brismar et al., 2014)
and hair cell stereocilia (Zhang et al., 2012). The ability to
analyze and map individual proteins of interest is a poten-
tially powerful tool for elucidating host—pathogen interac-
tions in dual-organism networks. If combined with visual
transcriptomics techniques such as MERFISH, protein visu-
alization methodologies could provide a valuable compari-
son between the distributions of transcripts and proteins in a
cellular model.

Interactomics, a subset of proteomics, is particularly pertinent
to host—pathogen interactions. The possibility that proteins of
fungal and host cells not only interact but could be exchanged is
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intriguing and potentially quite valuable to our understanding of
pathogenesis. The first challenge for dual-organism interactome
analysis is to demonstrate the localization of host or pathogen
proteins within the other organism. This can be accomplished
using a SILAC-based technique, trans-SILAC (Rechavi et al.,
2010). This method detects SILAC-tagged peptides within
different cell samples, and has been applied towards the iden-
tification of human—human and bacterial-human protein de-
livery. This allows for the identification of inter-organism
protein localization in a high-throughput, unbiased manner.

Direct observation of occurring protein—protein interac-
tions is required subsequent to the identification of protein
co-localization in an intercellular system. The yeast two-
hybrid system has been a standard for examination of pro-
tein—protein interactions (PPIs) for some time (Fields, 1993;
Fields and Song, 1989). While this technique provides critical
tools for interactome analysis, it has a number of caveats to
consider. A high percentage of the PPIs predicted by the
system are false positives, necessitating stringent validation
(von Mering et al., 2002).

Integration of high-throughput proteomics into the analy-
sis of PPIs whilst eliminating the precision challenges ob-
served with the two-hybrid system has been achieved by
protein correlation profiling-SILAC (PCP-SILAC) (Kris-
tensen et al., 2012). PCP-SILAC essentially utilizes a guilt-
by-association approach by combining mass spectrometry
with native chromatography; if two proteins migrate together
in the chromatogram, they are assumed to be interacting
(Fig. 2B). A combination of trans-SILAC and PCP-SILAC, a
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FIG. 2. Summary of modeling techniques. (A) Gene expression data are obtained from a
microarray or RNA-seq. The data are processed using either hierarchical clustering or a tree-based
machine-learning algorithm to identify network linkages. The final network is assembled based
on the outputs of these algorithms. (B) PCP-SILAC (leff) obtains interaction data from size-
exclusion chromatography and protein identity from mass spectrometry to determine protein—
protein interactions. Yeast two-hybrid obtains interaction data by constructing yeast that contain
multiple transformants, and this interaction data is obtained in the form of reporter gene activity.
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“trans-PCP-SILAC”’ experiment would perhaps be capable of
determining not only potential host—pathogen protein ex-
change, but also observation of inter-organism PPIs. Merging
trans-SILAC and PCP-SILAC is feasible as they both use mass
spectrometry to analyze samples. Such a study would yield
protein expression data, possibly identify host—fungal protein
exchange as well as determine protein—protein interactions
between host-host, host—fungal, and fungal-fungal proteins.

Metabolomics

Metabolites are considered by some to be the final down-
stream effector molecules of the transcriptome and proteome.
It therefore comes as no surprise that analysis of the meta-
bolome would be valuable for the study of how fungi inter-
act with their host, and vice-versa. Much like the genome,
knowledge of an organism’s metabolome provides a notable
advantage to metabolic research. The human metabolome is
freely available through the Human Metabolome Database
(Wishart et al., 2007). No such database exists for any
pathogenic fungi, an undeniable challenge in the analysis of
complex fungal metabolomes.

High-throughput techniques exist that are capable of ana-
lyzing metabolomes, namely mass spectrometry and nuclear
magnetic resonance (NMR). Mass spectrometry is capable of
analyzing extremely low quantities of metabolites within a
sample, allowing for detection of materials at low concen-
trations within the target cell. Unfortunately, mass spec-
trometry is not as precise in quantification of metabolites
within a sample unless stable isotope labeling methods are
used (Creek et al., 2012; Veenstra, 2012).

