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Abstract
Aim: Species differ in their degree of specialization when interacting with other spe-
cies, with significant consequences for the function and robustness of ecosystems. In 
order to better estimate such consequences, we need to improve our understanding 
of the spatial patterns and drivers of specialization in interaction networks.
Methods: Here, we used the extensive environmental gradient of Mt. Kilimanjaro 
(Tanzania, East Africa) to study patterns and drivers of specialization, and robustness 
of plant–pollinator interactions against simulated species extinction with standard-
ized sampling methods. We studied specialization, network robustness and other 
network indices of 67 quantitative plant–pollinator networks consisting of 268 ob-
servational hours and 4,380 plant–pollinator interactions along a 3.4 km elevational 
gradient. Using path analysis, we tested whether resource availability, pollinator rich-
ness, visitation rates, temperature, and/or area explain average specialization in pol-
linator communities. We further linked pollinator specialization to different pollinator 
taxa, and species traits, that is, proboscis length, body size, and species elevational 
ranges.
Results: We found that specialization decreased with increasing elevation at different 
levels of biological organization. Among all variables, mean annual temperature was 
the best predictor of average specialization in pollinator communities. Specialization 
differed between pollinator taxa, but was not related to pollinator traits. Network 
robustness against simulated species extinctions of both plants and pollinators was 
lowest in the most specialized interaction networks, that is, in the lowlands.
Conclusions: Our study uncovers patterns in plant–pollinator specialization along ele-
vational gradients. Mean annual temperature was closely linked to pollinator speciali-
zation. Energetic constraints, caused by short activity timeframes in cold highlands, 
may force ectothermic species to broaden their dietary spectrum. Alternatively or in 
addition, accelerated evolutionary rates might facilitate the establishment of speciali-
zation under warm climates. Despite the mechanisms behind the patterns have yet 
to be fully resolved, our data suggest that temperature shifts in the course of climate 
change may destabilize pollination networks by affecting network architecture.

www.ecolevol.org
mailto:﻿
https://orcid.org/0000-0002-7813-8806
https://orcid.org/0000-0002-1262-0827
https://orcid.org/0000-0002-8285-5429
https://orcid.org/0000-0003-1359-3944
http://creativecommons.org/licenses/by/4.0/
mailto:alice.classen@uni-wuerzburg.de


     |  2183CLASSEN et al.

1  | INTRODUC TION

Interspecific species interactions are known to limit the diversity and 
distribution of species (Bairey, Kelsic, & Kishony, 2016; Bascompte, 
2006; Bastolla et al., 2009; Chan, Shih, Chang, Shen, & Chen, 2019; 
Wisz et al., 2013), to promote species evolution (Ramos & Schiestl, 
2019), and to determine ecosystem functions (Brosi & Briggs, 2013; 
Garibaldi et al., 2013). Much progress was made in understand-
ing the structure and dynamics of species interaction networks 
(Bastolla et al., 2009; Blüthgen, Menzel, & Blüthgen, 2006; Olesen, 
Bascompte, Dupont, & Jordano, 2007; Petanidou, Kallimanis, 
Tzanopoulos, Sgardelis, & Pantis, 2008). Nevertheless, knowledge 
about the spatial patterns and drivers of network properties remains 
surprisingly ambiguous (Morris, Gripenberg, Lewis, & Roslin, 2014; 
Novotny, 2006; Ollerton & Cranmer, 2002; Schleuning et al., 2012; 
Song, Rohr, & Saavedra, 2017; Lara-Romero et al., 2019). Elevational 
gradients offer the opportunity to study the architecture of species 
interaction networks along broad climatic gradients at feasible spa-
tial and temporal scales (Hoiss, Krauss, & Steffan-Dewenter, 2015; 
Ramos-Jiliberto et al., 2010; Lara-Romero et al., 2019). Importantly, 
on mountains, network metrics, and potential underlying drivers can 
be measured in a standardized and thus informative manner. This 
rare information is essential for understanding the evolution and co-
existence of species communities and for predicting the functional-
ity of ecosystems under global change (Tylianakis, Laliberté, Nielsen, 
& Bascompte, 2010).

Plant–pollinator interactions belong to the most frequently 
studied mutualistic interactions in terrestrial ecosystems (Waser & 
Ollerton, 2006). The networks share typical topological features, 
such as high degrees of nestedness, arising from the tendency of 
specialists to interact with generalists, which tend to interact among 
each other (Bascompte & Jordano, 2007). Also skewed distributions 
of links per species resulting from the dominance of few generalists 
among plenty of species that only interact occasionally (Jordano, 
Bascompte, & Olesen, 2002), and dependence asymmetry, that 
is, the differences in mutual dependencies of interacting species 
(Bascompte, 2006; Blüthgen, Menzel, Hovestadt, Fiala, & Blüthgen, 
2007), are network commonalities.

Due to its impact on pollination success and network stability, an 
interesting feature of plant–pollinator interactions is the species and 
network specialization. From a plant's perspective, higher specializa-
tion on specific pollinators may promote reproductive success and 
increase genetic diversity, because better morphological adaptations 
between the pollinator and the reproductive parts of the plant can 
increase the amount of transferred pollen (Waser & Ollerton, 2006). 
In contrast, higher generalization may decrease the dependence on 

specific pollen vectors and stabilize pollination over broad temporal 
and spatial scales (Brosi, 2016). From a pollinator's perspective, spe-
cialization is a way to reduce interspecific competition and foraging 
costs, as switching between different search images and handling 
a diverse range of flower types can be costly (Chittka & Thomson, 
1997). On the other hand, specialized pollinators risk investing en-
ergy in additional flight time and ignoring lucrative floral resources 
nearby, which may outweigh the benefits of specialization in ener-
gy-restricted habitats and destabilize food safety in environments 
with high spatial and temporal resource turnover (Waser & Ollerton, 
2006). Furthermore, the adaptive potential of specialists to optimize 
foraging dependent on macronutrient requirements (Vaudo, Patch, 
Mortensen, Tooker, & Grozinger, 2016) is limited. These trade-offs 
for plants and pollinators point either toward a strong selection 
pressure on the degree of floral specialization or, alternatively, re-
quire a high plasticity to allow for adaptive foraging, depending on 
the ecological context (Miller-Struttmann & Galen, 2014; Spiesman 
& Gratton, 2016).

