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Abstract: In this study, Fe3O4/ZnO core–shell nanocomposites were synthesized through a chemical
method of coating the magnetic core (Fe3O4) with ZnO by co-precipitation of Fe3O4 with zinc acetate
in a basic medium of ammonium hydroxide. The phase structure, morphology and electromagnetic
parameters of the Fe3O4/ZnO core–shell nanocomposites were investigated. The results indicated
that the concentration of the solvent was responsible for controlling the morphology of the composites,
which further influenced their impedance matching and microwave absorption properties. Moreover,
Fe3O4/ZnO nanocomposites exhibited an enhanced absorption capacity in comparison with the
naked Fe3O4 nanospheres. Specifically, the minimum reflection loss value reached −50.79 dB at
4.38 GHz when the thickness was 4.5 mm. It is expected that the Fe3O4/ZnO core–shell structured
nanocomposites could be a promising candidate as high-performance microwave absorbers.
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1. Introduction

In recent decades, advanced electromagnetic (EM) applications have taken on a fundamental
role in areas such as satellite communication, radar systems, and wireless networks [1–5]. However,
the problem of powerful electromagnetic interference (EMI) is becoming serious. EMI pollution
certainly hinders the extensive utilization of electromagnetic wave (EMW) devices and has many
negative effects on the environment and human health. Many efforts have been devoted to
investigating efficient solutions for eliminating EMI pollution. Microwave absorption materials
(MAMs) are a kind of functional material that can effectively absorb the energy of EMW on their
surface and then transform that EMW energy into thermal energy [6–9]. The development of efficient
MAMs is being pursued with high demand, and a considerable number of concepts have been actively
investigated in order to develop MAMs with properties including light weight, low price, low thickness,
wide absorption bandwidth capability, strong absorption intensity, and anti-oxidation [10–12].

Traditional MAMs, including ferrite [13], inorganic metal salts [14], carbonyl iron [15],
graphene [16], and conducting polymers [17], have been widely employed in various applications.
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However, these materials are hardly able to satisfy all of the requirements of qualified MAMs. Typically,
permittivity (dielectric property) and permeability (magnetic property) are the key factors influence
the absorption property of MAMs. Much research has focused on the synthesis and complementation
of different components in order to avoid poor impedance matching [18,19]. According to the EMW
absorption mechanism, the microwaves can be absorbed on a large scale and dissipated into thermal
energy through magnetic losses and dielectric losses if the characteristic impedance of the absorber is
well matched [20]. The composition of magnetic and dielectric materials is significant in improving
the impedance matching between permeability and permittivity. Additionally, the employment of
different micro-structures in the absorbers could influence their properties. Among the many existing
micro-structures, core–shell structures, designed with magnetic components and dielectric components,
have attracted a great deal of attention due to their superior microwave absorption properties, which
benefit from induced interfacial polarization, as well as improved impedance matching [21].

One-dimensional (1D) zinc oxide (ZnO)-related nanomaterials have attracted enormous attention
in recent decades as dielectric absorbents because of their light weight and dielectric semiconductive
properties [22]. To date, many types of ZnO-based materials have been reported that confirm that
the absorption property can be modified by compositing ZnO with magnetic materials [22–24].
Additionally, employing ordinary magnetic-dielectric materials as surrogates for rare metals is
cost-effective and utilitarian. Considering the composite synthetic technique of ZnO, many progressive
methods have been reported in previous works, such as Zn/ZnO [25], Cu/ZnO [25], and reduced
graphene oxide/ZnO [26].

Previous studies have confirmed that good EM impedance matching and the efficient
complementarity between relative permittivity and permeability can be realized by the synergistic
effect of the magnetic and the dielectric compositions. In the present work, taking this principle into
consideration, we chose ferroferric oxide as the magnetic counterpart and synthesized Fe3O4/ZnO
core–shell structured nanocomposites with Fe3O4 cores and ZnO shells. The morphologies and
EMW absorption properties were investigated in detail. This work provides a lead for designing
dielectric-magnetic absorbers via a facile method. Moreover, the as-synthesized Fe3O4/ZnO core–shell
structured nanocomposites exhibited an enhanced absorption property, which may be expected to be
useful in building a novel platform in advanced EMW absorbers.

