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Abstract: Target Tracking (TT) is a fundamental application of wireless sensor networks. TT based on
received signal strength indication (RSSI) is by far the cheapest and simplest approach, but suffers
from a low stability and precision owing to multiple paths, occlusions, and decalibration effects.
To address this problem, we propose an innovative TT algorithm, known as the SVM+KF method,
which combines the support vector machine (SVM) and an improved Kalman filter (KF). We first use
the SVM to obtain an initial estimate of the target’s position based on the RSSI. This enhances the ability
of our algorithm to process nonlinear data. We then apply an improved KF to modify this estimated
position. Our improved KF adds the threshold value of the innovation update in the traditional KF.
This value changes dynamically according to the target speed and network parameters to ensure the
stability of the results. Simulations and real experiments in different scenarios demonstrate that our
algorithm provides a superior tracking accuracy and stability compared to similar algorithms.
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1. Introduction

Target tracking (TT) refers to the development and utilization of mobility models to determine
information about the movement (such as the position, speed, and direction) of a target. This constitutes
a fundamental and challenging application of wireless sensor networks (WSNs) [1–3]. One of the
criteria with which TT algorithms in WSNs can be classified is whether the targets are cooperative with
the tracking system. These are referred to as active and passive modes [4,5], respectively, and in this
paper, we focus on the problem of active TT. Based on the premise that the locations of the nodes in the
network are known a priori [4–7], existing TT algorithms attempt to achieve localization and estimate
the trajectories of targets by interpreting several metrics of the transmissions from the target’s tag,
such as received signal strength indication (RSSI) [8], angle of arrival [9], time difference of arrival [10],
and time-of-arrival [11]. Among them, the RSSI-based techniques have been extensively investigated
since (a) they are available in most of the commercial wireless devices and (b) they do not need any
additional sensors or hardware customization [8,12]. RSSI-based TT usually includes three main stages:
target detection, target location, and target trajectory prediction [13–15]. In active TT, the latter two
processes are of primary importance [16–19].

The target localization process typically utilizes the radio propagation path-loss model to infer
the distance of the target from a node. Usually, this model is applied by assuming that either the
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channel is a perfect free-space medium, or that extensive channel measurements and modeling are
performed in the deployment of the system. However, dynamic outcomes in the environment, such as
non-line-of-sight (NLOS), signal attenuation, and multi-path propagation, can affect signal propagation
and consequently compound the challenges for target tracking [15]. Consequently, RSSI-based TT is
either not feasible in many practical applications, or can only be achieved through an extensive set of
experimental channel measurements [20]. While some researchers have been working on more robust
path-loss models that consider these factors in their features, these models are usually very complex
and only applicable to specific environments [13,20].

In the trajectory prediction process, Bayesian framework-based filters are the dominant
approach [21]. Classical filters include the Kalman filter (KF) [14], extended KF (EKF) [22], unscented
KF (UKF) [23], and particle filter (PF) [24]. Among them, KF provides an optimal statistical solution
in scenarios with linear models and white noise. However, the accuracy and stability are difficult
to guarantee in practical applications using KF-based methods. Furthermore, many problems in the
real world cannot be represented by linear models. While the EKF, UKF, and other derivatives of KF
attempt to address these problems, their adaptability for tracking in the real world still requires further
improvement [25,26]. On the other hand, while PF can flexibly adapt to the nonlinear dynamic model
and multimodal observation model, the particle degradation phenomenon leads to a decline of the
tracking accuracy [25,27].

The above limitations exhibited by existing methods indicate that precise calculation of the
nonlinear mapping relationship between the RSSI and the target position is key for stable and accurate
TT results. Nevertheless, despite these shortcomings, KF—due to its smaller computational load
and low-storage requirements—is still a popular and efficient recursive method commonly used
for RSSI-based TT [28]. However, the trajectory prediction reliability of KF in nonlinear scenarios
constitutes the “bottleneck” in its development in real-world applications, and therefore requires
further development.

Recent work has adopted a learning-by-example (LBE) approach [12,24,29,30] to address the
aforementioned problems, in which the relationship between the RSSI value and the distance is a more
sophisticated function. LBE systems are usually composed of two phases, in which one incorporates
offline training and the other online testing. During the training phase, the features of the signal
received at the network nodes are stored concurrently with the known position of the target to build a
database of input–output relationships. After training has been conducted using the above database,
pattern matching algorithms (e.g., support vector machine (SVM), neural network (NN), and k-nearest
neighbor) are then applied in the testing phase to establish the unknown locations of the targets and
plot the target trajectory combined with the filtering methods. LBE systems suitably capture the
sophisticated relationship between the RSSI behavior and the target position, while avoiding complex
path-loss model formulas [31]. Furthermore, SVM, a classic pattern matching method, has been found
to exhibit advantageous features for TT in terms of its ability to solve nonlinear and high-dimensional
pattern recognition problems with a small number of samples, avoiding “dimensionality disasters”
and “over study” problems [29].

In this study, we build on this recent work to propose an innovative LBE algorithm, known
as the SVM+KF algorithm, which improves the stability and accuracy of tracking results. The new
algorithm combines the SVM and KF methods, and consists of offline model training and online target
tracking phases. In the offline model training phase, the database, preprocessed by density-based
spatial clustering of application with noise (DBSCAN), is used with the SVM algorithm to define a
kernel-based model, whose input is the RSSI value and output is the corresponding position. In the
online tracking phase, a first position estimate is obtained with the use of the already defined SVM
model and the measured RSSI values. This estimate is then corrected by an improved KF based on
innovation sequence modification to achieve a better tracking performance.

The rest of the study is organized as follows. In Section 2, we provide a review of related LBE TT
algorithms. The details of our proposed methodology are described in Section 3. Various simulation
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and experimental results are presented in Section 4 to study the performance of the proposed algorithm.
Finally, the conclusions are summarized in Section 5.

2. Related Work

Numerous research studies attempting to deal with the dynamic nature of RSSI-based TT have
been reported in the WSN literature [30–33]. In this section, we restrict our review to studies that
are relevant to LBE-based methods, on which our approach is based. LBE methods combine pattern
matching algorithms and filtering methods, and we cover these two aspects in our review.

