
 International Journal of 

Molecular Sciences

Review

Role of Damage Associated Molecular Pattern
Molecules (DAMPs) in Aneurysmal Subarachnoid
Hemorrhage (aSAH)

Shafqat Rasul Chaudhry 1,3, Ahmad Hafez 2, Behnam Rezai Jahromi 2 ID , Thomas Mehari Kinfe 1,
Alf Lamprecht 3, Mika Niemelä 2 and Sajjad Muhammad 1,2,* ID

1 Department of Neurosurgery, University Hospital Bonn, University of Bonn, Sigmund-Freud Str. 25,
D-53105 Bonn, Germany; shafqatrasul@yahoo.com (S.R.C.); Thomas.Kinfe@ukb.uni-bonn.de (T.M.K.)

2 Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 266,
FI-00029 Helsinki, Finland; ext-ahmad.hafez@hus.fi (A.H.); behnam.rezai-jahromi@hus.fi (B.R.J.);
mika.niemela@hus.fi (M.N.)

3 Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Strasse 3,
D-53121 Bonn, Germany; alf.lamprecht@uni-bonn.de

* Correspondence: ext-sajjad.muhammad@hus.fi

Received: 21 June 2018; Accepted: 9 July 2018; Published: 13 July 2018
����������
�������

Abstract: Aneurysmal subarachnoid hemorrhage (aSAH) represents only a small portion of all strokes,
but accounts for almost half of the deaths caused by stroke worldwide. Neurosurgical clipping and
endovascular coiling can successfully obliterate the bleeding aneurysms, but ensuing complications
such as cerebral vasospasm, acute and chronic hydrocephalus, seizures, cortical spreading depression,
delayed ischemic neurological deficits, and delayed cerebral ischemia lead to poor clinical outcomes.
The mechanisms leading to these complications are complex and poorly understood. Early brain
injury resulting from transient global ischemia can release molecules that may be critical to initiate
and sustain inflammatory response. Hence, the events during early brain injury can influence
the occurrence of delayed brain injury. Since the damage associated molecular pattern molecules
(DAMPs) might be the initiators of inflammation in the pathophysiology of aSAH, so the aim of
this review is to highlight their role in the context of aSAH from diagnostic, prognostic, therapeutic,
and drug therapy monitoring perspectives. DAMPs represent a diverse and a heterogenous group of
molecules derived from different compartments of cells upon injury. Here, we have reviewed the most
important DAMPs molecules including high mobility group box-1 (HMGB1), S100B, hemoglobin and
its derivatives, extracellular matrix components, IL-1α, IL-33, and mitochondrial DNA in the context
of aSAH and their role in post-aSAH complications and clinical outcome after aSAH.

Keywords: subarachnoid hemorrhage; danger associated molecular pattern molecules (DAMPs);
alarmins; high mobility group box-1 (HMGB1); S100B; mitochondrial DNA; hemoglobin;
interleukin (IL)-33; IL-1α; heat shock proteins

1. Introduction

Aneurysms are the weak bulging lesions or abnormal dilatations present in 1–5% of the adult
population [1]. Aneurysms are formed due to the hemodynamic shear stress in the arterial wall at
the bifurcation of arteries and are marked by chronic inflammation and degeneration in the arterial
wall [2,3]. The rupture of an intracranial aneurysm leads to subarachnoid hemorrhage that accounts
for only 5% of all the stroke events, but the mortality inflicted by it is around 50% (32 to 67%) and
affects a relatively younger age group compared to ischemic stroke [4–6]. The incidence of aSAH is
estimated around 10.5 per 100,000 persons per year, but varies geographically with higher incidence in
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Japan (22.7) [4,7]. The fatality of the disease is reflected by 20% deaths occurring before any medical
attention, 30% within 24 h of onset, and 40–60% within a month after subarachnoid hemorrhage [4,8].
Among the survivors, one third remains lifelong dependent and those who have a good recovery still
have neurological and/or cognitive deficits [9,10].

The obliteration of the bleeding aneurysm from the arterial circulation is achieved by neurosurgical
clipping and endovascular coiling in the majority of cases [11], but still, the outcome for the patients is
devastating. This is mainly due to the post-aSAH complications occurring mainly over the first two
weeks after initial bleeding [12]. The brain injury following aSAH occurs in two phases. An early
brain injury occurring within initial 72 h of the insult results from transient global ischemia and
toxic effects of the extravasated blood [11–13]. This may be followed by a secondary delayed phase
of brain damage over a period of 3–14 days and is the time frame where post-aSAH complications
can develop and cause neurological deterioration [12]. The major post-aSAH complications include
rebleeding, cerebral vasospasm (CVS), hydrocephalus, seizures, delayed ischemic neurological deficits
(DIND), cortical spreading depression, delayed cerebral ischemia (DCI), infections, cardiomyopathy,
and pulmonary edema [9]. The research in the past was maligned by a sole focus on cerebral vasospasm
and strategies aimed at its reversal were developed. The failure of the endothelin antagonists to
improve the outcome despite reversing the cerebral vasospasm has recognized that the clinical outcome
after aSAH is determined by multiple factors. These conflicting results led to changes in the direction of
aSAH research to early brain injury with profound stress laid on the role of inflammation [5] that plays
crucial and central role during the development of post-aSAH complications. Inflammation occurring
in the absence of pathogens (as in case of aSAH) is usually ascribed as sterile inflammation, however,
involves similar cascades of mechanisms mounted against pathogens [14]. This is owing to the
pattern recognition receptors (PRRs) which respond to the evolutionarily conserved danger molecular
motifs, which may either be exogenous ‘pathogen associated molecular patterns (PAMPs)’ derived
from pathogens or endogenous ‘DAMPs’ molecules derived from injured, stressed, and necrotic
cells [14–16]. Immediately after acute brain injury, local and systemic inflammatory response leads to
trigger inflammatory signaling cascades accompanied by the activation and infiltration of immune
cells at the site of injury [17]. A great body of evidence supports the critical role of inflammation in the
aSAH [18,19] (Figure 1).