Factors that may shape the specialization of pollinator commu-
nities are, inter alia, the abundance and richness of floral resources, 
the interaction strengths among pollinators, climatic variables, 
and the area of available habitat. First, the abundance of floral re-
sources determines average foraging distances and the net energy 
gain of pollinators (Carvell et al., 2012). Under the assumption that 
the net energy gain of foraging flights on average decreases with 
decreasing abundances of flowering plants, specialization may 
be favored in habitats with high abundances of flowering plants 
(Kunin & Iwasa, 1996). Flower richness, in contrast, sets the limits 
for resource partitioning. Specialization should be more likely to 
occur in habitats offering a variety of resources. Second, a tempo-
rarily reduced number of interactions with an otherwise common 
pollinator species has been shown to broaden the food choice of 
another pollinator (Brosi & Briggs, 2013). Frequent interspecific 
interactions, resulting from, for example, high pollinator richness 
or high visitation rates, may permanently restrict diet breadth 
promoting species coexistence in the long term (Goulson, Lye, & 
Darvill, 2008). Third, climate shapes plant and pollinator richness, 
composition and phenology and has been directly linked to net-
work properties, including specialization (Petanidou et al., 2018). 
Temperature determines the costs of foraging flights in ectother-
mic pollinators (Kovac, Stabentheiner, & Brodschneider, 2015) 
and may thus modulate resource usage strategies in a way that 
species broaden their dietary spectrum in energy-limited habitats 
(Miller-Struttmann & Galen, 2014). Restricted foraging times due 
to persistent mist and/or temperatures below a threshold in which 
foraging is possible, should equally result in more generalized for-
aging. Furthermore, true specialization might establish faster and 
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more often under warm climates, as evolutionary rates accelerate 
with temperature (Allen et al., 2006; Lin et al., 2019). Finally, hab-
itat area may influence the mean degree of specialization in mu-
tualistic networks (Sugiura, 2010). Specialists typically depend on 
larger habitat areas than generalists (Bommarco et al., 2010) and 
might thus become less abundant in high elevations, were habitat 
area is significantly reduced. Yet, the relative importance of re-
sources, the interactions among pollinators, climate, and area in 
structuring plant–pollinator interactions remains unclear.

The search for factors that explain specialization is aggravated 
by the fact that global change can modulate the architecture of 
species interaction networks (Tylianakis, Didham, Bascompte, & 
Wardle, 2008). The transformation of natural habitats into arable 
land and the introduction of invasive species changes species com-
position drastically and in a short time, requiring permanent adapta-
tions to new interaction partners. Species loss in one trophic level 
may cause secondary species extinctions in the other level, thereby 
reducing network robustness, that is, the capacity of a network to 
buffer such secondary extinctions (Memmott, Waser, & Price, 2004). 
Generalization and nestedness may generally increase network ro-
bustness, because species have alternative interaction partners, 
suggesting changing sensitivity of networks to species loss along 
environmental gradients.

It is assumed that specialization in plant–pollinator networks is 
linked to functional traits, which restrict species flexibility to switch 
between different interaction partners (Dehling, Jordano, Schaefer, 
Böhning-Gaese, & Schleuning, 2016; Stang, Klinkhamer, Waser, 
Stang, & Meijden, 2009). Broad-scale correlations between special-
ization and species traits provide important information about such 
trait-based feedback on specialization, but have hardly been studied 
on a community level in insects (Albrecht et al., 2018; Lara-Romero 
et al., 2019). Bees and syrphid flies, for example, differ in their re-
quirements for floral resources. In bees—but not in syrphid flies—
the whole offspring depends on the pollen selection (Praz, Müller, 
& Dorn, 2008), which might increase bees' selectiveness. Similarly, 
morphological traits like, for example, proboscis length could re-
strict the number of potential interaction partners (Ibanez, 2012). 
Physiological and energetic constraints are suggested to shape the 
mean and the variance of species traits along elevational gradi-
ents (Classen, Steffan-Dewenter, Kindeketa, & Peters, 2017; Hoiss, 
Krauss, Potts, Roberts, & Steffan-Dewenter, 2012), indicating that 
morphological barriers restricting the choice of interaction partners 
can change with increasing elevation.

Here, we analyzed patterns of specialization of plants and pol-
linators at different levels of organization in natural and disturbed 
habitats along a 3.4  km elevational gradient on Mt. Kilimanjaro 
(Tanzania, East Africa). First, we tested the hypothesis that the 
structure of plant–pollinator networks changes along elevational 
gradients. In particular, we hypothesized that species and plant–
pollinator networks are more specialized in the warm lowlands 
than in the cool highlands, as energy restrictions should favor 
generalization in higher elevations. Second, we aimed to explain 
changes in network structure by a set of major factors that are 

assumed to have a positive effect on specialization. Using path 
analysis, we separated the direct and indirect effects of resource 
availability, pollinator richness and visitation rates, temperature, 
and habitat area on the community mean of pollinator specializa-
tion. Third, we tested whether changes in the specialization of 
pollinator species are related to taxonomic identity, morphological 
traits or species elevational ranges. Finally, we explored whether 
changes in the architecture of plant–pollinator networks lead to a 
higher sensitivity of some elevational zones to simulated species 
extinctions.

2  | MATERIAL S AND METHODS

2.1 | Study sites

We selected 19 100 × 100 m study sites on the southern slopes of 
Mt. Kilimanjaro, spanning an elevational gradient from 993 m above 
sea level (m a.s.l.) up to 4,390 m a.s.l. Study sites covered the major 
natural and anthropogenic habitat types of Mt. Kilimanjaro: colline 
savanna and maize fields (990–1,020 m a.s.l.), lower montane for-
est, agroforestry systems (Chagga home gardens), grasslands, cof-
fee plantations (1,260–1,920  m a.s.l.), montane undisturbed and 
disturbed by former logging Ocotea forest (2,120–2,470 m a.s.l.), 
upper montane undisturbed and fire-disturbed Podocarpus forest 
(2,850–2,990 m a.s.l.), subalpine Erica forest (3,880 m a.s.l.), and 
alpine Helichrysum vegetation (3,880–4,390 m a.s.l.; Table S1). The 
average distance between study sites was 22.6 ± SD 13.1 km; only 
two sites were nearer than 2  km (1,920  m), which is still above 
the average foraging ranges of most pollinators. Along this eleva-
tional gradient mean annual temperature varies between 3.1 and 
24.0°C, and mean annual precipitation ranges between 590 and 
2,740 mm with maximal precipitation around 2,200 m a.s.l. (Hemp, 
2006; Figure S1.3).