2. Materials and Methods

2.1. Materials

Ferric chloride (FeCl3·6H2O), sodium citrate (Na3C6H5O7·2H2O), sodium acetate (NaOAc),
and zinc acetate (Zn(OAc)2) were commercially obtained from Aladdin Chemical Reagent, China.
Ammonium Hydroxide (NH3·H2O), ethylene glycol (EG), and absolute ethanol were purchased from
Xilong Chemical Reagent Co. Ltd. (Guangzhou, China). All the reagents were used without further
purification. Deionized water was produced in our laboratory and used for all experiments.

2.2. Synthesis of Fe3O4 Nanoparticles

Fe3O4 nanoparticles (NPs) were prepared by a solvothermal method as reported previously [27].
FeCl3·6H2O (0.016 mol) and Na3C6H5O7·2H2O (0.004 mol) were dissolved in EG (70 mL) under
magnetic stirring. Then, NaOAc (0.005 mol) was slowly introduced into the mixture solution,
generating a transparent suspension. The resulting solution was then transferred into a Teflon-lined
stainless-steel autoclave (100 mL capacity). Subsequently, upon sealing, the autoclave was maintained
at 200 ◦C for 10 h. After cooling down to room temperature, the precipitate was collected by the
magnet and washed with absolute ethanol and deionized water several times, then dried in a vacuum
oven at 50 ◦C for 12 h.
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2.3. Synthesis of Fe3O4/ZnO Nanocomposites

Fe3O4/ZnO nanocomposites were prepared through the chemical method of coating the magnetic
core (Fe3O4) with ZnO by co-precipitation of Fe3O4 with Zn(OAc)2 in a basic medium of NH3·H2O.
Briefly, the as-prepared Fe3O4 NPs (0.25 mmol) were dissolved in deionized water (50 mL), Zn(OAc)2

(2 mmol) was dissolved in deionized water (20 mL), then the solutions were mixed together by
ultrasonic dispersal for 15 min. Subsequently, the mixed solution was mechanically stirred for 0.5 h.
In the meantime, a certain amount of NH3·H2O was added to the suspension. Then the resultant
solution was loaded into a 100 mL Teflon-lined stainless-steel autoclave and kept at 120 ◦C for 15 h.
The resulting bronzing product was collected, washed with absolute ethanol and deionized water
several times by centrifugation, and then dried in a vacuum oven at 50 ◦C overnight. the convenience
of discussion, the Fe3O4/ZnO nanocomposites prepared in 3 mL NH3·H2O and 2 mL NH3·H2O will
be denoted as sample A and sample B, respectively.

2.4. Characterization

The crystalline structure and phases of the samples were performed by X-ray diffraction (XRD,
Rigaku Denki Co. Ltd., Tokyo, Japan) using a Cu Kα radiation (λ = 0.15418 nm) in a scattering
range (2θ) of 10–80◦ at an accelerating voltage of 40 kV. X-ray photoelectron spectroscopy (XPS)
studies were performed using the ESCALAB 250Xi (Thermo Fisher Scientific, Waltham, MA, USA).
The morphologies of the as-synthesized samples were characterized by scanning electron microscopy
(SEM, JSM-7500F, JEOL, Beijing, China) and transmission electron microscopy (TEM, JEM-2100
microscope with an accelerating voltage of 200 kV, JEOL, Beijing, China). The EM parameters of
complex relative permeability (µr = µ′ − jµ”) and permittivity (εr = ε′ − jε”) in the frequency range of
2–18 GHz were performed by vector network analyzer, Agilent, N5230A (Agilent Technologies Inc.,
Santa Clara, CA, USA, as shown in Figure 1a). The as-prepared samples were mixed with paraffin
(different mass percentages) and pressed into toroidal-shaped samples (inner diameter φin = 3.04 mm,
outer diameter φout = 7.00 mm, as shown in Figure 1b).
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Figure 1. The coaxial waveguide instrumentation (a) and the toroidal–shaped sample (b).