Any type of injury, either ischemic or traumatic, can potentially release DAMPs from injured
or stressed cells leading to inflammation without the presence of any pathogens. During sterile
inflammation DAMPs bind to the PRRs on immune cells, leading to the activation of subcellular
signaling pathways including Nuclear Factor-κB (NFκB) and finally, upregulates the expression of
multiple genes including the transcription and release of pro-inflammatory mediators [14,16,20].
Over the past years, an ever expanding list of DAMPs, along with their cognate receptors, has been
identified including HMGB1, HSPs, S100 proteins, SAP130, ATP, mitochondrial DNA, formyl peptides,
heparin sulphate, β-amyloid, biglycan, versican, IL-1α, IL-33, cholesterol, and uric acid crystals etc. [14].
Some important DAMPs and their receptors are mentioned in Table 1. Here, we review systematically
the release and involvement of DAMPs in the aSAH pathophysiology.
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Figure 1. Schematic representation of the role of inflammation mediated by DAMPs and cytokines 
released after aSAH and their association with post-aSAH complications and clinical outcome. 

Table 1. List of important DAMPs members and their receptors. 

Sr. # DAMPs Receptors 
1. HMGB1 TLR-2, TLR-4, TLR-9, RAGE 
2. IL-1α IL-1R 
3. IL-33 ST2 (IL-1RL1) 
4. Heme, Hemin, Oxyhemoglobin, methemoglobin TLR-4 
5. mtDNA TLR-9, NLRP3, NLRC4, AIM-2, cGAS-STING 
6. TFAM RAGE, TLR-9 
7. N-formyl peptides FPR1, FPRL1 
8. S-100 proteins TLR-4, RAGE 
9. Fibrinogen TLR-4 

10. Fibronectin TLR-2, TLR-4 
11. Hyaluronan TLR-2, TLR-4 
12. Biglycan TLR-2, TLR-4, P2X4, P2X7, NLRP3 
13. Versican TLR-2, TLR-6, CD14 
14. Heparan sulfate TLR-4 
15. Tenascin C TLR-4 
16. Galectin-3 TLR-2, TLR-4 

2. Methods 

For retrieval of potential articles to be included in this review, we searched Pubmed using 
‘Subarachnoid hemorrhage’ as a MeSH term in combination with other words in any field including 
‘DAMP’, ‘Damage associated molecular pattern’, ‘Danger associated molecular pattern’, ‘alarmins’, 
HMGB1, S100B, Hemoglobin, Hb, Oxyhemoglobin, methemoglobin, heme, hemin, fibrinogen, 
fibronectin, extracellular matrix, ECM, Tenascin-C, IL-33, IL-1α, mitochondrial DNA, mtDNA, heat 

Figure 1. Schematic representation of the role of inflammation mediated by DAMPs and cytokines
released after aSAH and their association with post-aSAH complications and clinical outcome.

Table 1. List of important DAMPs members and their receptors.

Sr. # DAMPs Receptors

1. HMGB1 TLR-2, TLR-4, TLR-9, RAGE
2. IL-1α IL-1R
3. IL-33 ST2 (IL-1RL1)
4. Heme, Hemin, Oxyhemoglobin, methemoglobin TLR-4
5. mtDNA TLR-9, NLRP3, NLRC4, AIM-2, cGAS-STING
6. TFAM RAGE, TLR-9
7. N-formyl peptides FPR1, FPRL1
8. S-100 proteins TLR-4, RAGE
9. Fibrinogen TLR-4

10. Fibronectin TLR-2, TLR-4
11. Hyaluronan TLR-2, TLR-4
12. Biglycan TLR-2, TLR-4, P2X4, P2X7, NLRP3
13. Versican TLR-2, TLR-6, CD14
14. Heparan sulfate TLR-4
15. Tenascin C TLR-4
16. Galectin-3 TLR-2, TLR-4

2. Methods

For retrieval of potential articles to be included in this review, we searched Pubmed using
‘Subarachnoid hemorrhage’ as a MeSH term in combination with other words in any field including



Int. J. Mol. Sci. 2018, 19, 2035 4 of 20

‘DAMP’, ‘Damage associated molecular pattern’, ‘Danger associated molecular pattern’, ‘alarmins’,
HMGB1, S100B, Hemoglobin, Hb, Oxyhemoglobin, methemoglobin, heme, hemin, fibrinogen,
fibronectin, extracellular matrix, ECM, Tenascin-C, IL-33, IL-1α, mitochondrial DNA, mtDNA,
heat shock protein, HSP etc. Based on the above mentioned criteria, 829 total articles were found.
After excluding duplicates and also selecting the relevant references from the retrieved articles,
finally 134 publications were selected to review the role of DAMPs in aSAH. The search of relevant
articles was performed by SRC and SM.

