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Metabolomic and lipidomic profile 
in men with obstructive sleep 
apnoea: implications for diagnosis 
and biomarkers of cardiovascular 
risk
Adriana Lebkuchen1,2, Valdemir M. Carvalho2, Gabriela Venturini3, Jéssica S. Salgueiro2, 
Lunara S. Freitas1, Alessandra Dellavance2, Franco C. Martins4, Geraldo Lorenzi-Filho4, 
Karina H. M. Cardozo2 & Luciano F. Drager1

The use of metabolomic and lipidomic strategies for selecting potential biomarkers for obstructive 
sleep apnoea (OSA) has been little explored. We examined adult male patients with OSA (defined by 
an apnoea-hypopnoea index ≥15 events/hour), as well as age-, gender-, and fat-composition-matched 
volunteers without OSA. All subjects were subjected to clinical evaluation, sleep questionnaires for 
detecting the risk of OSA (Berlin and NoSAS score), metabolomic analysis by gas chromatography 
coupled to mass spectrometry and lipidomic analysis with liquid chromatography followed by detection 
by MALDI-MS. This study included 37 patients with OSA and 16 controls. From the 6 metabolites and 
22 lipids initially selected, those with the best association with OSA were glutamic acid, deoxy sugar 
and arachidonic acid (metabolites), and glycerophosphoethanolamines, sphingomyelin and lyso-
phosphocholines (lipids). For the questionnaires, the NoSAS score performed best with screening 
for OSA (area under the curve [AUC] = 0.724, p = 0.003). The combination of the NoSAS score 
with metabolites or lipids resulted in an AUC for detecting OSA of 0.911 and 0.951, respectively. In 
conclusion, metabolomic and lipidomic strategies suggested potential early biomarkers in OSA that 
could also be helpful in screening for this sleep disorder beyond traditional questionnaires.

Obstructive sleep apnoea (OSA) is a clinical condition characterized by complete or partial collapse of the upper 
airway during sleep, which produces intrathoracic pressure reduction, intermittent hypoxia and sleep fragmenta-
tion1–4. OSA has been shown to be highly prevalent in men, in the obese and in patients at risk of cardiovascular 
disease (CVD)5–9. More importantly, OSA, an underdiagnosed condition in clinical practice10, is independently 
associated with higher rates of cardiovascular morbidity and mortality11. It is conceivable that the increased car-
diovascular risk attributed to OSA is partially mediated by metabolic dysfunction in these patients12. Moreover, 
recent translational evidence suggests that early OSA detection is crucial because the impact of OSA on the car-
diovascular system may not be reversible if treatment is delayed3. Indeed, the results from one of the largest rand-
omized trials addressing the effect of OSA treatment in patients with established CVD were neutral13. Therefore, it 
is necessary to explore early biomarkers of OSA, as well as potential metabolic pathways by which OSA increases 
cardiovascular risk.

Metabolomics, which includes lipidomic analysis, is an “omic” strategy that studies the partial or global 
profile of metabolites from a subject with high-sensitivity and high-throughput to characterize changes in 
low-molecular-weight metabolites14,15. The analytical metabolomic platforms most applied include liquid and gas 
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chromatography coupled to mass spectrometry by untargeted, semi-targeted and targeted strategy, mass spec-
trometry and nuclear magnetic resonance14–17.

To date, a few studies have explored the detailed metabolic profile in OSA using “omic” strategies18–21. 
However, these studies failed to control for obesity parameters (including body fat composition) or failed to 
exclude comorbidities and medications, which may influence the results. We utilized a combination of metab-
olomic analytical platforms, such as ultra-performance liquid chromatography coupled to tandem quadrupole 
mass spectrometry (UPLC-MS/MS) and gas chromatography coupled to quadrupole MS (GC-MS), to inves-
tigate the changes in the metabolic pathway. In addition, off-line UPLC with matrix-assisted laser desorption/
ionization-mass spectrometry (MALDI-MS) detection was used to screen lipid profiles in young patients with 
OSA. Our aims were twofold: (1) to investigate the metabolic and lipidomic profile differences in participants 
with and without OSA, exploring the potential pathways involved in the cardiovascular risk in OSA; and (2) to 
identify the potential value of selected biomarkers, in addition to sleep questionnaires, in screening for OSA. We 
propose two hypotheses: (1) there are significant differences in the metabolomic and lipidomic profiles of OSA 
patients compared to the matched control group, and some of these metabolites are directly related to intermittent 
hypoxia, a hallmark of OSA; and (2) the use of some of these metabolites may add value to the diagnosis of OSA 
when using sleep questionnaires.