While numerous filtering algorithms have been extensively used in LBE-based TT for WSNs,
KF has particularly attracted much attention as a classic filtering algorithm. However, KF is prone
to instability. One approach that can be employed to avoid the instability of traditional KF and offer
superior tracking performances, proposed by Wang et al. [32], is to improve the noise model by
incorporating both additive noises and multiplicative noises in distance sensing. Furthermore, they use
the maximum likelihood estimator for prelocalization of the target and measurement conversion to
remove the measurement nonlinearity. These converted measurements and their associated noise
statistics are then used in a standard KF for a recursive update of the target state. Although this
method is effective and easy to implement, the cost of the system setup and maintenance is high.
Chi et al. [34] used an extreme learning machine (ELM) to improve the estimation accuracy and the
robustness of traditional KF for tracking in WSNs. Mahfouz et al. [20] trained the ridge regression
(RR) and the vector-output regularized least-squares algorithms off-line to obtain a first estimation
position. In the on-line tracking process, after the RSSIs and instantaneous acceleration of a moving
target are measured, a first position estimate is obtained by using the already-defined kernel-based
model. This estimate is combined with the acceleration information, by means of a KF, to achieve a
better accuracy. Simulation results show that their algorithm can achieve robust tracking results when
the acceleration information or the RSSI measures are affected by noise. However, multiple filters and
multiple sensors are used to detect and TT, resulting in a high energy consumption. Taking the speed
information of the target as a factor is an effective method for improving the accuracy of the tracking
result, which is also employed in our method. Similar to these methods, other LBE methods using KF
as the filter have also been developed, with differences in the various pattern matching (prelocalization)
methods that are employed.

In addition to KF, other relevant filtering algorithms have also been adopted. Ahmadi et al. [35]
used the regression tree algorithm (RT) to estimate the target position using the RSSI, and Bayesian
filtering, such as traditional KF, and PF to enhance their results. They found that this combination
provided a good tradeoff between accuracy and robustness. However, the implementation of this
algorithm in real-time WSN is complex. Jondhale et al. [36] used the generalized regression neural
network (GRNN) to obtain initial location estimates of the target’s motion, which were then modified
by KF and UKF respectively to improve the tracking performance. This method has also been applied
for TT using Bluetooth and smartphones [37]. The above implementations have not yet been tested and
verified in terms of their performance for variation in the measurement noise. In addition, Shi et al. [33]
proposed a new localization strategy that combined hidden Markov models and EKF to identify sight
conditions and mitigate NLOS errors. In their algorithm, HMM parameters are obtained by off-line
training, with sight conditions as the hidden state and quantized RSSI measurements as observations.
The sight conditions are then identified by an on-line forward-only algorithm. However, this method
may be unsuitable for some cases where the target has a clear moving direction rather than random
motion. Besides, this method lacks generalization in NLOS scenarios caused by dynamic factors.
By combining the estimated sight conditions, the target is located by EKF to achieve the real-time
localization. Wang et al. [38] proposed a polynomial fitting-based adjusted KF (PF-AKF) method in a
WSN framework to alleviate the NLOS effect. PF-AKF employs polynomial fitting to accomplish both
NLOS identification and distance prediction. It then processes the measurements with adjusted KF
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(AKF), conducting weighted filters in the case of the NLOS condition. Simulation and experimental
results obtained from a real indoor environment demonstrate the superior performance of their method.

In terms of pattern matching algorithms, many have been involved in the above examples,
such as RR, GRNN, and ELM. For our method, we utilize SVM, which is a machine learning method
based on statistical learning theory that has been extensively used in Bluetooth locations, WiFi locations,
and WSNs, because of its numerous advantages in solving issues related to small samples, nonlinearity,
and high-dimensional classification and prediction. Other LBE methods have also employed SVM for
pattern matching.

Zhao et al. [29] used SVM to compute a classification boundary for TT, and then used KF to
update this classification boundary in each sampling period. In this approach, the sampling points
were classified by the updated classification line to calculate the coordinates of the corresponding
observation points, which were then used to estimate the positions of the different targets. Simulation
results validated the effectiveness and stability of their algorithm in comparison with existing methods.
However, this combination of SVM and KF focused more on target classification during tracking.
Furthermore, Liu et al. [39] proposed a distributed PF (DPF) based on the combination of SVM and
DPF. However, they employed SVM to estimate the density in order to compress the particles to find
the global optimum, and yield a sparse solution, rather than to estimate target coordinates. However,
the performance of this method cannot approach the performance of centralized PF. Lam et al. [40]
proposed a novel solution to improve RSSI-based distance estimation for smart object interaction
applications in the IoT ecosystem. Their algorithm implements a KF on the edge to deal with
noisy RSSI measurements and an optimized SVM on the cloud for distance estimation. Practical
experiments verified that their algorithm can improve the performance in terms of the delay and
accuracy. Nevertheless, in real-world situations, the targets (smartphones or users) are moving, and the
number of packets received is limited. Therefore, the accuracy of this method is mainly affected by the
signal receiving rate because a precise distance needs to be computed with a few samples.

While the aforementioned research provides important references and guidance for our work,
and some scholars have attempted to address the problems of RSSI-based target positioning, ranging,
and tracking by coupling SVM and KF [29,39,40], an LBE method based on combining SVM and KF
has not yet been proposed. In contrast with existing methods, we propose the SVM + KF algorithm to
improve the stability and accuracy of tracking results and validate the effectiveness and stability of
the algorithm via experiments and simulations. Our research aims to provide a useful supplement to
RSSI-based TT in WSNs.

3. Target Tracking Algorithm

In this section, we discuss our proposed SVM + KF algorithm in detail. SVM + KF combines SVM’s
ability of nonlinear expression and KF’s advantages of low computation and memory requirements
to achieve a better tracking performance. The implementation of SVM + KF consists of two phases:
offline model training (discussed in Section 3.1) and online target tracking (discussed in Section 3.2).
The structure of our algorithm is shown in Figure 1.
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3.1. Offline SVM Model Training

As outlined in the previous section, we chose to employ SVM in our methodology, as SVM has
been found to be suitable in numerous location-related applications (i.e., WiFi and Bluetooth) due to its
advantages in handling small samples, nonlinearity, and high-dimensional classification and prediction
problems. In this section, we introduce the training details of the SVM model during offline operations.