3. Results

3.1. High Mobility Group Box 1 (HMGB1) and aSAH

HMGB1 is a well characterized prototypical protein DAMP. HMGB1 is expressed in all eukaryotic
cells as a non-histone DNA binding nuclear transcription factor, but signifies danger upon its
extracellular release from necrotic cells [21]. Extracellularly released HMGB1 is then recognized
by Toll Like Receptor (TLR)-2, TLR-4, TLR-9, and receptor for advanced glycation end products
(RAGE) [21]. Evidence on the role of HMGB1 after aSAH is increasing continuously in the recent years.
Release of HMGB1 in the cerebrospinal fluid of patients after aSAH was first found by Nakahara et al.,
(2009). Interestingly, the elevated HMGB1 levels were higher in the cerebrospinal fluid (CSF) of patients
with a poor clinical outcome after aSAH and HMGB1 levels correlated with TNF-α, IL-6, and IL-8,
suggesting an indispensable role of HMGB1 in ongoing inflammation [22]. King and colleagues also
found significant associations of CSF HMGB1 levels with poor Hunt and Hess (H&H) grades and the
disability and dependence among aSAH patients [23]. A subsequent study employing a rabbit model
of SAH has shown that HMGB1 was upregulated and translocated in the cytosol of the microglia for
active secretion [24]. Zhu, et al. [25] evaluated HMGB1 levels in systemic circulation and demonstrated
an association with CVS, poor functional outcomes, and mortality after one year of aSAH, highlighting
the prognostic value of on admission plasma HMGB1 determination.

Sun, et al. [26] found as early as 2 h post SAH release of HMGB1 from the neurons and
intraventricular injection of recombinant HMGB1 upregulated the inflammation as assessed by
upregulation of TLR-4, NF-κB, IL-1β, and cleaved Caspase-3. Furthermore, in-vitro application
of hemoglobin (Hb) led to the upregulation and translocation of HMGB1 from nucleus to cytoplasm in
neuronal cultures. Interestingly, application of Glycyrrhizic acid, a natural inhibitor of HMGB1,
downregulated IL-1β and thus, prevented activation of glial cells upon conditioned medium
application from Hb primed neurons [26]. Thereafter, two other natural compounds, Purpurogallin,
a natural phenol and 4′-O-β-D-glucosyl-5-O-methylvisamminol were demonstrated to attenuate
HMGB1 expression in double hemorrhagic SAH rat model, and intriguingly, were also effective in
decreasing the cerebral vasospasm and its associated changes in basilar arteries [27,28]. A similar study
employing Rhinacanthin-C, an extract from Rhinacanthus nasutus, ameliorated SAH associated increase
in HMGB1 mRNA and protein as well as pro-inflammatory cytokines and cleavage of Caspase-3 and
Caspase 9 [29].

Another clinical study described elevated CSF HMGB1 levels in acute hydrocephalus after aSAH
and strong correlations with H&H score, World Federation of Neurological Surgeons (WFNS) score,
Glasgow Coma Scale (GCS), and days on intensive care unit and poor outcome after 3 months [30].
Wang and colleagues confirmed the association of CSF HMGB1 levels and poor outcome after 3 months
in a relatively larger cohort of aSAH patients. Further, they revealed that in the SAH rat model
both HMGB1 and its receptor RAGE are upregulated and application of post SAH CSF either from
patients or rats induced RAGE expression and reduced viability of neuronal cultures. Interestingly,
administration of the recombinant soluble form of RAGE to interfere with RAGE and HMGB1 signaling
reduced the neuronal cell death both in-vitro and in-vivo [31]. The first evidence that HMGB1 may
be involved in the inflammatory response leading to CVS, the most feared complication after aSAH,
came from the observations of Zhao and colleagues. They observed increased expression of HMGB1
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in the vasospastic rat basilar arteries at day 3, 5, and 7 after SAH [32]. Li, et al. [33] have shown
increased basilar artery thickness and reduced luminal diameter with increased expression of HMGB1
protein and mRNA of pro-inflammatory cytokines, and all these changes were ameliorated after
glycyrrhizic acid supplementation for 3 days [33]. Finally, administration of anti-HMGB1 antibody
prevented basilar artery vasospasm, decreased extracellular translocation, and expression of HMGB1
in smooth muscle cells, decreased the expression of contractile and inflammation associated molecules,
decreased plasma HMGB1 levels, improved the morphology and decreased the number of cerebral
cortex microglia, and lastly, recovery from the neurological deficits [34].