2.2 | Plant–pollinator interactions, species 
identification, and pollinator traits

In total, we conducted 80 four-hour transect walks on the selected 
sites, summing up to 320 observational hours. Transect walks were 
conducted over the course of two consecutive years (2011, 2012), 
covering different seasons of the year. We recorded plant–pollinator 
interactions between 07.30 and 17.00 hr on days when the weather 
was sunny or moderately cloudy. In case of rain, mist or heavy wind, 
we interrupted transect walks and continued it as soon as the weather 
was suitable again—but at the latest within the next 2 days. Due to 
logistic constraints and often unsuitable climatic conditions like rain 
or dense fog at high elevations, the number of transect walks was not 
homogeneously distributed among sites but ranged between one and 
eight (Table S1.1). We addressed this by using networks deriving from 
individual transect walks as sampling units within a mixed-effects 
model framework (see Section 2.5). This approach ensures that all 
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species contributing to one network co-occurred in space and time. 
Additionally, it reduces the susceptibility of network metrics to er-
rors in species identification, because morphospecies were separated 
only within but not across networks. During each transect walk, we 
moved slowly and without fixed corridors through the vegetation of 
each site and recorded each interaction in which a pollinator touched 
reproductive parts of herbaceous plant species or bushes. If polli-
nators visited different flowers of the same plant individual before 
catching, we counted it as single interaction. Note that flower visi-
tors are termed “pollinators” here, although their contribution to the 
pollination success is unknown. In 95% of all considered interactions, 
we either identified pollinator species in the field (Apis mellifera), or 
caught them with sweep nets for further identification by experi-
enced taxonomists. Escaped pollinators, that is, 5% of considered 
interactions, were also recorded and separated with a conservative 
approach within single networks (see Appendix S1 for detailed infor-
mation). Exemplars of interacting plant species, including both herbs 
and shrubs, were collected or photographed and identified by the 
botanist AH on a species level. Nomenclature follows the Flora of 
Tropical East Africa (FTEA, 1952–2012).

We restricted our analyses to pollinator taxa, which we could 
sort on a species or morphospecies level (46% and 54% of all speci-
mens, respectively). Most major groups of pollinators were included, 
that is, all Hymenoptera: Apoidea: Apiformes (“bees”), the para-
phyletic group of nonbee aculeates and symphyta (“wasps”), and 
Diptera: Syrphidae (“syrphid flies”). Butterflies were excluded from 
analyses because only relatively few interactions were observed, 
and the voucher sampling success of the few specimens was poor. 
In addition, we excluded nonsyrphid Diptera from analyses, because 
reliable species delimitation based on outer morphology was not 
feasible for this group (see also Table S1.4). We further restricted 
analyses to networks with a minimum of five interactions, but for 
most networks we could sample a much higher number of interac-
tions (mean number of observed interactions ± SD = 64.9 ± 69.4). 
This filtering resulted in 67 networks and led to the exclusion of one 
network collected in the disturbed Ocotea forest, thereby reducing 
the number of sites from 19 to 18.

We measured pollinator's proboscis length and head widths 
using a stereo microscope with calibrated ocular micrometer and 
a precision of 0.01 mm. Trait matching between proboscis length 
and corolla tube lengths might restrict the number of interaction 
partners and has been linked to species specialization before 
(Miller-Struttmann et al., 2015). Head width, used as a proxy for 
body size (Branquart & Hemptinne, 2000), is related to energy re-
quirements and foraging ranges (Greenleaf, Williams, Winfree, & 
Kremen, 2007) and can thus be related to species specialization. 
To calculate trait means, we measured the traits of all available, 
but not more than 10 individuals per species and study site (three 
individual measurements for syrphid flies) and averaged those 
values per species. We assessed elevational ranges of pollinator 
species by subtracting the minimum from the maximum elevation 
of occurrence. See Appendix S1 for more details on trait measure-
ments and range estimations.

2.3 | Resources, pollinator richness, 
climate, area, and land use intensity

After each transect walk, we counted total flower abundance and 
flower richness within 10 4 × 5 m rectangles and used the sum of 
all flower heads and the total number of species as estimates for 
flower abundance and flower richness per transect walk. Replicated 
pan trap sampling across seasons was used to estimate network-
independent species richness of pollinator species per site (Figure 
S1.2a). Pan traps were installed in the same years when transect 
walks were conducted. Sampling effort was equal on all study sites 
here. Species richness of the pan trap sampling was correlated with 
the total species richness of pollinators per site collected with nets 
(Pearson correlation, r = .7, p < .001). Visitation rates were calculated 
by dividing the number of observed interactions per transect walk 
(as a measure for insect activity) by flower abundance. Temperature 
was recorded on each site using temperature loggers (Appelhans 
et al., 2016). We calculated two temperature measures: For the 
mean annual temperature (MAT), we averaged all measurements 
per study site. For the mean temperature during each transect walk 
(ACT = “actual temperature”), we averaged all measurements during 
each 4-hr transect walk. Mean annual precipitation (MAP) was inter-
polated for every study site using a kriging approach on the basis of 
15-year-long data records from a network of about 70 rain gauges 
on Mount Kilimanjaro (Appelhans et al., 2016).

Study sites differed in their land use intensity. To account 
for that, we used a quantitative composite index of human land 
use, hereafter termed LUI, which was designed in earlier studies 
based on data collected on 60 study sites (Peters et al., 2019). 
In a nutshell, we averaged standardized estimates of (a) annual 
plant biomass removal and (b) agricultural inputs (irrigation, fer-
tilization, insecticides, fungicide, and herbicides) and quantified (c) 
differences of the vegetation structure to the natural vegetation 
(quantified in terms of canopy closure, canopy height, vegetation 
heterogeneity) on each study site. Changes in structural charac-
teristics with elevation are partly natural and independent of land 
use intensification (e.g., different canopy cover in savannah and 
forest) such that raw data of vegetation structure would not be 
an informative indicator of land use. Therefore, we calculated the 
mean Euclidian dissimilarity of vegetation structure measures of 
the respective study site to the average vegetation structure in 
natural habitats at the same elevational level. We further quanti-
fied (d) landscape composition 1.5 km around each study site—that 
is, the proportion of areas with agriculturally managed habitats. 
We standardized all components (a–d), before averaging them 
to the final index. More details on this index and other variables 
(resources, pollinator richness, and temperature) are given in 
Appendix S1 and Peters et al. (2019).