3.1.1. Preprocessing of Training Data

In the SVM + KF method, the object positions at each time instant and the signals received by the
nodes quantified by the RSSI are saved as training data. We trained the SVM model once offline to
exploit the relationship between the unknown object positions and the RSSI values for the subsequent
successive and online prediction (testing phase). No other a priori information on the scenario is
required to perform the data fitting process (training phase).

Assuming that A = {a1, a2, · · · , an} is the set of reference nodes that can be scanned in the entire
localization area, the RSSI acquired by any subset Ai(Ai ⊆ A) can be expressed as [(xi, yi), ri], where (xi, yi)

are the two-dimensional (2D) coordinates of Ai in the sampling place, ri = (RSSIi1, RSSIi2, · · · , RSSIim),
and RSSIi j is the RSSI value of the jth ( j ≤ m ≤ n) reference node in set Ai.

Since the quality of the training data can considerably affect the SVM model training, we first
preprocessed the training data, in order to eliminate the outliers in the RSSI data. Outlier detection
in WSNs can be categorized into five main classes, namely, statistical, nearest neighbor, clustering,
classification, and spectral decomposition [41,42]. We chose to use DBSCAN [43], a density-based,
unsupervised, simple, and efficient clustering algorithm, proposed by Martin Este et al. in 1996 [44],
to improve the quality of the training dataset based on the following three reasons:

• Burst noise can cause RSSI outliers at points/segments that are not adjacent to any other region.
DBSCAN can discover and remove these outliers, while concurrently allowing their clustering
without forcibly assigning them to any class;

• DBSCAN determines the number of classes by the tightness of the data distribution without the
need to specify them in advance. This is crucial for our work because we cannot determine which
signals contain burst noise, and we cannot know the number of classes in advance;

• DBSCAN can discover clusters of arbitrary shapes, and does not increase the number of classes
because of an unconventional training data distribution, thus affecting subsequent judgments.
Since it is hard to guarantee a regular distribution with our training data, clustering them with
DBSCAN can significantly reduce the location error generated by the data distribution.
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3.1.2. Prelocalization Using SVM

After [(xi, yi), ri] is preprocessed by DBSCAN, it is used as a training dataset for the SVM model.
Typically, classification partitioning of the dataset containing RSSI values is nonlinear as a function
of the region. SVM maps the dataset to a higher-dimensional space through nonlinear mapping and
identifies a partitioning hyperplane in this higher dimensional space. Suppose that the equation of the
hyperplane used to classify different categories of samples in the higher dimensional space is

wrT + b = 0, (1)

where w and b are vectors.
According to the structural risk minimization principle, the calculation of the optimal classification

hyperplane can be transformed to solve a constrained maximum problem, as expressed by Formula (2).{
min( 1

2‖w‖
2)

s.t.yi(wrT
i + b) ≥ 1 i = 1, 2, · · · , n

(2)

With soft-margin decision optimization and inner operator kernel functions, Formula (2) can be
transformed into the following optimization problems:

min( 1
2‖w‖

2 + C 1
2

n∑
i=1

ξi)

s.t.yi[wT
• ϕ(xi) + b] ≥ 1− ξi, i = 1, 2, · · · , l

ξi ≥ 0, i = 1, 2, · · · , l
C > 0

, (3)

where w is the weight coefficient, C is the penalty factor, ξi is the slack variable, ϕ(xi) is the nonlinear
mapping from the input space to a high-dimensional space, and b is the optimal hyperplane offset.

By solving the dual problem of Formula (3), a nonlinear decision function can be obtained, as
shown in Formula (4):

f (x) = sgn

 n∑
i=1

yiaiK(xi, x j) + b

, (4)

where, ai is the Lagrange multiplier and K(xi, x j) is the corresponding inner product kernel function
that satisfies Formula (5).

K(xi, x j) = φ(xi)
Tφ(x j) (5)

Different kernel functions form different nonlinear classification models for the same input space.
The mainstream kernel function is as shown in Formula (6). Considering that the RSSI values collected
in the real application are often nonlinear and non-Gaussian, the Radial Basis Function (RBF) is chosen
as the kernel function.

K(xi, x j) = exp(−γ‖xi − yi‖
2),γ > 0 (6)

By solving Formula (6), the target location results can be obtained by the RSSI-based SVM.
The optimal combination (C,γ) is determined by model training. Subsequently, the optimal SVM
model is saved and used for subsequent operations of the method. The flowchart of the offline SVM
model training is illustrated in Figure 2.
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3.2. Online Target Tracking

For the online tracking process, the pre-located results obtained by the trained SVM model are
used as the input to the KF to describe the target motion trajectory. Considering the shortcomings of
traditional KF in real scenarios, we propose a new KF algorithm to improve the accuracy and stability
of the tracking results based on innovation modification.

3.2.1. KF Model Building

KF is a popular and efficient recursive method used to fuse low-level redundant data, i.e., it first
state predicts the next state based on prior information and updates the prediction based on current
observations. Using a set of inaccurate measurements observed over time, KF produces estimates
that are more accurate than isolated measurements. The KF receives statistically optimal estimates for
systems that can be described by a linear model, and the error can be represented as white noise [13,27].