DCI, the main cause of secondary decline in patients with aSAH, is seen in approximately 30%
of the patients [35]. A case series of three aSAH patients with DCI has shown significant elevation of
HMGB1 compared to controls, but did not show significant changes in both CSF and plasma HMGB1
levels as compared to baseline. Interestingly, there was a trend towards increase in plasma and decrease
in CSF HMGB1 levels [36]. Moreover, the presence of minor allele G of rs2249825 has been found to
be an independent predictor of DCI. This single nucleotide polymorphism (SNP) of HMGB1 (C/G at
3814) may lead to enhanced HMGB1 expression and consequently may result in DCI [37]. The above
discussed evidence suggests that HMGB1 not only plays a distinct role during early brain injury,
but also in post aSAH sequelae with prominent involvement in CVS, DCI, and thereby may impact the
clinical outcome. Pharmacological strategies to neutralize HMGB1 might have therapeutic potential to
improve the clinical outcome after aSAH.

3.2. S100B

S100 proteins, also termed calgranulins, are intracellular small calcium binding proteins and
consist of more than 20 members [38]. S100A8, S100A9, and S100A12 are expressed by phagocytes [39]
and the first identified member of this class, S100B is majorly expressed in the brain by astrocytes,
although some neuronal populations also express it [40]. Passively released S100B by necrotic and
damaged cells, has diagnostic and prognostic value in different CNS pathologies including traumatic
brain injury when present above threshold limits in the CSF, serum or amniotic fluid [41]. At higher
micromolar concentrations, extracellular S100B behaves as DAMP with neurotoxic effects mediated
by RAGE and is involved in many neurodegenerative and inflammatory brain diseases [42]. It can
induce neuronal death, expression of pro-inflammatory cytokines such as IL-1β and stress related
inflammatory enzymes such as inducible nitric oxide synthase (iNOS) [43].

S100 protein levels have been shown to significantly rise after aSAH and correlate with severity
of aSAH and peak after the onset of vasospasm [44]. Persson et al., have shown elevated S100 levels in
CSF of SAH patients and Hardemark et al., observed elevated S100 levels were associated with H&H
grade, degree of blood on CT, functional outcome assessed by GOS, and various neuropsychological
evaluation tests [45,46]. Systemic levels of S100B were elevated at admission, 3 days and 7 days after
aSAH and were associated with poor H&H grade and clinical outcome (GOS score) after 6 months [47].
Later on, Kay and colleagues, while investigating ApoE, incidentally found significantly higher CSF
S100B levels after aSAH [48]. Serial determination of CSF from aSAH patients showed elevated
levels of S100B, which correlated strongly with τ (Tau) protein CSF levels and clinical outcome after
3 months [49]. A significant rise of CSF S100B on admission followed by a gradual decrease over six
days and a subsequent delayed elevation in serum was observed in SAH patients [50]. Interestingly,
a second non-significant peak of S100B occurred at Day 4 of determination, probably reflecting
secondary brain injury due to vasospasm [50].

Brain extracellular fluid (ECF) S100B levels determination in a case of aSAH by microdialysis
showed an initial S100B peak after SAH and further, two sharp peaks in S100B levels occurred during
the periods of vasospasms [51]. Lefranc et al. [52], observed a highly significant increase in S100B,
S100A2, and other S100 analogs during vasospasm in a rat double hemorrhagic SAH model [52].
Furthermore, it has been demonstrated that an increased expression of S100B correlated with protein
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kinase C-η (eta) in the endothelial cells and protein kinase C-ζ (zeta) in the smooth muscle cells of the
vasospastic basilar arteries after SAH [53].

Furthermore, WFNS scores, daily mean value of S100B above a threshold of 0.4 µg/L, and age
independently predicted poor outcome at 6 months after aSAH and S100B time course was observed
to be higher in patients undergoing neurosurgical clipping, having higher WFNS score and Fischer
score [54]. A subsequent study found association of on admission serum S100B with WFNS score,
Fischer score, and one year outcome, and on admission S100B above a threshold of 0.3 µg/L
predicted poor clinical outcome and short term survival [55]. S100B elevation also reflected secondary
brain deterioration due to vasospasm induced ischemia, brain edema, and hydrocephalus [55].
Hydrocephalus and elevated mean 8-day S100B levels predict poor clinical outcome one year after
aSAH [56]. Another study evaluated mean 15-day S100B levels as an independent predictor of
poor clinical outcome after one year with a better cut off value of 0.23 µg/L associated with a
sensitivity of 91% and specificity of 90% [57]. The patients experiencing vasospasm leading to cerebral
ischemia had higher S100B levels from the beginning and enhanced incidence of poor outcome [57].
Kaneda, et al. [58] showed significant elevation of CSF S100B at day 3 and 14, Glial Fibrillary Acidic
Protein (GFAP) at day 3 and 7, Malondialdehyde (MDA) at day 14 in poor outcome aSAH patients
as markers of brain damage and oxidative stress [58]. Moritz, et al. [59] have shown the value of
serial CSF and serum S100B determination as prognostic marker for cerebral infarction, intracranial
hypertension and outcome at ICU discharge.