3. Results and Discussion

To confirm the phases and structures of the as-prepared samples, the corresponding XRD pattern
of Fe3O4/ZnO composites is shown in Figure 2. As for Fe3O4/ZnO composites, the existence of
major diffraction peaks corresponding to the (220), (311), (400), (422), (511), and (440) planes can be
observed. These planes can be readily indexed to standard cards of JCPDS No.88-0866, revealing that
the crystallinity of Fe3O4 remains unchanged after coating. Six diffraction peaks were assigned to the
(100), (101), (102), (110), (103), and (112) planes, which is consistent with ZnO (JCPDS No.36-1451).
Therefore, the XRD patterns confirmed the coexistence of Fe3O4 and ZnO. The surface elemental
states of Fe3O4/ZnO nanocomposites were further analyzed by XPS, and the results are presented in
Figure 3. From the typical survey spectrum, the existence of Fe, Zn, C and O elements can be found.
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In Figure 3b, the high-resolution spectrum of Fe is given; two peaks appeared at 710.9 and 724.3 eV,
corresponding to the band energies of Fe 2p3/2 and Fe 2p1/2, respectively [28]. This indicates the
generation of oxide of Fe(II) and Fe(III), which is in good agreement with the literature and is consistent
with Fe3O4 [29]. The existence of the Fe element indicates that the shell of ZnO may be in porous
condition. Figure 3c displays the high-resolution spectrum of Zn. The peaks at 1021.8 and 1044.8 eV
correspond to Zn 2p3/2 and Zn 2p1/2, respectively. Hence, the composites are composed of Fe3O4

and ZnO.
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The scanning electron microscopy (SEM) image of Fe3O4 NPs is shown in Figure 4a. It can be
seen that Fe3O4 NPs have a relatively uniform spherical shape, and the Fe3O4 NPs with smooth
surfaces have diameters in the range of 250–300 nm. Figure 4b,c shows the as-synthesized Fe3O4/ZnO
nanocomposites under different experimental conditions. Sample A is shown in Figure 4b; it is visible
that the products had a disorderly composition comprising a few scattered Fe3O4 NPs and short ZnO
nanorods. The presence of disordered nanorods and NPs suggests that ZnO particles failed to generate
chemical bonds with the Fe3O4 NPs and grew into short rod shapes alone with the introduction of
a larger amount of ammonium hydroxide (3 mL). When the amount of ammonium hydroxide was
reduced to 2 mL (sample B) in the mix solution, the product exhibited a spherical shape (Figure 4c),
and the diameters were a bit larger than those of the Fe3O4 NPs in Figure 4a. We deduced that Fe3O4