To simplify the expression, we name the SVM positioning model equation X(k) the observation
equation to build the KF. According to the basic theory of KF [45], a state–space model consisting of a
state equation X(k) and an observation equation Y(k) is used to describe a dynamic system based on
the following equations (for the target motion model, details are listed in Section 4.1):

X(k + 1) = ΦX(k) + W(k), (7)

Y(k) = HX(k) + V(k), (8)

where

• k is discrete time, and X(k) ∈ Rn and Y(k) ∈ Rm are the state and RSSI observation equations at
time k, respectively;

• W(k) ∈ Rn
∼ N(0, Rn) is the random vector noise whose probability distribution is assumed to be

the normal distribution with a zero mean and covariance matrix Q;
• V(k) ∈ Rm

∼ N(0, Rm) is the observation noise with a normal distribution, zero mean,
and covariance matrix R, and Φ is the state transition matrix that relates the current position of
the target to its previous one;

• H is the observation matrix that relates the state X(k) to the measurement Y(k), and n and m are
the dimensions of the matrix.
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If Q and R are white noise signals and uncorrelated, the relationship between the above parameters
can be expressed by Formula (9): 

E(W(k)) = 0
E(V(k)) = 0
E(W(k)WT( j)) = Qδkj
E(V(k)VT( j)) = Rδkj
E(W(k)VT( j)) = 0

, (9)

where E is a function used to identify the mean, k and j are arbitrary numbers, δkk = 1, and δkj = 0.
Suppose W(k) and V(k) are uncorrelated to the initial state X(0), which is

E(X(0)) = µ0, (10)

E[(X(0) − µ0)(X(0) − µ0)
T] = P0. (11)

The essence of KF is to relate the state variables at a certain moment to the measured value at the

current time, and to solve the estimation of the linear minimum variance
∧

X( j|k) of the current state

X( j) in some optimal way. The performance evaluation index of
∧

X( j|k) is as follows:

J = E
[
(X( j) −

∧

X( j|k))
T
(X( j) −

∧

X( j|k))
]
. (12)

The KF’s deduction process is as follows,

∼

X(k) = Φ
∧

X(k− 1) + W(k), (13)

∼

P(k) = Φ
∧

P(k− 1)ΦT + Q, (14)

ε(k) = Y(k) −H
∼

X(k), (15)

K(k) =
∼

P(k)HT(H
∼

P(k)HT + R)
−1

, (16)

∧

X(k) =
∼

X(k) + K(k)ε(k), (17)

∧

P(k) = (In −K(k)H)
∼

P(k), (18)

where

•
∼

X(k) and
∧

X(k) are the predicted and estimated values of the state variables at time k, respectively;

•
∼

P(k) and
∧

P(k) are the covariance matrices of the prediction and the estimation errors of the state
variable at time k, respectively;

• ε(k) is the innovation value corresponding to the observation matrix Y(k), In is a unit matrix of

order n, and K(k) is the Kalman gain at time k. In theory, ε(k) ∼ N(0, Hk
∼

P(k)HT
k + R) is normally

distributed white noise.

3.2.2. Improved KF Based on Innovation Modification

The efficiency of target tracking mainly depends on the target state transition matrix. If the target
transition matrix (Φ) closely resembles the movement of the target, then efficiency can be achieved.
In the case of a maneuvering target, it becomes very difficult to track and predict the next location of a
target. KF default uses the content velocity model and hence fails in the case of maneuvering target
tracking. Additionally, KF gives a poor performance in the case of non-Gaussian Noise.
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Since the traditional KF method has certain application limitations, we propose a new KF algorithm
to improve the precision and stability of the trajectory. We know that the innovation in Formula (15)
contains the model information and observation value of the system that can be used as an indicator
to determine whether the estimated state value and the observed value are consistent [46]. In the
fully-closed KF, the error caused by the system model can be controlled so that it is within a small
range by feedback correction. Therefore, its influence can be ignored. Accordingly, the abnormality of
the observed value (coordinate estimated by SVM) can be effectively reflected by the change of the
statistical value of the innovation.

Based on the above analysis, in the KF recursion process, we set the innovation ε(k) so that it
is greater than the threshold EThreshold to be overwritten by the previous innovation value ε(k − 1),
and the current iterative operation is then performed. Therefore, Formula (17) is changed to (19).

∧

X(k) =


∼

X(k) + K(k)ε(k) ε(k) ≤ EThreshold
∼

X(k) + K(k)ε(k− 1) ε(k) > EThreshold

(19)

ε(k) = ε(k− 1) (ε(k) > EThreshold) (20)

EThreshold is related to many factors and changes dynamically. EThreshold needs to be set according
to the interference factors in the real world (e.g., the maneuverability characteristics of the target and
NLOS). If EThreshold is too large, it can only reduce the effect of the interference factors on the positioning
result to a small extent, resulting in a low filtering efficiency. If EThreshold is too small, the effective
location is incorrectly discarded. This affects the accuracy of the tracking results.

In this study, the determination of EThreshold considers the speed of the target’s motion, the sampling
frequency, and the communication range of nodes. The specific deduction process is as follows.

Assume that N nodes with the same communication radius RS are randomly distributed in a
square region with a fixed area of L1 × L2. Figure 3 illustrates the target maneuver model. As shown
in Figure 3a, lk(xk, yk) is the true position of the moving target tar A at time tk. If a target maneuver
occurs at time tk, then lk+1(xk+1, yk+1) and l′k+1(x

′

k+1, y′k+1) are the true and predicted positions of
tar A at time tk+1, respectively. The deflection angle of lk+1 relative to l′k+1 is θk. When the sampling
interval ∆tk → 0+, (∆tk = tk+1 − tk) , the target speed change can be ignored, that is, lklk+1 ≈ lkl′k+1.
The rate of tar A at time tk is defined as vk and the sampling frequency of node as fk. Accordingly,
the displacement within time interval ∆tk is

dk =
vk
fk

= lklk+1 ≈ lkl′k+1. (21)
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The distance between the true position for tar A and the predicted position at time tk+1 is

lk+1l′k+1 = 2dksin(
θk
2
) = 2

vksin(θk
2 )

fk
. (22)

To ensure that the target is kept track of, at least one node (node distributed in the radius RS

activated by a communication protocol) in the predicted position l′k+1 at time tk can detect the target
in position lk+1 at time tk+1 [47]. That is to say, at least one node is deployed in the shaded area in
Figure 3a. The communication and node wake-up protocols are not concerns in this study, but without
a loss of generality, we can set RX = RS. Therefore, in the limit case, Figure 3a can be transformed
to Figure 3b. As shown in Figure 3b, EThreshold ≤ lk+1l′k+1 in the case for which it is guaranteed that
the target is not lost. Accordingly, we set EThreshold = lk+1l′k+1 in this study. Since parameters RS, fk,

and ∆tk are predetermined and can be acquired, sin
[
θk
2

]
can be calculated based on the knowledge of

geometry, and only the speed change needs to be dynamically calculated in the online calculation of
EThreshold. This does not require an extensive number of calculations, and the computational complexity
is low. The flowchart of our improved KF is shown in Figure 4.
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4. Performance Evaluation and Analysis