Elevational belt area was extracted from a digital elevation model 
of Mt. Kilimanjaro with a resolution of 30 m and an extension from 
37.00074 to 37.75602 E and 3.507533 to 2.750183 S (Appendix S1: 
Figure S1.2b). We calculated the area within a range of 100 m below 
and 100 m above the respective study site.
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2.4 | Network indices

We used the R package “bipartite” (Dormann, 2011; Dormann, 
Gruber, & Fründ, 2008) to calculate matrix size, dependence (or 
“interaction strength”) asymmetry and nestedness for all networks. 
For nestedness, we chose the “weighted nestedness overlap and 
decreasing fills” metric for quantitative networks (Almeida-Neto 
& Ulrich, 2011). Matrix size equals the product of the number of 
plant and pollinator species included in each network. Dependence 
asymmetry ranges between −1 and 1; positive values indicate 
higher dependences in the higher trophic level (Bascompte, 2006; 
Blüthgen et al., 2007). High values of nestedness indicate high ten-
dencies of specialists to interact with generalists, which tend to 
interact among each other, while values around zero indicate the 
opposite. As absolute values of nestedness partly depend on net-
work size, we standardized them by comparing observed values 
with results of null models (Dormann, Fründ, Blüthgen, & Gruber, 
2009; Appendix S2).

We quantified the degree of specialization at different levels 
of biological organization: species specialization was calculated for 
each pollinator and plant species by the d' index, also implemented 
in the R package “bipartite.” The d' index ranges between zero and 
one, indicating maximal generalization and maximal specialization, 
respectively. It describes to which extent the observed interaction 
frequencies of plant and pollinator species deviate from expected 
frequencies based on random pattern of interactions considering the 
total frequency of interactions of each partner available (Blüthgen, 
Fründ, Vázquez, & Menzel, 2008). Compared with alternative special-
ization indices, d' is relatively robust to observation effort, that is, the 
specialization of rarely observed species is not overestimated (Poisot, 
Canard, Mouquet, & Hochberg, 2012).

We averaged d' both on a community and on a species level. The 
community mean of d' is the average specialization of all plants/pol-
linators contributing to one network (i.e., all interactions sampled 
during one transect walk), whereas the species mean d' is the aver-
age specialization of single pollinator species across different sites 
(see Appendix S2 for details). As also the dispersion of d' in a com-
munity might be of ecological relevance, we extracted the standard 
deviation of d' in communities and divided it by the respective com-
munity mean (=coefficient of variance [CV]).

For entire networks, we calculated Blüthgens' network special-
ization index H2′ using the H2fun function implemented in the “bi-
partite” package (Blüthgen et al., 2006; Dormann et al., 2009). H2′ 
describes complementary specialization on a network level and has 
been shown to be robust against sampling intensity and network 
size, making it a useful tool for the comparison of networks across 
multiple habitats. Five networks had to be excluded from analyses 
because we recorded only one pollinator or one plant species (three 
cases) during the 4-hr walks, or because the distribution of inter-
actions in the network matrix did not allow the generation of more 
than one random (shuffled) network, as required for the calculation 
of H2′ (two cases). To confirm that specialization patterns (d′ and H2′) 
are not driven by network properties like the observed number of 

interactions or matrix size, we additionally compared those indices 
with indices derived from null models (Table S2.2a).

Finally, we estimated network robustness against pollinator and 
plant extinctions for each network using the robustness function of 
the “bipartite” package. Network robustness equals the area below 
a secondary extinction curve. This was derived from the stepwise, 
random removal of species from one trophic level—by setting all 
entries of this species to zero—, and counting the number of sec-
ondarily extinct species from the other trophic level, that is, species 
with no interactions remaining. As also network robustness may 
partly depend on network size, we again standardized this metric 
through comparisons with null models, as described for nestedness 
in Appendix S2.

2.5 | Statistical analyses

We analyzed how (log-transformed) matrix size, dependence asym-
metry, nestedness, H2′, community mean of d′ of pollinators and 
plants and their CV, as well as standardized network robustness 
(against simulated pollinator and plant extinction) changed along 
the elevation gradient. We fitted linear mixed-effects (lme) models 
with elevation as single predictor variable and added study site as 
a random term, to control for repeated measurements on the same 
sites. R2 values were obtained using the Nakagawa & Schielzeth 
approach (Nakagawa & Schielzeth, 2013) implemented in the R 
package “r2glmm” (Jaeger, 2016). We conducted several sensitivity 
analyses to test the stability of detected patterns: (a) As LUI may 
significantly influence patterns of biotic variables along the eleva-
tion gradient (Peters et al., 2019), and because LUI is correlated to 
elevation (Pearson's r = −.57; Table S1.3), we examined if LUI is po-
tentially a better predictor of network metrics than elevation. We 
did this by comparing models with elevation as a predictor variable 
with models that included LUI as single predictor variable using the 
Akaike information criterion (AIC; Table 1). Since the sample size 
was low compared with the number of estimated parameters, we 
employed the AICC with a second-order bias correction quantifying 
model support. (b) Network metrics calculated from single sampling 
days might be strongly influenced by actual weather conditions and 
might not be representative of the “average” interaction patterns. 
To verify the robustness of our results in this respect, we addition-
ally calculated the mean of each metric per study site and analyzed 
the elevational pattern with ordinary linear models (N = 18; Table 
S2.2b). (c) We further tested whether the comparatively poorly 
sampled high-elevated habitats with generally low interaction rates 
are responsible for the strong elevational patterns detected in spe-
cialization, by restricting analyses to all study sites below 2,000 m 
a.s.l. (d) To illuminate whether the differences in the number of re-
peated measurements per site influences the elevational pattern of 
H2′, and to test if higher sampling effort per study site leads to dif-
ferent patterns of network metrics along the elevation gradient, we 
lumped a minimum of five replicated transect walks per site to one 
joint network (possible for 10 sites, Table S1.1), extracted H2′ and 
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analyzed the pattern along elevation with an ordinary linear model 
(N = 10). (e) To evaluate the impact of changes in vegetation struc-
ture on elevational patterns, we analyzed the elevational trends in 
network and species specialization for a subset of all study sites in 
which the canopy cover is smaller or equal to the median canopy 
cover (i.e., all “open” habitats).