By contrast, NMR technology is capable of determin-
ing relative quantitation of metabolites with ease (Griffiths,
1998), although it struggles with a sensitivity several orders
of magnitude lower than that of mass spectrometry (Veenstra,
2012; Webb, 2012). Both mass spectrometry (Choi et al.,
2012, Han et al., 2012, 2013; Smedsgaard and Nielsen, 2005)
and NMR (de Souza et al., 2013; Forseth et al., 2011, Sanchez
and Wang, 2012) have been applied to fungal metabolomics.

Resolution of the localization of fungal metabolites has
recently been made possible using MIMS (see above). Quan-
titative imaging of specific metabolites has been reported
within yeast to a high degree of precision (Saiardi et al., 2014;
Steinhauser and Lechene, 2013), demonstrating a proof-of-
concept for this method. To our knowledge, the metabolome
has not been investigated in a dual-organism interaction set-
ting. As the metabolome is capable of providing powerful
insights into an organism’s response, the integration of meta-
bolomics into a host—fungal interaction study would be a
highly valuable addition to other ‘“‘-omics” data.

Computational Modeling
Gene Network Inference: Dare to DREAM

High-throughput datasets require a large degree of com-
putational assistance for their analysis. These analyses may
involve the use of transcriptomic, proteomic, or metabolomic
datasets to generate interaction networks at the organism—or-
ganism level. These networks are of interest for the identifi-
cation of key characteristics of host—pathogen interactions.

RNA-seq and microarray-based transcriptomic technolo-
gies allow for generation of transcriptome-wide gene ex-
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pression datasets. Gene network inference is an attempt to use
high-throughput expression data to infer a regulatory network
through a variety of statistical methods (Liu, 2015) (Fig. 2A).
The DREAM (Dialogue on Reverse Engineering Assessment
and Methods) challenges are a set of open challenges for
researchers to utilize their own computational methods for
the completion of a certain systems biology task.

One recent and notable example is the International Cancer
Genome Consortium—The Cancer Genome Atlas DREAM
Somatic Mutation Calling Challenge, in which participants
were requested to simulate genomes of tumor cells, culmi-
nating in the development of an algorithm for prediction
of cancer genomes (Ewing et al., 2015). DREAM challenge
5, which compared the precision of 35 different methods
for computing inferred gene regulatory networks, is the most
recent competition examining the problem of network infer-
ence (Marbach et al., 2012).

The challenge provided gene expression data from micro-
organisms with known gene expression pathways; DREAM
participants were instructed to attempt to reverse-engineer
the gene regulatory network using their own software. The
competitors of the challenge were subset into five catego-
ries based on methodology: regression, mutual information,
correlation, Bayesian, and a group of assorted ‘‘others”. In-
terestingly, the best performers were ‘“‘GEne Network In-
ference with Ensemble of trees”” (GENIE3), an algorithm
using a tree-based methodology (Huynh-Thu et al., 2010),
and an ““ANalysis Of Variance”” (ANOVA)-based method
for nonlinear modeling (Kiiffner et al., 2012), two methods
categorized as ‘“‘others.”

Other techniques have been developed outside the
DREAM challenges, including the popular weighted gene
correlation network analysis (WGCNA), which calculates a
Pearson correlation coefficient between every gene in the
dataset and weights each interaction based upon the strength
of the correlation (Langfelder and Horvath, 2008). Further
studies evaluated these network tools relative to one another
and determined that GENIE3 provided a significant increase
in precision when compared to all other evaluated tools
(Madhamshettiwar et al., 2012). Other types of gene network
modeling techniques have been used to survey potential gene
regulatory networks in human pathogenic fungi (Altwasser
et al., 2012, 2015).