4.1. Simulation Design

4.1.1. Simulation Environment

In this section, we evaluate the performance of our method based on simulated data. Simulation
experiments were carried out with MATLAB2017a installed on a PC with Intel(R) Core(TM) i5-8500
CPU@3.00 GHz and 16.00 GB RAM. We considered an area of 200 m× 200 m and N nodes deployed
within this area. To make our simulation experiments more viable and close to real-world scenarios,
simulations were conducted under different environments, i.e., various node distributions, various
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anchor nodes, and various RSSI measurement noise. The RSSI values were obtained using the
well-known Okumura–Hata model [20], given by

PL(d) = Pr(d0) − 10n log(
d
d0

) + Xσ, (23)

where

• PL(d) is the signal path loss at distance d from the transmitter;
• Pr(d0) is the RSSI measured at the receiver node located at the reference distance d0 (generally

d0 = 1m);
• Xσ is a normal random variable with a standard deviation of σ;
• n is the path loss exponent often set to a value of 4 [20].

Considering the error of the RSSI measurement value caused by NLOS and propagation loss in
real applications, the RSSI measurement error between anchor nodes and the target was randomly
generated with the Xσ. Equation (23) was also employed in the generation of off-line training data.
Moreover, we set the target motion models with the constant velocity (CV) model and the constant
acceleration (CA) model. Thus, X(k + 1) in Equation (7) can be expressed as X(k + 1) = ΦX(k) + ΓW(k) CA, X(k) = [X(k),

•

X(k)]
T

X(k + 1) = ΦX(k) + ΓW(k) CV, X(k) = [X(k),
•

X(k),
••

X(k)]
T , (24)

where

• X(k),
•

X(k),
••

X(k) are the displacement, velocity, and acceleration of the target, respectively, and
• Γ is the system control matrix.

4.1.2. Performance Metrics

We evaluated the tracking system in terms of the accuracy, precision, stability, and computational
time. The tracking precision measures the difference between the estimated (or predicted) and the
actual target’s position, and the root-mean-square-error (RMSE) was employed as a metric. The RMSE
of the 2D target position can be calculated as

RMSE =

√√
1
n

n∑
i=1

((x(i) − x0(i))
2 + (y(i) − y0(i))

2), (25)

where

• (x0(i), y0(i)) and (x(i), y(i)) are the actual and estimated positions calculated by the TT algorithm
at time i, respectively, and

• n is the number of samples.

To evaluate the tracking algorithm more comprehensively, we employed another metric defined
as the success probability of position calculation with respect to a predefined accuracy. We applied
the Cumulative Distribution Function (CDF) of the localization error to evaluate our system.
The localization error can be calculated by

Localization errori =

√
(x(i) − x0(i))

2 + (y(i) − y0(i))
2. (26)
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To compare the stability of the algorithm, the variance value of localization error was also selected
as one of the metrics, which can be obtained by

Varicance =
1
n

∑
(Localization errori − Localization erroraverage)

2. (27)

4.1.3. Parameter Setup

In the offline data preprocessing stage, the settings of parameters Eps and MinPts determine the
effect of the DBSCAN algorithm on the elimination of RSSI outliers. In this study, we determined that
the values Eps = 3 and MinPts = 3 were ideal based on a large number of simulations and verifications.

In the training of the SVM model, the optimal combination of the penalty coefficient C and kernel
function parameter γ was determined by a nested cross-validation method [48,49]. The optimal (C,γ)
in this study was set to C = 2700,γ = 0.005 after training. In addition, the default parameter settings
of the KF at time T are listed in Table 1.

Table 1. Default parameter settings of the Kalman filter at time T.

CV CA

Φ in Formula (7)
[

1 T
0 1

]  1 T 0.5T2

0 1 T
0 0 1


Γ in Formula (24)

[
0.5T2

T

]  0.5T2

T
1


H in Formula (8)

[
0 1

] [
0 0 1

]
Sampling interval 1s 1s

4.2. Simulation Results and Analysis

We compared the simulation results of our method with those obtained from five relevant
algorithms—the traditional KF; our improved KF; the PF algorithm in [49]; and two relevant LBE
methods, consisting of the RR + KF presented in [20] and the GRNN + KF presented in [36].
Brief descriptions of the algorithms are summarized in Table 2.

Table 2. Details relevant to the comparison of used algorithms.

Algorithms Description

KF Traditional KF algorithm described in Section 3.1.2
Improved KF Improved KF based on innovation modification in Section 3.2.2

PF PF-based algorithm presented in [49]
RR + KF Algorithm presented in [20]

GRNN + KF Algorithm presented in [36]
SVM + KF Our proposed algorithm

4.2.1. Evaluation over Different Trails

We considered three different target motion trails. The first two trails were used to simulate the
target’s simple linear and curved motions, and the third one had multiple bends and irregular changes
and was thus more complicated than the other two. This enabled us to test the performance of each
method in different scenarios. The parameter settings used in the simulations are summarized in
Table 3. Some of the simulation results are shown in Figure 5. To facilitate a numerical comparison of
the performances of different algorithms, simulation results with 100 runs are illustrated in Figure 6
based on a violin diagram.
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Table 3. Parameter settings.

Parameters Value

Anchor node (N) 25
Anchor nodes distribution Uniform

Variance of RSSI measurement noise (σ in Formula (23), where mean = 0) 2
Motion model [CV, CA]

Motion trail 1,2,3
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respectively, and b, d, and f are the simulation results of motion trail 1, 2, and 3 in the constant 
acceleration (CA) motion model, respectively. 