We conducted path analyses to separate the direct and indirect 
effects of flower abundance, flower richness, pollinator richness, vis-
itation rates, temperature, and habitat area on the community mean 
of pollinator specialization, d′. We based the a priori structure of the 
path model on the following hypotheses (Figure 2a). (a) Pollinator 
specialization is predicted to increase with flower abundance and/
or the number of flowering plant species (=resource-driven special-
ization), as these factors determine whether specialization is feasible 
in a habitat, which needs to provide sufficient amount of food for 
pollinators. MAT, MAP, and LUI will influence flower abundance and 
flower richness. (b) Pollinator specialization is predicted to increase 
with the frequency of interactions among pollinators (=pollina-
tor-driven specialization). Specialization might be a strategy to avoid 
competition among pollinators (Brosi & Briggs, 2013). Interaction 
frequencies will increase either with pollinator richness and/or with 
visitation rates, that is the ratio between the abundance or activ-
ity of pollinators and the number of resources. Pollinator richness 
will depend on MAT, MAP, LUI, area and mean richness and abun-
dance of flowers. Per calculation, visitation rates depend on insect 

activity and flower abundances, but should further be influenced 
by ACT, which increases the activity of ectothermic pollinators. (c) 
Temperature is predicted to have a direct, positive impact on the 
mean specialization of pollinators (=temperature-driven specializa-
tion). ACT will directly control the costs of an observed foraging 
flight. In contrast, MAT reflects the temperature that is experienced 
by communities on a long term and is probably correlated with the 
number of hours per day suitable for foraging. MAT might further 
positively correlate with evolutionary rates and with this the likeli-
hood that specialists evolve (Allen et al., 2006; Lin et al., 2019). (d) 
Pollinator specialization is expected to increase with increasing hab-
itat area (=area-driven specialization), as specialists typically depend 
on larger areas than generalists do.

All variables included in the path model were standardized by 
z-transformation using the scale function in R. To avoid correlation 
between exogenous variables and to improve the ratio between the 
number of model parameter and the number of observations, we 
selected variables within and across hypotheses via model selec-
tion based on AICC prior to path analysis (Table S2.3). After variable 
selection, all possible path combinations were tested and compared 
by the AICC of the respective path model. We used Fisher's C as a 
goodness of fit parameter. Statistical details on the preselection 
process and on path analyses are given in Appendix S2.3.

Intraspecific variation of pollinator specialization along the tem-
perature gradient was analyzed for pollinators that occurred on at 

TA B L E  1   Outputs of linear mixed-effects models, showing the changes in network metrics along the elevational gradient on Mt. 
Kilimanjaro

Network metric Predictor N G SD rand. Estimate SE df t-Value p-Value R2 ΔAICc

log (matrix size) Intercept 67 18 .69 5.12 .42 49 12.28      

Elevation       −8.3E–04 1.7E–04 16 −4.86 <.001 .37 −8.74

Dependence 
asymmetry

Intercept 67 18 .10 .25 .08 49 3.16      

Elevation       −9.24E–05 3.675E–05 16 −2.52 .023 .11 0.99

Std. nestedness Intercept 61 16 .52 −4.17 .56 45 −7.45      

Elevation       8.9E–04 2.9E–04 14 3.08 .008 .15 2.09

Mean d′ pollinators Intercept 66 17 .09 .64 .05 49 11.98      

Elevation       −1.5E–04 2.3E–05 15 −6.60 <.001 .53 13.11

Mean d′ plants Intercept 66 17 .16 .79 .09 49 8.67      

Elevation       −1.7E–04 3.8E–05 15 −4.57 <.001 .36 8.60

H2′ Intercept 62 17 .11 .89 .08 45 10.88      

Elevation       −1.9E–04 3.9E–05 15 −4.77 <.001 .32 7.34

Std. robustness 
(against pollinator 
extinction)

Intercept 64 17 .54 −3.06 .66 47 −4.67      

Elevation       7.6E–04 3.4E–04 15 2.23 .041 .08 2.91

Std. robustness 
(against plant 
extinction)

Intercept 64 17 .56 −4.30 .60 47 −7.16      

Elevation       1.0E–03 3.1E–04 15 3.28 .005 .17 2.24

Note: All models were fitted with elevation as fixed factor and study site as a random term. ΔAICC gives AICC differences of the presented model 
to a model that includes LUI as single fixed factor. A negative ΔAICC indicates that the LUI model performed better than the model with elevation; 
|ΔAICC| ≤ 2 indicates, that the two models were similarly supported by the data.
Abbreviations: df, degrees of freedom; G, number of study sites; N, number of networks included in analysis; R2, semipartial R2 for the fixed effect; 
SE, standard error.
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least three different sites (43 species). We used generalized linear 
mixed-effects models with Gaussian error distribution, MAT as 
single fixed factor and species and site as crossed random effects 
(Bates, Mächler, Bolker, & Walker, 2015). As this analysis might be 
especially error-prone toward species misidentification, we run the 
same model also on a subdataset that only included species with 
proper species names (20 species).

Differences in pollinator species specialization of different 
pollinator groups, that is, Hymenoptera (bees and wasps) versus 
Diptera (syrphid flies), as well as the association of species d' with 
proboscis length, head width, and elevational range size were inves-
tigated across all pollinators and within pollinator groups with linear 
mixed-effects models. We partly controlled for nonindependence 
between species by integrating taxonomic information as nested 
random terms in the models, that is, “genus” for differences between 
pollinator groups, and “order/family/genus” for differences between 
species traits. We restricted trait analyses to pollinators that we ob-
served at least three times (n = 87).

We tested if network robustness against plant or pollinator extinc-
tion is influenced by H2′, standardized nestedness, MAT and LUI, which 
were included as additive explaining variables using lme models. Study 
site was added as random term here again to account for the hierarchi-
cal structure of the data. For model simplification, nonsignificant terms 
(p > .05) were successively removed from the model.

3  | RESULTS

In total, we analyzed 4,380 plant–pollinator interactions (3,757 bee, 
196 wasp, and 427 hoverfly interactions). We identified 141 plant 
species (123 species, two species complexes, 16 morphospecies), 

and 187 pollinator species (84 species, 103 morphospecies). More 
details on the taxonomic resolution are given in the Appendices S1 
(Table S1.4) and S3.