Another study investigated impaired passage of S100B from CSF to serum by employing S100B
serum/CSF ratio and albumin CSF/serum ratio and found S100B release in the periphery was
independent of BBB dysfunction. Furthermore, a higher S100B serum/CSF ratio associated with better
neurological function highlight a repair role for active stimulated release of S100B [60]. Piazza, et al. [61]
proposed S100B as a link between brain and lung and its implication in neurogenic pulmonary edema
after aSAH [61]. In post aSAH hydrocephalus, high CSF and serum S100B levels for 10 days correlate
with ventriculoperitoneal shunt placement [62]. Serum S100B levels were shown to be significantly
lower 24 h after operation in patients receiving magnesium sulphate, thus highlighting its prognostic
potential [63]. Administration of atorvastatin reduced serum S100B levels among high WFNS score
patients and reduced the severity and incidence of vasospasms leading to ischemia [64].

Interestingly, serum S100B levels have been shown to correlate not only with ischemia, rather
with the size of ischemic lesion also, irrespective of treatment or CVS association [65]. A small study
showed initial lower levels of serum and CSF S100B in patients who later on developed vasospasm
with non-significant elevation of serum S100B only [66]. In one patient, who was confirmed for
vasospasm and developed cerebral infarction, S100B levels showed a consequent peak [66]. In severe
grade aSAH, peak serum S100B levels measured over 15 days were associated with mortality [67]
which was in agreement with a previous study from Oertel, et al. [68], but noticeably, Oertel and
colleagues have reported higher serum S100B in patients who did not develop vasospasm [68].
Kellermann et al., have shown association of both serum and CSF S100B with clinical outcome
after 6 months and serum S100B > 0.7 µg/L with mortality and increment in CSF after EVD (external
ventricular drain) exchange [69]. Azurmendi and coauthors described plasma S100B as a marker of
long term (1 year) outcome prediction in aSAH patients and suggested a cutoff value of 0.2 µg/L as
a superior discriminator at day 10 among good and poor outcome patients [70]. A pooled analysis
by Lai and Du [71] also demonstrated a strong association with cerebral infarction and long term
outcome, and not with angiographic vasospasm. However, interestingly, intracerebroventricular
infusion of S100B in rats inhibited the neuronal and endothelial dependent vasodilation and this effect
was abolished with soluble RAGE (sRAGE) [72]. These lines of evidence clearly highlight the role of
S100B in aSAH pathophysiology.
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3.3. Hemoglobin and Its Derivatives

The extravasated blood and its degradation products acutely trigger neuroinflammation in
addition to global ischemic insult in aSAH [5,73]. Erythrocyte hemolysate degradation yields
methemoglobin, heme, hemin, and oxyhemoglobin, which are described as TLR-4 receptor ligands
and as DAMPs [74–77]. Methemoglobin, owing to its water solubility, may lead to widespread TLR-4
activation via enhanced CSF distribution remotely from the site of release and has been shown to
correlate with TLR-4 activation product Tumor necrosis factor (TNF)-α [75]. Methemoglobin can also
bind TLR-4/TLR-2 heterodimer in addition to TLR-4 homodimers [75]. Heme not only activates TLR-4,
but also promotes increased formation of Neutrophil Extracellular Traps (NETs) from neutrophils [77].
Heme ligation of TLR-4 only activates Myeloid differentiation primary response protein 88 (MyD88)
dependent substream pathway leading to NFκB and Mitogen activated protein kinase (MAPK)
activation with resultant TNF-α secretion [78]. Hemin (iron (III)-protoporphyrin IX) acts additively
to endotoxin with mechanism of TLR-4 activation distinct to endotoxin [74]. Oxyhemoglobin can
induce TLR-4 expression and activation in vascular smooth muscle cells (VSMCs) paralleled by TNF-α
secretion, but this effect might stem from spontaneous oxidation to methemoglobin [76,79].

It has already been well established that the degree of bleeding on initial computerized
tomography (CT) scan correlates with poor clinical outcome [9]. It was also recognized a long time ago
that hemoglobin and its derivatives released after erythrocyte hemolysis can induce contraction of
cerebral arteries both in vitro and in vivo (reviewed in detail by [80]). Induction of basilar artery
vasospasm by application of either Lipopolysaccharide (LPS)—a TLR-4 agonist or blood in the
subarachnoid space indicated a common shared pathway upregulating inflammation after SAH [81].
Kwon et al. [75], have shown that the methemoglobin led to activation of microglia and macrophages,
and TNF-α secretion in a TLR-4 dependent manner. Furthermore, intra-subarachnoid administration of
methemoglobin activated microglia with enhanced TNF-α and TLR-4 upregulation [75]. Wu et al. [79],
have previously demonstrated upregulation and activation of TLR-4 in VSMCs by oxyhemoglobin
that could be modulated by PPAR-γ agonist Rosiglitazone.

Heme has demonstrated cytotoxic effects on macrophages, microglia, astrocytes, and brain
endothelial cells [78]. Cell-free Hb binds plasmatic protein haptoglobin, while heme binds
hemopexin and the resulting complexes are scavenged by Cluster of differentiation (CD)163 and
CD91 on monocytes/macrophages, respectively, and results in hemeoxygenase-1 (HO-1) upregulation.
HO-1 then metabolizes them to Carbon monoxide (CO), iron, and biliverdin which can modulate
monocyte/macrophage polarization [82]. Interestingly, hemopexin injection is neuroprotective in
cerebral ischemia model and hemopexin knockout mice are more susceptible to neuronal injury after
intracerebral bleeding [83,84]. It has also been shown that heme has the potential to induce IL-1β
secretion via Nucleotide-binding oligomerization domain, Leucine-rich repeat, and Pyrin domain
containing protein 3 (NLRP3) inflammasome in macrophages [85]. However, in a rat filament model
of SAH, it was shown that heme upregulated the expression of HO-1 around the hemorrhage site and
IL-1α, which was confirmed in-vitro by application of heme to organotypic slice cultures preferentially
releasing IL-1α over IL-1β [86].