As can be seen in Figure 6, in general, the RMSE values in trails 1 and 2 of each algorithm are 
smaller than that in trail 3, and the RMSE values of each algorithm in the CA motion model are 
smaller than those in the CV motion model. Figure 6 illustrates that SVM + KF has the highest tracking 
accuracy, as the mean value of RMSE of SVM + KF (2.1–8.3 m) is 3.126%, 5.379%, 9.024%, 10.054%, 
and 12.287% lower than GRNN + KF (1.9–10.3 m), RR + KF (2.1–11.2 m), PF (3.9–12.3 m), Improved 
KF (5.3–9.7 m), and KF (5.4–11.3 m), respectively. 

The original motion models (CV and CA) are not designed to describe the motion of the target 
when the target turns. This constitutes a major challenge for the target positioning accuracy. In this 
case, the tracking performances of all the algorithms are usually much worse. Figure 7 shows the TT 
results for each algorithm in the turning region of trail 3. We chose the RMSE value and the value of 
the variance as metrics to evaluate the accuracy and stability. The simulation results for each 
algorithm in the turning region of trail 3 with 100 rounds are listed in Table 4.  

Figure 6. Violin diagram of simulation results of different algorithms with 100 rounds. a, c, and e are
the simulation results of motion trail 1, 2, and 3 in the constant velocity (CV) motion model, respectively,
and b, d, and f are the simulation results of motion trail 1, 2, and 3 in the constant acceleration (CA)
motion model, respectively.

As can be seen in Figure 6, in general, the RMSE values in trails 1 and 2 of each algorithm are
smaller than that in trail 3, and the RMSE values of each algorithm in the CA motion model are smaller
than those in the CV motion model. Figure 6 illustrates that SVM + KF has the highest tracking
accuracy, as the mean value of RMSE of SVM + KF (2.1–8.3 m) is 3.126%, 5.379%, 9.024%, 10.054%,
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and 12.287% lower than GRNN + KF (1.9–10.3 m), RR + KF (2.1–11.2 m), PF (3.9–12.3 m), Improved KF
(5.3–9.7 m), and KF (5.4–11.3 m), respectively.

The original motion models (CV and CA) are not designed to describe the motion of the target
when the target turns. This constitutes a major challenge for the target positioning accuracy. In this
case, the tracking performances of all the algorithms are usually much worse. Figure 7 shows the TT
results for each algorithm in the turning region of trail 3. We chose the RMSE value and the value of
the variance as metrics to evaluate the accuracy and stability. The simulation results for each algorithm
in the turning region of trail 3 with 100 rounds are listed in Table 4.Sensors 2020, 20, 3832 16 of 26 

 

Figure 7. Simulation results in the turning region of trail 3. 

Table 4. Simulation results of different algorithms in the turning region of trail 3 with 100 rounds. 

  KF Improved KF PF RR + KF GRNN + KF SVM + KF 

CA 
RMSE 6.699 6.856 8.757 4.637 3.550 3.541 

Variance 1.133 1.082 0.458 0.313 0.322 0.289 

CV 
RMSE 8.749 8.428 7.704 6.619 5.876 5.852 

Variance 2.020 0.521 0.584 0.593 0.387 0.301 

Table 4 illustrates that when the target turns, the RMSE and variance values of SVM + KF are the 
lowest. Nevertheless, more suitable models can be used to describe the turns of the target to achieve 
better results. Considering that the SVM + KF method combines the nonlinear expression ability of 
SVM and the stability improvement of the new KF, we can consider that the tracking accuracy and 
stability of SVM + KF are optimal for a given trail and motion model.  

Moreover, the RMSE of the SVM + KF is similar to GRNN + KF, but the stability of SVM + KF is 
significantly improved (in the range of 10–20%) compared with GRNN + KF. This is primarily 
because the improved KF (in Section 3.2.2) of our algorithm uses the innovation threshold to limit the 
interference attributed to the RSSI outliers, which leads to a substantial improvement in the stability 
of the TT result. 

Figure 8 illustrates the CDF of the localization error of different algorithms. In general, the CDF 
values for trails 1 and 2 of each algorithm are bigger those for trail 3, and the CDF values of each 
algorithm in the CA motion model are bigger than those of the CV motion model. The figure 
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Table 4. Simulation results of different algorithms in the turning region of trail 3 with 100 rounds.

KF Improved KF PF RR + KF GRNN + KF SVM + KF

CA
RMSE 6.699 6.856 8.757 4.637 3.550 3.541

Variance 1.133 1.082 0.458 0.313 0.322 0.289

CV
RMSE 8.749 8.428 7.704 6.619 5.876 5.852

Variance 2.020 0.521 0.584 0.593 0.387 0.301

Table 4 illustrates that when the target turns, the RMSE and variance values of SVM + KF are the
lowest. Nevertheless, more suitable models can be used to describe the turns of the target to achieve
better results. Considering that the SVM + KF method combines the nonlinear expression ability of
SVM and the stability improvement of the new KF, we can consider that the tracking accuracy and
stability of SVM + KF are optimal for a given trail and motion model.

Moreover, the RMSE of the SVM + KF is similar to GRNN + KF, but the stability of SVM + KF
is significantly improved (in the range of 10–20%) compared with GRNN + KF. This is primarily
because the improved KF (in Section 3.2.2) of our algorithm uses the innovation threshold to limit the
interference attributed to the RSSI outliers, which leads to a substantial improvement in the stability of
the TT result.

Figure 8 illustrates the CDF of the localization error of different algorithms. In general, the CDF
values for trails 1 and 2 of each algorithm are bigger those for trail 3, and the CDF values of each
algorithm in the CA motion model are bigger than those of the CV motion model. The figure illustrates
that 95% of the localization errors of SVM + KF, GRNN + KF, RR + KF, PF, Improved KF, and KF are
below 5.2–6.1, 5.4–6.9, 5.3–9.3, 5.9–10.1, 7.8–10.2, and 8.4–10.7 m, respectively.
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We then analyzed the impact of the number of anchor nodes, using trail 3 in the CA motion 
model, which is a more representative simulation environment for practical scenarios. We first 
uniformly deployed a simulation with a number of anchor nodes in the surveillance area. We then 
considered a random distribution, instead of a uniform distribution, to examine the impact of such a 
choice on our method. The parameter settings in the simulations are summarized in Table 5. Figure 
9 illustrates the effect of the number of anchor nodes on the RMSE of the algorithms under uniform 
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Figure 8. Comparison of Cumulative Distribution Function (CDF) localization error between different
algorithms with 100 rounds. a, c, and e are the simulation results of motion trail 1, 2, and 3 in the CV
motion model, respectively, and b, d, and f are the simulation results of motion trail 1, 2, and 3 in the
CA motion model, respectively.