Results
Subject characteristics.  In total, 73 subjects (20 with low risk and 53 with high risk of OSA) were selected. 
A detailed recruitment process is described in the methods section. After exclusions due to refusals, morbid 
obesity, previous CVD and predominant central sleep apnoea, only 53 participants were included in the study: 37 
with OSA and 16 without OSA (Fig. 1).

Table 1 shows the basic characteristics of the total sample group according to OSA status. Overall, our study 
comprised young obese adults. Sleep parameters (as expected) were significantly different between the groups: 
while the AHI and the percentage of total sleep time with oxygen saturation <90% were higher in the OSA group, 
minimum oxygen saturation was lower in OSA patients. Diastolic blood pressure was higher in patients with 
OSA.

Untargeted metabolomic analysis.  The supervised partial least-squares discriminant analysis (PLS-DA) 
revealed an appropriate model to explain and predict variance between groups (R2 = 0.9933 and Q2 = 0.6551, 
accuracy: 0.7067; Fig. 2). Among 152 metabolites (Supplemental Table 1), we found significant differences in six 
metabolites: Four (also related to glucose and inflammatory pathways) were increased in OSA patients (deoxy 
sugar; 2,6-diphenyl-1,7-dihydrodipyrrolo[2,3-b:3′,2′-e] pyridine; 9-hexadecenoic acid (Z) and arachidonic acid). 
In contrast, two showed lower levels in OSA patients: 5,5′-biphthalide and L-glutamine. Pearson’s correlations 
between metabolites and OSA severity parameters are presented in Supplemental Table 2. A positive correlation 
with AHI was observed in glutamine and deoxy sugar, whereas arachidonic acid had a negative correlation with 
AHI.

Untargeted lipidomic analysis.  The PLS-DA reported in Fig. 3 shows the performance of a quality con-
trol (QC) sample before (a) and after (b) fractionation of different lipids classes by off-line UPLC. QC samples 
were predicted by the model and appeared clustered together in the score plot thus proving the robustness of the 
methodology14. A total of 22 lipids from different lipid classes were significantly different in patients with and 
without OSA (Table 2) according to off-line UPLC separation and MALDI-MS analysis. The full features with 
probable lipid identification are listed in Supplementary Table 3. From the 22 significant lipids, glycerophosphoe-
thanolamines (PE), monoacylglycerophosphocholines (lyso-phosphocholines) (LPC), and sphingomyelin (SM) 
classes were up-regulated in OSA patients compared to patients without OSA. In contrast, diacylglycerols (DAG), 
glycerophosphocholines (PC), and glycerophosphates (PA) were down-regulated in patients with OSA. Pearson’s 

Figure 1.  Flow chart of subject selection. Exclusion subject discrimination, crosstalk between groups and study 
group final composition.
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correlations between lipids and OSA severity parameters are presented in Supplemental Table 4. A negative cor-
relation with AHI was observed for PA and PC, whereas PE and SM were positively correlated with AHI.

Targeted metabolomic analysis.  Biochemical indices, salivary cortisol, urinary catecholamine, adiponec-
tin, leptin, IL-6 and free fatty acids were not significantly different between groups (Table 3). A plasma amino 
acids experiment quantified 24 amino acids (Table 4) and resulted in lower levels of glutamic acid (p = 0.023) in 
patients with OSA when compared with patients without OSA. No differences were observed in the remaining 
amino acids.

Performance of NoSAS score with and without metabolite profile in OSA screening.  The 
receiver operating characteristic (ROC) curve and logistic regression analyses were used to discover the most 
qualified metabolic candidates among the significant metabolites described above. The individual area under the 
curve (AUC) values for each of the metabolites and lipids are presented in Tables 2, 4 and Supplemental Table 1. 
The best metabolites and lipids were selected based on the Pearson’s correlation (supplemental file) to build the 
final model to predict OSA. The correlation between untargeted and targeted metabolites that were analysed 
was applied to confirm the results avoiding false findings. There was a good correlation to glutamic acid in both 
techniques (R² = 0.843), while glutamine had a poor correlation (R² = 0.110). Thus, glutamine was excluded to 
perform logistic regression to obtain the final model for predicting OSA.