NPs were uniformly covered by the ZnO shells in a spherical shape. The magnetic NPs are utilized
as a seed-mediated growth mechanism to grow a layer of ZnO on their surfaces, thus making the
surface much rougher than the naked Fe3O4 NPs. The morphology and distribution of the Fe3O4/ZnO
core–shell structured nanocomposites are clearly recognizable from the low-magnification TEM image
in Figure 4d. It can be discerned that the nanocomposites are nearly spherical in shape, with a diameter
distribution of 280–330 nm, which is consistent with the SEM image in Figure 4c. The high-resolution
TEM image of one typical core–shell structured Fe3O4/ZnO composite is demonstrated in Figure 4e.
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The distinction between the transparent boundary and the dark core confirms the growth of ZnO on
the Fe3O4 NP. It can be observed that a thin layer of ZnO is growing on the edge of Fe3O4 NP at a
thickness of ~15 nm. Figure 4f also presents the diffraction profile generated by the inserted SAED
pattern and confirms the structure of ZnO and Fe3O4. The SEM and TEM results clearly indicate
that the nanocomposites possess a core-shell type structure, and that the inner Fe3O4 NPs cores are
successfully wrapped with the uniformed ZnO shells.
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In order to explore the microwave absorption properties of Fe3O4/ZnO nanocomposites,
the relative complex permeability (µr = µ′ − jµ”) and relative permittivity (εr =ε′ − jε”) were measured
by a vector network analyzer in the frequency range of 2–18 GHz. The measured samples were
prepared by uniformly mixing with paraffin (in mass fractions of 30%, 50%, and 70%) at 85 ◦C, pressed
into toroidal-shaped samples. According to transmission line theory, EM properties can be evaluated
based on the relative complex permeability (µr = µ′ − jµ”) and relative permittivity (εr =ε′ − jε”).
µ′ and ε′ represent the ability to store EM energy, whereas µ” and ε” represent the inner dissipation of
EM energy, which originates from the relaxation and resonance mechanisms. The relative complex
permittivity (ε′, ε”) and relative complex permeability (µ′, µ”) of Fe3O4, sample A and sample B
measured in the frequency range of 2–18 GHz are plotted in Figure 5a–d. From Figure 5a,b, it can
be found that ε′ of Fe3O4 is in the range of 4.67–5.03, and ε” of Fe3O4 is in the range of 0.40–1.02.
After being composited with ZnO, the values of ε′ and ε” show a sharp growth. As for sample A, the
values of ε′ and ε” are in the range of 7.12–8.94 and 0.70–1.67, respectively. Meanwhile, the values of ε′

and ε” raise to the range of 9.62–16.60 and 1.17–10.23, respectively, after the Fe3O4 NPs were coated
with the ZnO shell (sample B). The values of ε′ and ε” for sample B fluctuate more and exhibit great
change in the main measuring frequency region. As shown in Figure 5a, the ε′ of sample B presents a
declining trend with increasing frequency, while the trend of ε” is the contrary, and some peaks appear
in the high frequency region. The curves of ε′ and ε” indicate that the ZnO shell can greatly improve the
dielectric properties of the material. Figure 5c,d shows the relative complex permeability of the three
materials. As for Fe3O4 NPs, the value of µ′ drops sharply from 1.27 in the frequency range of 2–6 GHz,
and then shows a fluctuating trend versus the changing frequency, and the Fe3O4/ZnO (sample A
and B) composites display a similar variation trend throughout the entire measured frequency range.
This phenomenon may result from the eddy current effect. Compared to the value of µ”, differences in
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the µ” values of Fe3O4 and Fe3O4/ZnO composites are distinguished at low frequency. Meanwhile, in
the range of 8–18 GHz, the µ” curves of Fe3O4 and Fe3O4/ZnO composites change to become similar;
one µ” value peak of sample B is observed at ~11 GHz, which may be attributable to the dissipation of
EM energy. Furthermore, it is noticed that negative values of µ” occur in the high frequency range due
to calibration or sensitivity issues of the experimental set-up.
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The theoretical reflection loss (RL) of the composite absorber at different thicknesses was
calculated using the following equations [30–32]:

RL = 20 log|(Zin − Z0)/(Zin + Z0) | (1)

Zin = Z0

√
µr

εr
tanh

(
j
2π f d

√
µrεr

c

)
(2)

Here, Z0 is the impedance of free space, Zin is the normalized input impedance of the absorber,
d is the thickness, C is the velocity of EMW in free space, and f is the frequency of the incident
wave. RL values of −10 dB and −20 dB correspond to 90% and 99% attenuation of the incident
EMW energy, and the frequency range where RL is smaller than −10 dB is defined as the effective
absorption bandwidth.