3.1 | Elevational patterns in plant–
pollinator networks

Networks (N = 67) included between 1 and 32 pollinator species 
and between 1 and 14 plant species. The relative proportions 
of bees, hoverflies, and wasps in the pollinating community did 
not significantly change along the elevational gradient (p  >  .05). 
Matrix size ranged between 2 and 448 (mean: 78.9  ±  85.4), and 
significantly decreased along the elevational gradient (Table 1). 
Dependence asymmetry declined with elevation: In the lowlands, 
positive values of dependence asymmetry indicated higher de-
pendencies of pollinators on plants, while from an elevation 
of about 2,730  m a.s.l. these dependencies, on average, turned 
around. Nestedness increased with elevation (Table 1). LUI, which 
was negatively correlated with elevation (r  =  −.57), was in case 
of one network metric a better predictor variable than elevation 
(Table 1): Matrix size increased with increasing LUI (t-value: 6.949, 
p < .001, R2 = .61).

The community mean of pollinator and plant specialization (d′), 
as well as network specialization (H2′) decreased with elevation 
(Figure 1a–c, Table 1). Comparisons with null models indicated that 
these declines of specialization are not driven by network size or in-
teraction frequencies alone (Table S2.2a). Also, sensitivity analyses 
confirmed the robustness of the majority of reported patterns: First, 
all elevational patterns in network metrics were also statistically signif-
icant, when analyzing metric means per study site with linear models 

F I G U R E  1   Change of plant–pollinator specialization along the elevational gradient on Mt. Kilimanjaro at species and network level. 
(a) Community mean of pollinator specialization (d'), (b) community mean of plant specialization (d') and (c) plant-pollinator network 
specialization (H2′) decreased with increasing elevation (m a.s.l. = meters above sea level). Dots represent the abundance-weighted means of 
species specialization indices (d′) and the H2′ values per transect walk. Lines represent predicted relationships derived from linear mixed-
effects models with elevation as single predictor variable and site as a random term. Dot colors indicate the strength of land use intensity
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(N = 18; Table S2.2b). Second, significant declines of network and mean 
pollinator (but not plant) specialization with elevation were not only de-
pending on the inclusion of high elevation sites but also detectable for 
the more intensively sampled study sites below 2,000 m a.s.l. (p < .05). 
Third, the decline in H2' was also detected when five networks per 
sites were lumped to one joint network, indicating that the pattern was 
robust to differences in sampling effort (lm, N = 10, t = −2.631, p < .03). 
Finally, the decline of specialization in networks, as well as in pollinator 
and plant communities, was stable when analyzing only sites with low 
canopy cover (≤median canopy cover), indicating that vegetation struc-
ture did not influence the results (all p < .05).

While the d′ of pollinators on average decreased with elevation 
the coefficient of variation (CV) of pollinator d' increased (pollina-
tors: t = 4.76, p <  .001, R2 =  .27), indicating more variability in the 
level of specialization in higher elevations. However, this trend was 
not detectable for study sites below 2,000 m a.s.l. (p > .05). The CV 
in the plant d' did not significantly change with elevation (t = 1.59, 
p = .135).

Interestingly, a decline in pollinator specialization was also 
detected at the intraspecific level as the level of specialization of 

pollinator species decreased along the temperature gradient, that 
is, species that showed specialized foraging behavior in warm areas, 
tended to forage more generally in cooler regions (lmer, df = 39.76, 
t = 4.746, p < .001). This trend was also found when restricting anal-
ysis to species with proper species name (lmer, df = 57.95, t = 2.76, 
p = .008). However, the proportion of explained variance was low in 
both cases (R2 = .13 and R2 = .09, respectively).

3.2 | Drivers of specialization in pollinator 
communities

Mean annual temperature, pollinator richness, flower richness, and 
habitat area were significantly related to the drop in the community 
mean of pollinator specialization, when analyzing these variables in 
separate linear mixed-effects models (Table S2.3). When we added 
these variables in a joint mixed-effects model and evaluated the sup-
port for the full model and all nested models, models including only 
MAT or MAT and flower richness received the highest level of sup-
port (Table S2.3). The best path model revealed that MAT was the 

F I G U R E  2   Direct and indirect predictors of mean pollinator specialization on Mt. Kilimanjaro. (a) A priori hypothesized causal structure 
of the model. Competitive variables within each hypothesis were highlighted with similar colors. Black and colored arrows indicate positive 
relationship expectations, gray arrows negative relationships. (b) Structure of the full path model after semiautomated preselection of 
variables. Detailed information on the preselection process are given in the method section. (c) Final path model derived by AICC-based 
model selection across all possible paths combinations presented in b. Path coefficients and related p-Values, as well as both marginal and 
conditional R2 values for all response variables are presented. Dashed lines indicate nonsignificant paths. The presented path model is 
statistically not distinguishable from a model in which flower richness has no impact on pollinator specialization (ΔAICC = 0.05). The global 
goodness of fit of all path models was estimated with Fisher's C. p-values > .05 for C indicate that the specific causal structure reflects 
the data properly. ACT, actual temperature; LUI, land use intensity, MAP, mean annual precipitation; MAT, mean annual temperature; 
area = habitat area (100 m above and 100 m below the respective study site). All variables were z-transformed prior to analyses. Statistical 
details are given in Table S2.3
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strongest predictor of the community mean of pollinator speciali-
zation (cond. R2 = 79%; Figure 2c). MAT had both a direct positive 
effect on pollinator specialization, and an indirect positive effect 
via flower richness, which was weak compared to the direct effect 
(Figure 2c). In the best path model, (log-transformed) flower abun-
dance had a positive effect on flower richness. We tested a set of 
competing alternative path combinations and ranked path models 
according to their AICC values. A path model that did not include the 
link from flower richness to pollinator specialization was statistically 
not distinguishable from the presented model (ΔAICC = 0.05).

3.3 | Pollinator specialization and species traits

Pollinator specialization (d′) was generally higher in Hymenoptera 
than in Diptera (lme, t = 2.312, p = .043, Figure 3a), but was neither 
related to species elevational range sizes (Figure 3b), nor to func-
tional traits (glossa lengths: lme, t = 0.406, p = .687; head width: lme, 
t = 0.305, p = .762).