Thrombolytic agents clearing intra subarachnoid clot has shown decrease in vasospasm and
improvement in outcome [73]. Interestingly, cisternal irrigation with plasminogen activator in patients
undergoing neurosurgical clipping have shown reduced serum inflammatory cytokines, reduced
ischemic lesions and better clinical outcome [73]. Haptoglobin polymorphism has shown that Hp1-1
genotype has more anti-inflammatory and vasodilatory potential compared to Hp 2-1 or Hp 2-2,
which might result from better Hb clearance, prostaglandins synthesis inhibition, better extravascular
distribution, and ROS scavenging by Hp 1-1 [5,87]. Since, iron released from heme can generate toxic
radicals via Fenton reaction, administration of Deferoxamine in SAH has shown reduced injury [78].
So, hemoglobin and its degradation products act as DAMPs and strategies aimed at their early
removal or neutralization will potentially help to reduce the pathophysiological events triggered by
subarachnoid blood hemolysis to prevent complications and improve clinical outcome.
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3.4. Fibrinogen

Fibrinogen, a 340 kDa plasma protein, is also implicated in the extravasated blood induced
inflammation and is converted into fibrin on coagulation cascade activation [76]. Fibrin(ogen) is also
released after extracellular matrix (ECM) cleavage [88]. Fibrinogen induces secretion of monocyte
chemoattractant protein-1 (MCP-1), platelet derived growth factor-AB (PDGF-AB), and IL-8 in
endothelial cells which lead to enhanced chemotaxis in monocytes in vitro [89]. In macrophages,
fibrinogen induces increased mRNA expression of several chemokines including MCP-1 and increased
secretion of MCP-1 in a TLR-4 dependent mechanism and reveals its role as a DAMP [90,91].

Extravascular fibrin leads to microglial activation and neuronal damage after stroke [92].
Fibrinogen mediated activation of microglia has been attributed to CD11b/CD18 dependent activation
of Akt and Rho signaling, and neurite outgrowth inhibition to ligation of β3 integrins with consequent
upregulation of neuronal Endothelial growth factor receptor (EGF-R) [93]. Transforming growth factor
(TGF)-β and Smad signaling triggered by fibrinogen culminates in astrogliosis [94]. Cutting down the
fibrin formation or abolishing its binding to the microglial CD11b/CD18 receptor has been shown
to reduce clustering of perivascular microglia and axonal demise in EAE model [95]. Elevated blood
fibrinogen levels have been shown to correlate with increased mortality long ago in SAH patients [96].
Increased CSF levels of fibrinogen and its degradation products have been seen after rebleeding
and in patients presenting with vasospasm, severe neurological deficits, and cerebral ischemia after
aSAH [97–100]. These findings highlight the role of fibrin(ogen) as a DAMP and its involvement in the
ongoing neuroinflammation which requires further investigation in the context of aSAH.

3.5. IL-1α and IL-33

IL-1α and IL-33 are both members of the IL-1 family of cytokines and are synthesized as pro-forms
requiring cleavage of around 100 amino acid residues at the N-terminal to give mature forms [101].
IL-1α and IL-33 share a unique feature that they have a dual role as intracellular transcriptional
regulators and as extracellular potent regulators of inflammation [102]. Interestingly, both pro- and
mature forms of IL-1α are active in inducing inflammation, whereas pro-IL-33 is not and probably
requires processing by serine proteases extracellularly into its mature form [101]. IL-1α, signaling
via IL-1R, is constitutively expressed in endothelial cells, keratinocytes, and fibroblasts, but in
monocytes/macrophages its synthesis occurs de novo [102]. IL-1α binds not only to cellular receptors,
but also functions as a transcription factor in the presence of pro-inflammatory stimuli such as LPS or
TNF and promotes production of NF-κB (p65), IL-6, and IL-8 [103,104]. Moreover, IL-1α can mediate
recruitment of neutrophils via increased secretion of CXCL-1 by mesenchymal cells [105].

As discussed above, in a rat filament model of SAH, IL-1α was expressed mainly in
microglia/macrophages after 12 h with higher expression in basal structures adjacent to hemorrhage
site in addition to cortex, striatum, and hippocampus and colocalize with HO-1 in activated
microglia [86]. Moreover, application of heme upregulated the secretion of active form of IL-1α
from organotypic slice cultures and mixed glial cell cultures and the administration of IL-1R antagonist
reduced BBB breakdown and brain damage [86]. Interestingly, IL-1α gene expression was highest at day
7 and correlated with decreased vessel caliber in canine vasospastic basilar arteries isolated at different
days after intracisternal blood injections [106]. Inhibition of p38-MAPK signaling reduced IL-1α gene
and protein expression in human VSMCs in vitro and downregulated IL-1α mRNA expression in
canine basilar arteries showing reversal of vasospasm [107]. Bowman, et al. [108] showed increased
IL-1α levels in rat femoral arteries displaying vasospasm.