4.2.2. Impact of the Number of Anchor Nodes

We then analyzed the impact of the number of anchor nodes, using trail 3 in the CA motion model,
which is a more representative simulation environment for practical scenarios. We first uniformly
deployed a simulation with a number of anchor nodes in the surveillance area. We then considered a
random distribution, instead of a uniform distribution, to examine the impact of such a choice on our
method. The parameter settings in the simulations are summarized in Table 5. Figure 9 illustrates
the effect of the number of anchor nodes on the RMSE of the algorithms under uniform and random
distributions, deployed with 100 rounds.
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Table 5. Parameter settings.

Parameters Value

Anchor node (N) 9,16,20,25,30
Anchor nodes distribution [Uniform, Random]

Variance of RSSI measurement noise (σ in Formula (23), where mean = 0) 2
Motion model CA

Motion trail 3
Sensors 2020, 20, 3832 18 of 26 
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Comparing Figure 9 and b, we can see that the algorithms perform better when the anchor nodes 
are uniformly distributed, compared to when they are randomly distributed. SVM + KF is slightly 
better than GRNN + KF in terms of the accuracy of the tracking results, but the stability of the former 
is considerably higher than that of the latter. This benefit of stability offered by SVM + KF primarily 
stems from the fact that our improved KF (Section 3.2.2) uses the innovation threshold to enhance the 
stability of the tracking results. 

Figure 9. RMSE versus number of anchor nodes with 100 rounds: (a) Anchor nodes with a uniform
distribution; (b) anchor nodes with a random distribution.

As shown in Figure 9, the RMSE values of the six algorithms decrease as the number of nodes
increases. Figure 9a illustrates that SVM + KF has the highest localization accuracy, as the mean
RMSE values of SVM + KF are 3.254%, 4.819%, 7.297%, 10.054%, and 11.395% lower than GRNN + KF,
RR + KF, PF, Improved KF, and KF, respectively. Moreover, Figure 9b illustrates that SVM + KF has
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the highest localization accuracy, as the mean RMSE values of SVM + KF are 3.821%, 5.7889%, 8.406%,
11.116%, and 12.701% lower than GRNN + KF, RR + KF, PF, Improved KF, and KF, respectively.

Comparing Figure 9 and b, we can see that the algorithms perform better when the anchor nodes
are uniformly distributed, compared to when they are randomly distributed. SVM + KF is slightly
better than GRNN + KF in terms of the accuracy of the tracking results, but the stability of the former
is considerably higher than that of the latter. This benefit of stability offered by SVM + KF primarily
stems from the fact that our improved KF (Section 3.2.2) uses the innovation threshold to enhance the
stability of the tracking results.

4.2.3. Impact of RSSI Measurement Noise

Figure 10 illustrates the changes in the RMSE values of the algorithms over different RSSI
measurement noise values with 100 rounds. The parameter settings in the simulation are summarized
in Table 6.
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Table 6. Parameter settings.

Parameters Value

Anchor node (N) 25
Anchor nodes distribution Uniform

Variance of RSSI measurement noise (σ in Formula (23), where mean = 0) 1,2,3,4,5
Motion model CA

Motion trail 3

As shown in Figure 10, the RMSE values of the six algorithms gradually increase as the variance
of RSSI measurement noise increases. In most cases, SVM + KF has the highest tracking accuracy,
as the mean value of RMSE of SVM + KF is 2.504%, 3.667%, 6.717%, 9.071%, and 11.295% lower than
GRNN + KF, RR + KF, PF, Improved KF, and KF, respectively.

4.2.4. Computational Time

To examine the runtimes of the different algorithms, the time taken to compute a single mobile
target’s per step tracking was calculated for each of the algorithms. The results are summarized in
Table 7. Since the prelocalization computed by pattern matching algorithms consumes a certain amount
of time, the LBE algorithms (GRNN + KF, RR + KF, and SVM + KF) run slower than the KF, Improved
KF, and PF algorithms. Nevertheless, although SVM + KF is relatively more complex (primarily due to
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the dynamic setting of the innovation threshold) than GRNN + KF and RR + KF, their running times
only marginally differ.

Table 7. Running times of the algorithms.

Algorithms Running Times (s)

KF 0.000517
Improved KF 0.000829

PF 0.457428
RR + KF 0.905721

GRNN + KF 0.919547
SVM + KF 0.922715

4.2.5. Analysis

Generally, the tracking performances of the algorithms are better in the simpler trails 1 and 2, than
in the more complicated trail 3, and the performances of the algorithms are better in the CA motion
model than in the CV motion model. SVM + KF exhibited the highest tracking accuracy, and its stability
is better than those of the other algorithms. Moreover, by comparing it with the KF and our improved
KF algorithms, we can see that each step of the SVM + KF algorithm contributes to the improvement
of the accuracy and stability of the tracking results, especially in the non-Gaussian noise environment.

Although RR + KF, GRNN + KF, and SVM + KF are all LBE methods and trained by the same
dataset, the SVM + KF method performs better in terms of the accuracy and stability compared to
the other two. This can be attributed to the superior nonlinear processing ability of SVM and the
improved KF method, which significantly enhances the stability and ensures accuracy. While SVM
+ KF is slightly more complex, the running time it requires is comparable to that of the other two
LBE methods.

Furthermore, the performance of SVM + KF is substantially higher than that of the PF. This is due to
the phenomenon of particle fading in PF, which results in a lower stability than our method. In contrast,
SVM + KF draws from the combined ability of the SVM and the improved KF to precisely predict the
position of the target, and is therefore able to alleviate this problem with a stable performance.