It is worth noting that despite the progress in computa-
tional modeling, the top-scoring algorithms still returned a
high rate of false positive interactions (Madhamshettiwar
et al., 2012). GENIE3’s random forest basis has been im-
proved upon with the release of the iRafNet algorithm by
allowing for the integration of data from outside sources, a
capability that GENIE3 lacks (Petralia et al., 2015).

The DREAM challenges outline a key difficulty in the
inference of genetic regulatory networks; computational mod-
eling is inherently limited by the precision and replicability of
high-throughput datasets. These datasets can be subset into
two categories: analog, where the data is collected by ob-
servation of relative arbitrary units (such as fluorescent inten-
sity), and digital data, which is a direct count of molecules
within a sample. As these validations and comparisons were
conducted utilizing microarray data, which is analog, they
suffer both from the background noise and compressed lin-
ear scale. Indeed, most methods of high-throughput data col-
lection, including the DNA microarray and spectrometry-based



HOST-FUNGAL INTERACTIONS

technologies are reliant on analog measurements, allowing only
relative quantification of data at best, with significant noise
introduced as a result.

Digital-based data, such as RNA-seq, provide a promising
alternative to noisy analog datasets, despite still being only a
relative quantification method. Models based upon this type
of data show demonstrable improvement (Iancu et al., 2012).
Despite this, current methods are still unable to provide a
definitive model of gene regulatory networks (Ballouz et al.,
2015). Nonetheless, it is difficult to obtain “‘perfect’” datasets
for these purposes that contain highly sensitive, precise data
collected with a large dynamic range.

Integration of the “-omics”: Towards
multi-omics biology

Given the high rates of false network discovery, the devel-
opment of methods to overcome these issues is essential. The
integration of information and data outside of gene expression
datasets lends a greater degree in confidence in an inferred
network. Integration of prior network knowledge from the lit-
erature also provides increased accuracy to an inferred network
(Ellwanger et al., 2014; Olsen et al., 2014). Based upon the
central dogma of molecular biology, the proteome should pro-
vide a less biased view of gene expression compared to mea-
surements of mRNA. Therefore integration of proteomics and
transcriptomics into inference networks provides valuable cor-
relation and correction of inferred models (Poultney et al., 2012).

Other types of valuable prior data exist, including protein—
protein interaction networks, CHiP-seq, and metabolomic
data. Integration of some of these types of data has been
conducted and demonstrated to increase confidence in an
inferred network (Garcia-Reyero et al., 2014; Greenfield et al.,
2013; Schopke and Zeng, 2012). Although a few studies have
examined the integration of metabolomic data into an inferred
model of gene network inference, it remains a potentially
powerful method of improving confidence in an inferred regu-
latory network.

Algorithms have been developed for multi-omic data in-
tegration, such as sparse generalized canonical correlation
analysis (SGCCA) (Tenenhaus et al., 2014), which was spe-
cifically designed for this purpose. SGCCA has been applied
to the integration of various types of datasets, including gene
expression data from a microarray and DNA methylation
(Wang et al., 2014), and microarray data with iTRAQ pro-
teome data (Giinther et al., 2014). The results from these
studies are promising, indicating that SGCCA may be ca-
pable of providing excellent correlative assistance in the in-
terpretation of systems-wide observations.

Spatial Visualization

Several of the techniques discussed earlier in this review
require the use of microscopy. Confocal microscopy has been
the staple for visualization of fluorescent molecules within
cells for some time. Development of super-resolution fluo-
rescent microscopy has permitted the imaging of single
molecule fluorescence, and a number of specific methods
have been developed (Betzig et al., 2006; Hess et al., 2006;
Rust et al., 2006). This development has allowed for the
implementation of quantitative fluorescent techniques such
as FISSEQ and MERFISH, and provides the basis for their
usage in a biological study.
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The use of visualization techniques allows for the valida-
tion and observation of novel interactions that occur within
an organism or between a pair of interacting organisms.
Spatio-temporal modeling is the integration of time-course
and spatial distribution. Currently, this has been applied to
spatial resolution of the transcriptome between multiple re-
gions of an organism, such as the different regions of the
human brain (Kang et al., 2011) or different regions of a germ
layer (Hashimshony et al., 2015).