IL-33 is known to have anti-inflammatory activity via promoting Th2 type response. IL-33 can
stimulate cells of innate and adaptive immunity via binding to Suppressor of Tumorigenicity (ST)2
membrane receptors [109]. ST2 receptor is a member of TLR/IL-1R superfamily and its heteromer with
IL-1R accessory protein (IL-1RAcP) is responsible for IL-33 signaling, while soluble ST2 (sST2) act as a
decoy receptor [110]. Interestingly, monocytes/macrophages are polarized towards alternate type (M2)
phenotype in the presence of IL-33 [111]. However, IL-33 has been assigned to play an inflammatory
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role in CNS reflecting its pleiotropic nature [110,112]. Huang, et al. [113] have observed an increased
expression of IL-33 mRNA and protein in the cerebral cortex of the rats after experimental SAH.
Intriguingly, IL-33 expression colocalized with neuronal and astrocytic markers and mRNA expression
of IL-33 correlated with that of IL-1β after SAH [113]. So, IL-1α and IL-33 represent important DAMPs
implicated in neuroinflammation after experimental SAH and therefore, needs further investigations.

3.6. Mitochondrial DAMPs

In recent years, mitochondria have been recognized as a host of different DAMPs
including mitochondrial transcription factor A (TFAM)), N-formyl peptides, cardiolipin,
and hypomethylated/non-methylated mitochondrial DNA which are released upon cell stress, injury,
and necrosis [114]. Mitochondrial DNA (mtDNA) has been identified a long time ago to induce TNF
secretion from splenocytes and arthritis in mice joints [115]. Zhang, et al. [116] have shown that
circulating mtDNA, acting via TLR-9, elicits MAPK-signaling based migration and degranulation
of neutrophils leading to organ injury. There are now evidences that mtDNA can upregulate innate
immune responses through several PRRs, most importantly TLR-9, NLRP3-, and NLR family CARD
domain containing 4 (NLRC4)-. Absent in melanoma (AIM)2-inflammasome complex and cyclic
GMP-AMP synthase—stimulator of Interferon genes (cGAS-STING) [117]. Several studies have shown
elevated circulating cell-free mtDNA and its biomarker and prognostic potential in connection to
diseases involving CNS pathology [118–125]. Wang and colleagues have evaluated plasma and CSF
mtDNA levels from 21 aSAH patients and found significant elevation of mtDNA in the CSF on
admission, which was associated with poor clinical outcome. However, plasma mtDNA levels showed
a delayed elevation at day 8 in poor clinical outcome patients [126].

3.7. Extracellular Matrix Derived DAMPs

Components of the extracellular matrix (ECM), which are released upon proteolysis following
tissue injury in soluble form can act as DAMPs [91]. These normally ECM sequestered components such
as biglycan, decorin, versican, tenascin-C, hyaluronan, and heparan sulfate are recently recognized
as rapid activators of innate immune response by interacting with PRRs after their release [91,127].
Hyaluronic acid has been shown to be increased after aSAH in CSF [128]. Bell and coauthors while
investigating the role of glycocalyx in microthrombosis and inflammation leading to DCI after aSAH
have found elevated plasma levels of syndecan-1 (SDC-1, a heparan sulfate proteoglycan) and sCD44
(hyaluronan receptor) implicating endothelial glycocalyx injury [36]. CSF levels of Tenascin-C have
been shown to be associated with worse WFNS scores, shunt dependent chronic hydrocephalus,
vasospasm, DCI, and clinical outcome after aSAH [129–131]. Tenascin-C was also shown to contribute
towards BBB disruption, brain edema, and MAPK mediated upregulation of Matrix metalloproteinase
(MMP)-9 and Zonaoccludens (ZO)-1 degradation [132]. A recent study investigated the involvement of
periostin and tenascin-C in mediating early brain injury after experimental SAH in mice and antibody
neutralization of periostin or genetic knockout of tenascin C provided improvement against brain
injury and in neurobehavioural outcomes and decreased induction of each other [133].

Fibronectin, another ECM protein, activates TLR-2 and TLR-4 due to structural unfolding of
its type III domains and involves NFκB and p38-MAPK downstream signaling [134]. Interestingly,
lower levels of plasma fibronectin were found at day 3 and day 9 in patients with poor clinical
outcome at 3 months and in those with vasospasm [135]. This observation coincided with low levels
of fibronectin in rabbit basilar arteries harvested on day 3 showing vasospasm [136]. Galectin-3
(Gal-3), the only chimeric protein in galectin family with carbohydrate recognition domain and
affinity for β-galactoside, serves dual function, acting not only as a PRR, but also as a DAMP [137].
Elevated plasma levels of Gal-3 were found to be associated with poor functional outcome and
increased mortality along with poor WFNS and Fischer scores in aSAH [138].
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3.8. Heat Shock Proteins