Figure 6a–e shows the plots of RL versus the frequency of the Fe3O4 NPs and two samples of
Fe3O4/ZnO composites at different thicknesses. As for Fe3O4 NPs, the minimum RL of −7.28 dB is
observed at 15.68 GHz with the thickness of 2.5 mm, which indicates that the naked Fe3O4 NPs have a
weak EMW absorption property. Furthermore, with the doping of the dielectric component, the EMW
absorption property of sample A can be improved slightly. As shown in Figure 6b, the minimum
RL is −13.91 dB at 5.52 GHz with the thickness of 4.5 mm. This is because the ZnO particles failed
to generate chemical bonds with the Fe3O4 NPs and grew into short rod shapes alone; therefore,
the composites were unable to obtain a good impedance match and interfacial polarization. As for
the sample B loaded with 30 wt % (Figure 6c), because of the high dispersion in the paraffin matrix,
the Fe3O4/ZnO nanoparticles failed to generate conductive interconnections, so the EMW absorption
performance did not show an enhancement in comparison to pure Fe3O4. It is noticed that sample
B loaded with 50 wt % shows an enhanced EMW absorption property (Figure 6d). Specifically, the
minimum RL value of −50.79 dB can be achieved at 4.38 GHz with the thickness of 4.5 mm. Based on
the results of Figure 4d–f, we deduced that the incorporation of the dielectric ZnO into the Fe3O4 NPs



Materials 2018, 11, 780 7 of 12

may generate a high dielectric constant and loss due to the effective interfaces between the dielectric
and magnetic materials, giving them an advantage in terms of matching complex permittivity and
permeability. The enhanced EM absorption properties benefit from the uniform core–shell structures,
which induce an intensification of interfacial polarization. It is worth noting that the core–shell
structured Fe3O4/ZnO composites are able to achieve an enhanced absorption property in both low
and high frequency bands; such dual absorption regions are also competitive in comparison to other
materials. It can be observed from Figure 6d that the minimum RL values all shift toward the lower
frequency region with increasing thickness, which can be explained by the quarter-wavelength match
principle [18]:

tm =
nλ

4
=

nc
4 fm

√
(|εrµr|)

(n = 1, 3, 5 . . .) (3)

where tm is the absorber thickness, µr is the complex permeability at fm, and εr is the complex
permittivity at fm. The frequency dependence of tm (n = 1, 3) is calculated and plotted on the contour
maps in Figure 7. It can be noticed that all the points of RLmin lie on the curves of tm for sample B.
Thus, it is demonstrated that the quarter-wavelength match principle is an effective tool that provides
a crucial guide in the thickness design of absorbers.
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Typically, the magnetic loss is implied by the imaginary part of permeability and mainly originates
from hysteresis loss, domain wall displacement, natural resonance, and eddy current resonance.
In general, hysteresis loss is mainly caused by the time lag of the magnetization vector behind the
external EM-field vector and will always be negligible in a weak applied field, while domain wall
resonance loss takes place in the MHz frequency range. The following equation is used to determine
whether eddy currents contribute to the magnetic loss [33]:

C0 = µ′′
(
µ′
)−2 f−1 (4)

If magnetic loss only stems from the eddy current, C0 should be equal to a constant value 2πµ0d2σ

(d is the thickness of the MAMs, σ is the electrical conductivity, and µ0 is the permeability in a
vacuum) and would be independent of frequency; if not, the magnetic loss is ascribed to natural
resonance. From Figure 8a, we find that the value of C0 varies with the frequency and presents a sharp
declining tendency in the frequency range of 2–8 GHz. However, when the frequency is in the range of
~8–12 GHz, the value of C0 closes to a constant. Based on this phenomenon, it can be concluded that
magnetic loss results from the natural and exchange resonance and the eddy current effect.
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According to transmission line theory, EMW absorption properties can be expressed by the
attenuation constant of α. The attenuation constants of sample B with 30, 50, and 70 wt % were
calculated using the following expression [34,35]:

α =

√
2π f
c
×
√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (5)

where c is the velocity of light in a vacuum. Figure 8b shows the plot of the attenuation constant of α
versus frequency. It can be seen that the sample with 50 wt % filler loading has the largest value of α;
thus, we supposed that the sample with 50 wt % filler loading possesses greater EMW attenuation
and impedance matching than the other samples. Figure 9 shows the dielectric loss (tanδε = ε”/ε′) and
magnetic tangent loss (tanδµ = µ”/µ′) of Fe3O4/ZnO and Fe3O4 NPs, respectively. tanδε and tanδµ

are two possible contributors for EMW absorption, and are commonly used to describe material loss
capacity. Therefore, we calculated the tangent loss based on the data in Figure 5. Specifically, sample B
has a higher tanδε value than the naked Fe3O4 NPs, indicating that the ZnO shell obviously improves
the dielectric properties of the composites. Additionally, Figure 7 clearly shows that the magnetic
loss factor (tanδµ) is much higher than the dielectric loss factor (tanδε) in the low frequency range
(~2–7 GHz), which indicates that magnetic loss plays a vital role in EMW absorption in this region.
Meanwhile, in the high frequency range (~8–12 GHz), the value of tanδε is higher than tanδµ, which
indicates that dielectric loss is the main loss in this frequency region. Such a complementarity between
dielectric loss and magnetic loss demonstrates the Fe3O4/ZnO composites to possess promising EMW
absorption properties.
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In Table 1, the recently reported EMW absorption performances of typical Fe3O4 material-based
composites, as well as the Fe3O4/ZnO composites prepared in this work, have been plotted.
In comparison with the reported composites in Table 1, it can be observed that the Fe3O4/ZnO
composites have a wide effective absorption bandwidth and a promising negative RL value among
these composites. It can be concluded that the as-fabricated Fe3O4/ZnO nanocomposites with
enhanced EMW absorption properties confirm the presence of an efficient complementarity between
magnetic and dielectric loss. The above-mentioned advantages indicate that this special core–shell
structured absorber is able to meet the requirements of ideal MAMs.

Table 1. EMW absorption performances of typical Fe3O4-based composites reported in this work and
recent literature.

Sample wt (%) Optimum
Frequency (GHz)

Minimum RL
Value (dB) Ref.

SnO2/Fe3O4/MWCNTs 70 10.90 −42.00 [36]
Fe3O4/SiO2/rGO 20 9.70 −26.60 [37]

Fe2O4/MnO2 40 16.80 −41.50 [38]
Fe3O4@C 66.7 16.20 −22.60 [39]

FePc-Fe3O4-BF 75 5.90 −31.10 [40]
Fe3O4/ZnO 50 4.38 −50.79 This work

4. Conclusions

In summary, Fe3O4/ZnO nanocomposites were synthesized via a chemical method of coating
magnetic cores (Fe3O4) with ZnO by co-precipitation of Fe3O4 with zinc acetate in a basic medium
of ammonium hydroxide, and the morphology and the microwave absorption properties were
investigated in detail. It is suggested that the amount of ammonium hydroxide plays a key role
in controlling the morphologies of the composites, and the SEM and TEM results further confirmed
that ZnO shell generated chemical bonds with the Fe3O4 NPs. Owing to the core–shell structure,
an efficient complementary balance was achieved between dielectric loss and magnetic loss. Moreover,
the enhanced microwave absorption properties benefitted from the core–shell structure, which induces
intensified interfacial polarization. Specifically, the minimum RL value of −50.79 dB can be achieved
at 4.38 GHz when the thickness is 4.5 mm. The mechanism of designing neoteric structures with
magnetic and dielectric materials in order to broaden the effective absorption bandwidth would open
up a promising domain in designing composites with high EM absorption performance. As a result,
our Fe3O4/ZnO nanocomposites are expected to form a novel platform for advancing EMW absorbers.
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