Groundbreaking examples of protein—-RNA co-localiza-
tion research include studies into the role of Drosophila
patterning genes, resulting in the discovery that these proteins
and their transcripts are co-localized in the Drosophila em-
bryo (Bergsten and Gavis, 1999; Berleth et al., 1988; Spirov
et al., 2009). These studies were conducted using methods
that can be effectively outperformed by newer techniques.
FISSEQ and MERFISH are both capable of localizing RNA
within a single cell to a high degree of accuracy (Chen et al.,
2015a, Lee et al., 2015), and protein visualization techniques
have likewise been drastically improved upon (Tom Dieck
et al., 2015), allowing for the possibility of visualization of
protein—mRNA co-localizations with increased resolution
and multiplexity. These techniques allow both mRNA and
protein localization to be correlated in-situ.

The mass spectrometry-based methods for visualisation
(MIMS) of cellular components have been developed, and are
capable of analysis of nucleic acids (Steinhauser et al., 2012),
proteins (Brismar et al., 2014; Zhang et al., 2012), and me-
tabolites (Saiardi et al., 2014). However, these methods are
mass spectrometry-based, and as a result are quite expensive.
Nevertheless, in a dual organism setting, such methods can
potentially identify a myriad of novel interactions, such as
protein—protein interactions between host and pathogen or
changes in mRNA localization as a result of interaction with
host or pathogen. The ability to visualize a dual organism
interaction in this fashion could greatly elucidate our under-
standing of the interaction in a spatio-temporal context. The
combination of previously discussed analytical methods with
these visualisation techniques may provide key context for
drawing conclusions for biological relevance (Fig. 3).

Dual Organism Experiments

The utilization of the methodologies described above, in a
dual organism setting, has been limited. A notable example of
one such experiment involved the inference of a trans-species
interaction network between Mus musculus macrophages
and C. albicans (Tierney et al., 2012). The experiment relied
on dual organism RNA-seq to profile the transcriptome of
C. albicans and M. musculus macrophages simultaneously.
The authors then computationally inferred an interaction
network demonstrating cross-species network regulation. To
our knowledge, this is the only published example of a host—
fungal experiment that used a modeling approach.

Dual organism transcriptomics has been utilized to char-
acterize the transcriptomes of human lung airway cells and
A. fumigatus simultaneously, however these studies could
only draw conclusions based on gene ontology enrichment
and direct changes in expression as they did not perform
computational network modeling (Chen et al., 2015b; Gomez
et al., 2010; Oosthuizen et al., 2011). The paucity of A. fu-
migatus functional gene annotations has been a limitation for
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FIG. 3. Visualization methods offer novel options for observation of biological re-
sponses. A host—pathogen experiment can be analyzed using either analytical or visual
methods. Analytical techniques generate large amounts of molecular data that require
careful interpretation using statistical methods. Visual data produce visualizations of target
molecules and systems. Box labeled “C’’ adapted from Lee et al. (2012). Reprinted with

permission from AAAS and authors.

these studies; many differentially expressed genes identified
by Oosthuizen et al. (2011) lacked functional annotation.
Nevertheless, such findings provide useful biological insight
at a high level. Putative genes were identified with evidence
for their expression, and in some cases differential expres-
sion, under specific experimental conditions. These obser-
vations allow for future studies to focus on these hitherto
hypothetical genes to derive more functional insight. Hi-Jack,
a tool designed for the analysis of simultaneous host—pathogen
interactions using metabolomic data has been described
(Kleftogiannis et al., 2015). This tool infers metabolic net-
works where a pathogen may be ‘‘hijacking’” metabolites of its
host, and has been used in a Mycobacterium tuberculosis
model (Kleftogiannis et al., 2015). The application of such a
framework to other ““omics” areas could be highly informa-
tive. However, to our knowledge, Hi-Jack is the only tool
developed specifically for use in a dual organism study.