Heat shock proteins (HSP) are highly conserved chaperones aiding in protein folding and
represent another potential subgroup of DAMPs which can activate PRRs such as TLR-2 and TLR-4
leading to MyD88 dependent upregulation of NFκB [139]. Increased expression of HSP90α, HSP60,
HSP27, and HSP10 has been shown in rat brain stem after SAH, but at protein level HSP10 and HSP27
were significantly expressed [140]. In rat SAH endovascular perforation model, HSP70 expression
was induced in neurons and glia in multiple brain regions [141]. Application of lysed blood,
whole blood, and oxyhemoglobin in subarachnoid space led to the upregulation of HSP32 (HO-1)
expression in microglia throughout different brain regions, but another study showed increased HSP70,
HSP32 expression in neurons, microglia, and astrocytes, while HSP47 only in microglia [142,143].
Impaired vasorelexation has been seen in the rat middle cerebral arteries after SAH and it has
been attributed to upregulation of phosphorylated HSP27 and reduced expression of both total
and phosphorylated HSP20 [144]. Interestingly, HSP72 has been shown to be upregulated during CVS
and downregulation of HSP72 by antisense oligodeoxynucleotide aggravated, whereas its induction
by geranylgeranylacetone (GGA) relieved CVS [145].

4. Discussion

DAMPs have been shown to be implicated in various CNS disorders, for instance, it has been
demonstrated that HMGB1 is involved in ischemic/hypoxic and microhemorrhagic events occurring
in the course of spontaneous seizures [146,147]. Furthermore, HMGB1 and its receptor RAGE have
been shown to mediate the ischemic brain damage after stroke [148]. Since, DAMPs might be the
initiators of inflammation and therefore, their early blockage or sequestration may be helpful to reduce
the ongoing inflammation and reduce the severity of the disease with protection against ensuing
complications and poor outcomes. HMGB1 represents an excellent example, where pre-clinical
approaches to neutralize HMGB1 by administering anti-HMGB1 monoclonal antibody or other
molecules (ethyl pyruvate, glycyrrhizic acid, ghrelin, purpurogallin, and siRNA) that inhibit the release
of HMGB1 have been shown to be beneficial [26]. Recombinant soluble form of RAGE to interfere
with RAGE and HMGB1 signaling has been shown to be neuroprotective in experimental SAH [31].
RAGE is implicated in the signaling of multiple DAMPs and represents a potential therapeutic target
and similarly, sST-2 administration to abrogate IL-33 signaling in SAH needs to be investigated [149].
Quinolone-3-carboxamide can bind S100A9 and S100A8/S100A9 complex to inhibit interaction with
TLR-4 and RAGE [149]. It has already been shown that mtDNA levels are upregulated after CNS
insult and TLR-9 is the major receptor mediating inflammatory effects of mtDNA [150]. Therefore,
TLR-9 represents an important target and different strategies based on oligodeoxynucleotides (ODN)
aimed at antagonizing the inflammatory effects of TLR-9 activation are under development through
preclinical or early clinical studies [151–153]. Another approach, based on molecular scavenging of
the free nucleic acids by nuclear acid binding polymers, has been shown to limit the inflammation
in preclinical studies [154,155]. Since toll-like receptors are implicated in the signaling of numerous
DAMPs, therefore, they represent important modulatable targets to culminate DAMPs signaling
during brain injury [156]. Furthermore, the other DAMPs receptors and the substream signaling
pathways represent potential modulatable targets.

Finally, investigation of the time course of various DAMPs may have a diagnostic and prognostic
potential and will be helpful for early identification of the patients at increased risk of developing
different complications and achieving poor clinical outcome. Therefore, it will aid in addressing early
and aggressive treatment and management in these patients. Further, DAMPs may be used as treatment
response markers. Systemic S100B and HMGB1 represent interesting DAMP molecules that have been
investigated in aSAH associated complications and may serve as potential biomarkers. Our knowledge,
regarding DAMPs and their implication in complex pathophysiological events triggered after brain
injury, is still in infancy and further investigations aimed at combined multifaceted role of DAMPs in
brain injury after aSAH are warranted.
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IL-1 Interleukin-1
HMGB1 High Mobility Group Box-1
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S100B S100 Calcium Binding Protein Beta
ECM Extracellular Matrix
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TNF-α Tumor Necrosis Factor-alpha
NF-κB Nuclear Factor-κB
TLR-4 Toll Like Receptor-4
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Hb Hemoglobin
PPAR-γ Peroxisome Proliferator Activated Receptor-γ
Hp Haptoglobin
HO-1 Heme Oxygenase-1
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MCP-1 Monocyte Chemoattractant Protein-1
PDGF-AB Platelet Derived Growth Factor-AB
MAPK Mitogen Activated Protein Kinase
LPS Lipopolysaccharide
VSMCs Vascular Smooth Muscle Cells
ODN Oligodeoxynucleotides
Gal-3 Galectin-3
TFAM Mitochondrial Transcription Factor A
EGF-R Endothelial Growth Factor-Receptor
ST2 Suppressor of Tumorigenicity-2
MMP-9 Matrix Metalloproteinase-9
ZO-1 Zonaocculdens-1
SDC-1 Syndecan-1
GGA Geranyl Geranyl Acetone
cGAS cyclic GMP-AMP synthase
STING Stimulator of Interferon Genes
NLRP3 Nucleotide-binding oligomerization domain, Leucine-rich repeat and Pyrin domain containing protein 3
NLRC4 NLR family CARD domain containing 4
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