4.3. Experiments

In order to verify and validate the performance of the SVM + KF TT algorithm in real-world
scenarios, we deployed the algorithm in practical experiments using a WSN experimental platform.
We also compared the performance of SVM + KF in the experiment with the same LBE, RR + KF [20],
and GRNN + KF [36] algorithms used in the simulations.

4.3.1. Experimental Design

We chose Beiqu’s 5th Road in the Qixia Campus of Nanjing Normal University as the experimental
area, which has a size of 100 m× 200 m, as shown in Figure 11a. For this area, the flat terrain can be
approximated as 2D planes, thus making it suitable for the needs of the experimental scenario.

In total, 17 sensor nodes were used to form a WSN supervised area, as shown in Figure 11b.
We primarily used the optimal, complete coverage method proposed in [50] as our strategy for the
deployment of sensor nodes. Each sensor node had its own position coordinates. Furthermore, all of
the sensor nodes were placed at a height of 1 m. The sensor nodes were designed with the CC2530
F256 digital signal processing (DSP) starter kit of Texas Instruments. The main parameters of the chip
were as follows: the working frequency band was 2.4 GHz, the receiving sensitivity was less than
-100 dBm, the Zigbee protocol was carried for data packet transmission and communication, and the
transmission distance threshold was 30 m. Since the wake-up mechanism of nodes was not the focus
of this study, all of the nodes were running during the experiment.
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4.3.2. Experimental Process

We used 800 RSSI signals collected in different scenarios for offline SVM model training. The entire
online tracking experimental process is described as follows:

• Firstly, the sensor nodes periodically broadcasted information after deployment;
• Secondly, the target node was placed in a car, which served as the information collection center;

it also carefully received measurements from the sensor nodes and transmitted them to the host
computer (the above operations were also used for the collection of training data, and the collected
data was then preprocessed with DBSCAN, and its data cleaning performance was evaluated by
checking whether the “noise points” calculated by DBSCAN were accurate);

• Finally, the host computer was used to implement different TT algorithms, and the results were
analyzed and evaluated based on comparisons with the target’s ground truth trajectories.

In order to accurately measure the target’s ground truth trajectories, we utilized global positioning
system (GPS) devices for positioning, and used the road’s centerline as a reference for the target’s (car)
maneuvers. To synchronize the sampling time of the WSNs, the actual position at each sampling time
was calculated by an interpolation method based on the position and time.

To numerically compare the performance of the RR + KF, GRNN + KF, and SVM + KF algorithms,
we calculated the average RMSE value (hereinafter referred to as the RMSE), and the variance of the
three LBE algorithms based on 50 trajectories. During each tracking experiment, instead of using the
motion modes (CA and CV), the target (car) ran with a random velocity in the range of 30 to 80 km/h.

To facilitate a comprehensive analysis, we listed the tracking results in the turning area of
each algorithm according to the conclusions inferred based on the simulation tests in Section 4.2.1.



Sensors 2020, 20, 3832 21 of 25

The comparison of CDF localization error for different LBE algorithms is shown in Figure 12, the error
distribution of each algorithm is shown in Figure 13, and the statistics obtained from the experimental
results of each algorithm are shown in Table 8.Sensors 2020, 20, 3832 22 of 26 
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Table 8. Statistics obtained from experimental results.

RR + KF GRNN + KF SVM + KF

Entire trajectory RMSE 1.41 1.24 0.87
Variance 0.86 0.71 0.57

Turning region RMSE 1.55 1.33 0.98
Variance 1.23 0.97 0.64

4.3.3. Results and Analysis

Figure 12 illustrates that 95% of the localization errors of SVM + KF, GRNN + KF, and RR + KF,
are below 1.3, 1.6, and 1.8 m, respectively. Combining the results from Figure 13 and Table 8, we can see
that the decrease of the accuracy in the turning area varies between the LBE algorithms. In terms of the
tracking accuracy, the results in Table 8 illustrate that the performance of SVM + KF (0.87 m) increases
by more than 38% and 30% compared to RR + KF (1.41 m) and GRNN + KF (1.24 m), respectively,
in the entire trajectory. Table 8 also reveals that the RMSE for the turning region in our algorithm
is less than 1 m, and improves by 37% over RR + KF (1.55 m) and 26% over GRNN + KF (1.33 m).
The variance of SVM + KF is the lowest in both the entire trajectory and the turning region, with an
improvement of 47% compared to RR + KF and 34% compared to GRNN + KF in the turning region,
and an improvement of 34% over RR + KF and 20% over GRNN + KF over the entire trajectory.

4.4. Discussion

The simulation results demonstrate that our algorithm provides a superior performance in
comparison with other algorithms in terms of the accuracy and stability in various scenarios.
The practical experiments, in which the RMSE of the tracking results reduced by 0.87 m using
the SVM + KF algorithm, further confirm these conclusions. Nevertheless, tracking in turning regions
constitutes a major challenge in target tracking. While a better motion model might significantly
improve the tracking accuracy, our algorithm provided the best results with the standard motion
models used in our simulations and experiments.

In comparison with the two LBE methods studied here, SVM + KF achieved an optimal tracking
performance in most cases. SVM + KF was able to particularly improve the stability of the tracking
results to a substantial extent. While this improvement is primarily attributable to the dynamic setting
of the innovation update threshold in KF (Section 3.2.2), it results in a marginally higher running time.
While, in this study, we only considered combining SVM with KF, our proposed TT approach can
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be extended to incorporate other filtering methods, such as EKF, UKF, and PF, potentially leading to
further gains in the tracking accuracy.

5. Conclusions

In this study, we proposed a new TT method, known as the SVM + KF method, for WSN
applications. The SVM + KF method avoids the establishment of a path-loss model. Instead, it uses
the SVM method to establish the relationship between the position of the target and the RSSI value
received by the nodes in a WSN to estimate the target’s position. This estimate is then corrected by
an improved KF method based on innovation modification to achieve a higher accuracy. Simulation
and experimental results demonstrated that the proposed method effectively improved the tracking
accuracy and stability in comparison with other relevant algorithms. The method allowed accurate
tracking and was proved to be robust with nonlinear non-Gaussian noisy data, and therefore provides
a useful contribution to applications of KF in RSSI-based TT.
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