3.4 | Robustness

Network robustness against plant extinction was on average 
lower than network robustness against pollinator extinction (lme, 
t  =  −2.70, p  =  .008), and both increased with elevation (Figure 4, 
Table 1). Among MAT, LUI, H2′, and nestedness, network specializa-
tion (H2′) was the best predictor of network robustness, with less 
specialized networks being more robust (lme, n = 62, df = 44, against 
plant extinction: t = −3.48, p < .001, R2 = .23; against pollinator ex-
tinction: t = −2.94, p = .004, R2 = .14).

4  | DISCUSSION

4.1 | Elevational patterns in plant–pollinator 
networks

Plant–pollinator networks showed clear broad-scale patterns along 
the elevational gradient of Mt. Kilimanjaro, highlighting the impor-
tance of ecological and/or evolutionary drivers in structuring spe-
cies interactions. Specifically, we found an increase in generalization 
with elevation on the species (d′ intraspecific), community (com-
munity mean of d′), and network level (H2′). Similar patterns in the 
specialization of plant–insect pollinator interactions have been re-
ported from biogeographically independent regions, including the 
Alps (Hoiss et al., 2015, network level), Colorado Rocky Mountains 
(Miller-Struttmann & Galen, 2014, intraspecific and network level), 
the Andes (Ramos-Jiliberto et al., 2010, network level), and an is-
land volcano in Tenerife, Canary Islands (Lara-Romero et al., 2019, 
network and community level). Far less consistent are the patterns 
reported from plant–hummingbird interactions along elevational 
gradients, which were either more generalized in the highlands 

(Maglianesi, Blüthgen, Böhning-Gaese, & Schleuning, 2015), or in 
the lowlands (Dalsgaard et al., 2018). Similarly contradicting are 
the results from meta-analyses describing specialization patterns 
along other temperature gradients, that is, latitudinal gradients. 
Here, patterns ranged from higher pollinator specialization in higher 
(Schleuning et al., 2012), or lower latitudes respectively (Trøjelsgaard 
& Olesen, 2013), to no trend at all (Ollerton & Cranmer, 2002). In 
view of the fact that temperature has a big impact on specialization, 
we suggest that besides the difficulty to standardize studies prop-
erly with different sampling strategies for latitudinal meta-analyses, 
the dominance of endothermic pollinators (e.g., hummingbirds, bats) 
toward the tropics might partly explain these discrepancies. For ex-
ample, in hummingbirds species richness, contemporary precipita-
tion and quaternary climate change velocity, but not MAT, predicted 
specialization (Dalsgaard et al., 2011). Depending on the ratio of en-
dothermic and ectothermic pollinators considered in meta-analyses, 
the role of temperature in structuring specialization patterns might 
become weaker or stronger causing different patterns along latitude.

In our study, we concentrated on three important insect pol-
linator groups: bees, nonbee aculeates (“wasps”), and hoverflies. 
With this we excluded some flower visitors, which are known to 
contribute to pollination like nonsyrphid Diptera (Orford, Vaughan, 
& Memmott, 2015). These Diptera were more abundant in higher 
than in lower elevations abundant in high than in low elevations. 
However, as they are known to be as specialized as syrphid flies 
(Orford et al., 2015), and, in accordance with syrphid flies, less 
specialized than Hymenoptera (Benadi, Hovestadt, Poethke, & 
Blüthgen, 2014, and our results), the exclusion of this group in our 
analyses unlikely affected the general direction of the reported pat-
terns of specialization.

4.2 | Drivers of specialization

Along the slopes of Mt. Kilimanjaro, MAT was the best predictor 
of mean pollinator specialization. Even within pollinator species, in-
dividuals tended to forage more generalized in the cold highlands 
than in the warm lowlands. The mechanisms behind the link of 
temperature and specialization remain elusive. However, one major 
hypothesis is that is the increase of metabolic costs in foraging 
flights under cool temperatures (Kovac et al., 2015; Stabentheiner, 
Vollmann, Kovac, & Crailsheim, 2003), triggers generalized forag-
ing. Even within pollinator species, individuals tended to forage 
more generalized in the highlands than in the lowlands, supporting 
the concept of energetic constraints. Long-tongued bumble bees 
species also showed comparable shifts in intraspecific foraging be-
havior in alpine habitats (Miller-Struttmann & Galen, 2014). The au-
thors suggested that restricted seasonal lengths drive generalized 
resource usage of bumble bees in cold habitats, which is plausible in 
temperate, but not in cold tropical mountain habitats that lack dis-
tinct seasonality. We suggest that in tropical highlands energy-limi-
tations are caused directly by temperature, as temperature controls 
the foraging costs for ectothermic pollinators (Kovac et al., 2015; 
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Stabentheiner et al., 2003). Furthermore, in the alpine and subal-
pine zone, we observed that foraging of bees was restricted to very 
few warm and cloud-free hours of a day, while in the lowlands bee 
foraging took place all day long. Alternatively or in parallel, higher 

evolutionary rates under warm climates might favor the evolution 
of specialists. For instance, bumble bee species within the same 
subgenera have been shown to evolve faster in low elevations than 
in the highlands (Lin et al., 2019). This parallels with higher bee rich-
ness in the lowlands (Classen et al., 2015; Hoiss et al., 2012) and 
a higher chance for the evolution of true specialists. In addition, 
we detected a potential indirect effect of MAT on specialization via 
flower richness. Flower resource diversity, and a sufficient amount 
of flowers per resource type, might be a premise for pollinator spe-
cialization, as specialized pollinators need to acquire enough food.

Against expectations and in contrast to other studies (Dalsgaard et 
al., 2011; Schleuning et al., 2012), pollinator species richness and visi-
tation rates were poor predictors of pollinator specialization. This may 
indicate that physiological and energetic constraints set by tempera-
ture rather than the interactions among pollinators (e.g., competitive 
interactions), shape insect pollinator specialization at Mt. Kilimanjaro. 
This is also reflected by a previously reported decline of intraspecific 
variation in morphological traits of wild bees with increasing eleva-
tion (Classen et al., 2017): if reduced competition was the major force 
shaping these functional traits of bees in high elevations, the opposite 
pattern, that is, “character release,” would be expected.