Challenges and the Road Ahead

Significant challenges remain in the analysis of a dual
organism host—fungal system. In terms of experimental de-
sign, fungal anatomy may lead to issues with the effective-
ness of some experiments. The fungal cell wall represents an
obstacle for many aspects of experimental protocols, such
as the internalization of reagents, which may interfere with
metabolic labeling necessary for techniques such as SILAC
or SUnSET. Cell walls also interfere with lysis of fungal

cells, which may be problematic when complete lysis is de-
sired for maximum yield and low levels of technical bias.

While the DNA sequences, and thus amino acid sequences
of genes and proteins vary enough to distinguish a fungal and
mammalian molecule, many metabolites have no such re-
strictions. In this regard, network analysis via transcriptomic
and proteomic analysis may be able to assist by identifying
metabolic pathways of interest. While studies have managed
to analyze the metabolome of various pathogenic fungi, it
may prove to be exceedingly challenging to distinguish the
fungal metabolome from a host metabolome, or vice-versa.
Careful experimental design and precise technique is neces-
sary to eliminate cross-contamination of processed samples,
ensuring complete separation of host and fungal cells, or to
verify the species that produced any given metabolite.

The introduction of a novel methodology into the laboratory
also comes with significant challenges. Many techniques that
we have discussed have only recently been reported. The po-
tential power that these methods have is tempered by the fact
that they have yet to be fully validated and assessed by the wider
scientific community. Techniques allowing visualization of
biomolecules, such as FISSEQ, have a large amount of inherent
noise and significant false discovery rates, both of which present
challenges that need to be solved for them to be used effectively.

These techniques also come with significant equipment and
monetary requirements. Outfitting a microscope for FISSEQ
analysis can cost up to US $20,000 alone (Lee et al., 2014), in
addition to other costs such as sequence library preparation.
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Many accepted and validated techniques in high-throughput
biology, such as RNA-seq and mass spectrometry may still be
prohibitively expensive for many research laboratories.

Despite the difficulties associated with them, modern tools
have resulted in a number of new and exciting ways to ana-
lyse host—pathogen systems. Within the scope of any indi-
vidual field of the ““-omics,”” a number of questions have yet
to be investigated in any sort of detail. The investigation into
the inter-species regulatory network of C. albicans demon-
strated the potential for the application of network inference
between a host and fungus; this study is the only one of its
kind within this field (Tierney et al., 2012).

Similar analyses directed towards other pathogenic fungi,
such as A. fumigatus or Cryptococcus, or other types of
host cells, would yield novel insights into the host—pathogen
system. High-throughput proteomics is now capable of dem-
onstrating protein—protein interactions between a host and
pathogen, while simultaneously generating data on expres-
sion to corroborate transcriptomic observations by using PCP-
SILAC and trans-SILAC. Metabolomic integration would
determine phenotypic consequences of fungal pathogenic in-
fection and support biological pathway enrichment observed
by proteomic and transcriptomic experiments.

Finally, direct observations of experimentally-hypothesised
dual organism responses are now possible through multiple
methods of fluorescent subcellular visualization. The ‘‘-ome-
wide”” nature of the techniques we have discussed provide
valuable new ways to examine this field. These methods may
be applied beyond model systems to clinical specimens so as to
provide biomedical relevance that could assist in development
of treatments for conditions such as invasive fungal infections.

Ultimately, clinical applications of -omics technologies at a
patient level may require innovation beyond any research set-
ting. For example, the Prosigna® prognostic assay, utilizing the
nanoString nCounter® system has been FDA approved for
use in a prognostic breast cancer perspective (US Food and
Drug Administration, 2013). Instrument platforms such as
the nCounter® system that allow simultaneous measurement
across the ‘“—omics” space are coming into production for
research purposes and may drive forward ultimate clinical ap-
plicability. The continual development of “‘—omics” technology
in a clinical setting will provide new avenues for clinical diag-
nostic and treatment options for invasive fungal infections.
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