Despite the high proportion of explained variance in pollinator 
specialization in the path model (R2 cond. =  .79), and even though 
we verified our results by a set of robustness analyses, it must be 
considered that our study is based on correlation analyses and that 
the power of statistical tools to separate variables that are cor-
related in nature (e.g., area and MAT; pollinator richness and MAT), 
are restricted. We also cannot rule out that factors correlating with 
temperature, which we could not consider in this study, affected 
specialization. For example, it is conceivable that pollinator gen-
eralization in the highlands coincides with the dominance of plant 
species with open flowers and short nectar-holding tubes like, for 

F I G U R E  3   Impact of taxonomy and species elevational range on pollinator species specialization (d′). (a) Hymenoptera (bees and wasps) 
were on average more specialized than Diptera (syrphid flies; t = 2.70, p = .010; bees- wasps: t = 0.03, p = .74; bees—syrphid flies: t = −2.52, 
p = .016; syrphid flies—wasps: t = 3.36, p = .002). While black box plots present common summary statistics (with data medians as black line 
and means as white asterisks), the surrounding violin plots signal (smoothed) probability density of the data at different values. (b) Pollinator 
specialization was not related to the elevational range size of pollinator species. Dot color in (b) corresponds to the different taxonomic 
groups, as introduced in (a). We considered only pollinators that we observed at least three times (87 species)
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example, Helichrysum species, which are accessible by more or 
other, more generalized, pollinator species than tubular flowers. 
Additional, more detailed analyses of plant–pollinator interactions 
and their traits in the field in combination with true experiments will 
be necessary to verify the results of our correlative study.

4.3 | Species traits

We showed that Hymenoptera were on average more specialized 
than Diptera, which is in agreement with reports from the literature 
(Benadi et al., 2014; Weiner, Werner, Linsenmair, & Blüthgen, 2011) 
and which can be explained by the fact that bee larval survival de-
pends on the pollen source (Praz et al., 2008). Morphological traits 
were not related to the degree of species specialization, indicating 
that traits of one trophic level are not informative to predict speciali-
zation (Dalsgaard et al., 2018). Trait matching between trophic levels, 
in contrast, can sharpen our understanding about how species traits 
structure species interactions and network architecture (Albrecht 
et al., 2018; Bender et al., 2018; Dehling et al., 2016). Interestingly, 
we found no link between species specialization and species eleva-
tional ranges. Thus, specialized foraging does not necessarily restrict 
pollinators' ability to inhabit new habitats, which is in line with our 
finding that even within species the degree of specialization can be 
adapted to changing abiotic conditions.

4.4 | Robustness

Network robustness against pollinator extinction was generally 
higher than robustness against plant extinction. This is in line with 
simulation studies under climate change scenarios (Schleuning et al., 
2016). Importantly, network robustness increased with elevation. In 
other words, network sensitivity to species loss was highest where 
habitat transformation and land use intensification, as main driving 
forces of species loss are most prevalent (Nogués-Bravo, Araújo, 
Romdal, & Rahbek, 2008). Robustness against species extinction 
was negatively correlated with network specialization, but not with 
nestedness, as shown in other studies (Bastolla et al., 2009; Rohr, 
Saavedra, & Bascompte, 2014). Network generalization decreases 
the co-dependence of interaction partners and is thus an important 
driver of network robustness. We assessed robustness against ran-
dom species extinctions of one trophic level, as we currently had 
no concrete indication for other extinction orders than random. 
Especially in human-modified landscapes, abundant and well-con-
nected species are frequent visitors of crops, suffering from pes-
ticide usage, soil cultivation or the bee-keeping associated spread 
of pathogens. They might nowadays face extinction risks that are 
comparable with the ones of less-abundant and more specified spe-
cies. Alternatively, trait-based extinction orders can drastically alter 
the robustness pattern along elevational gradients and related pol-
lination services in unpredictable ways (Larsen, Williams, & Kremen, 
2005). Generally, the robustness metric needs to be handled with 

care. First, species may adapt to a certain degree to other interaction 
partners, when their previous partner goes extinct. Our finding that 
specified species from the lowlands tended to forage more general-
ized in the highlands, points toward such an adaptive capacity, which 
will relax the co-dependence of certain species and strengthen 
network robustness (Kaiser-Bunbury, Muff, Memmott, Müller, & 
Caflisch, 2010). Second, robustness was calculated for networks 
that derived from short-term observations. However, many pollina-
tors show floral fidelity, making observed networks more specialized 
and thus less robust than networks observed over a longer period 
(Petanidou et al., 2008; Spiesman & Gratton, 2016). Finally, this ap-
proach ignores that the loss of one species can change the behavior 
or another species from the same trophic level, with consequences 
for interaction partners and network stability (Brosi & Briggs, 2013).

5  | CONCLUSIONS

Plant–pollinator network architecture strongly responded to chang-
ing climate along the slopes of Mt. Kilimanjaro. We identified MAT as 
the main driving force for specialization, which in turn affected net-
work robustness against species extinction. Rising metabolic costs 
for foraging flights in cool environments might explain the detected 
decrease of (ectothermic) pollinator specialization in the highlands. 
We expect that the temperature-dependence of metabolic costs 
affects also the structure of other species interactions including 
ectothermic organisms (e.g., parasitoid-host, plant-herbivores), 
with consequences for diversity, ecosystem functions and stability 
(Plowman et al., 2017).

Although the mechanisms behind the temperature—specializa-
tion relationship remain speculative, the outstanding role of tem-
perature in structuring plant–pollinator interactions is alarming: 
global temperatures are predicted to increase by up to 0.7°C in the 
next two decades (compared to 1985–2005; IPCC, 2013). So far, 
climate change was expected to disrupt plant–pollinator interac-
tions by causing spatial and phenological mismatches between in-
teraction partners (Hegland, Nielsen, Lázaro, Bjerknes, & Totland, 
2009), or by increased frequency of extreme weather events (Hoiss 
et al., 2015), with negative consequences for interaction resilience 
and fitness of plants and pollinators (Forrest, 2015; Schenk, Krauss, 
& Holzschuh, 2018). The direct impact of temperature on the spe-
cialization of species, which has also been reported from small-
scale climatic gradients for network specialization (Petanidou et 
al., 2018), imposes additional challenges to species interactions. 
The loss of interaction partners may improve pollination quality on 
small spatial and temporal scales, as less heterospecific pollen will 
be transported (Brosi, 2016). This, however, may drastically reduce 
pollination insurance in the long term (Brosi, 2016).

We conclude that rising temperatures in the course of climate 
change will destabilize species interactions along entire elevational 
gradients, thereby exerting additional pressure on species, which al-
ready live close to their maximum thermal capacity (Colwell, Brehm, 
Cardelus, Gilman, & Longino, 2008).
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