After collecting sleep questionnaires routinely used in screening OSA patients, we found the NoSAS score 
had an AUC = 0.724, p = 0.003 while the Berlin questionnaire had an AUC = 0.6565, p = 0.077. Therefore, the 
NoSAS score (Fig. 4a) was selected based on the better performance in screening OSA in this study. Interestingly, 
when coupling NoSAS score values to the three metabolites (glutamic acid, deoxy sugar and arachidonic acid) 
by logistic regression, we found an AUC of 0.911 (Fig. 4b) to propose an OSA biomarkers panel. In the lipidomic 
analysis, coupling the NoSAS score to the three selected lipids (PE 35:1, SM d18:1/12:0 and LPC 27:1) by logistic 
regression resulted in an AUC of 0.951 (Fig. 4c) to propose an OSA biomarkers panel.

Discussion
The present investigation compared both metabolomic and lipidomic profiles in OSA patients and an appropriate 
control group matched for age, BMI, and body composition. Importantly, these patients had no previous CVD 
and were using no medications. We found that three metabolites involved in glucose and inflammatory pathways 
(glutamic acid, deoxy sugar and arachidonic acid) and three lipids (PE 35:1, SM d18:1/12:0 and LPC 27:1) had the 
best performance in separating the studied groups. Coupling the selected metabolites or lipids to the NoSAS score 
significantly improves the accuracy of detecting significant OSA. Taken together, our results identified potential 
early biomarkers of OSA, independent of traditional risk factors such as age and fat composition; these results 
suggest that these markers may add value in detecting OSA beyond traditional sleep questionnaires.

It is well-known that chronic intermittent hypoxia occurs during OSA22, and some molecular adaptations 
occur to adapt to this intermittent low-oxygen condition23. The most important transcriptional factors involved 
in all cellular response to hypoxia are the ubiquitous hypoxia-inducible factors (including HIF-1α)24,25. HIF-1α 

Total (n = 53)
No OSA 
(n = 16) OSA (n = 37) p value CI dif. 95% AUC (CI 95%)

General data

Age (years) 38 ± 6 36 ± 6 39.2 ± 7 0.151 [−7.14; 0.81] 0.626 (0.786–0.466)

Neck circumference (cm) 42.0 ± 1.7 40.9 ± 2.4 42.5 ± 2.1 0.027 [−2.92; −0.07] 0.693 (0.869–0.518)

Waist circumference (cm) 105.8 ± 7.6 104.9 ± 9.5 106.1 ± 9.7 0.405 [−7.01; 4.64] 0.573 (0.746–0.401)

Hip circumference (cm) 108.6 ± 5.8 109.5 ± 9.1 108.2 ± 8.5 0.946 [−4.16; 6.81] 0.507 (0.684–0.33)

Systolic blood pressure (mm Hg) 125.4 ± 7.7 123.3 ± 8.1 126.3 ± 10.7 0.204 [−8.48; 2.40] 0.611 (0.781–0.442)

Diastolic blood pressure (mm Hg) 83.8 ± 7.6 79.6 ± 7.5 85.7 ± 10.7 0.047 [−11.24; −0.86] 0.674 (0.828–0.520)

Sleep study

AHI (ev/h) 29.5 ± 18.0 7.4 ± 3.9 39.1 ± 23.5 <0.001 [−39.75; −23.61] 1.000 (1.000–1.000)

Minimum saturation (%) 82.4 ± 6.0 88.8 ± 2.8 79.7 ± 7.5 <0.001 [6.27; 11.95] 0.907 (0.991–0.823)

TST O2 sat <90% (min) 5.2 ± 6.3 0.1 ± 0.1 7.4 ± 11.9 <0.001 [−11.27; −3.30] 0.930 (0.998–0.862)

Body composition

BMI (kg/m²) 30.5 ± 2.7 30.3 ± 3.5 30.6 ± 3.4 0.399 [−2.46; 1.79] 0.574 (0.748–0.401)

Muscle mass (kg) 36.8 ± 3.4 36.9 ± 2.7 36.7 ± 5.1 0.727 [−2.04; 2.31] 0.531 (0.689–0.374)

Fat mass (kg) 28.6 ± 7.2 27.2 ± 11.5 29.2 ± 8.2 0.178 [−8.58; 4.57] 0.618 (0.798–0.439)

% Fat 30.2 ± 5.4 28.7 ± 7.4 30.8 ± 5.9 0.237 [−6.42; 2.18] 0.604 (0.783–0.424)

VFA (cm²) 120.0 ± 29.0 115.2 ± 41.3 122.1 ± 34.4 0.314 [−31.21; 17.40] 0.589 (0.769–0.408)

BMR (kcal) 1767.3 ± 124.2 1770.7 ± 100.8 1765.9 ± 184.1 0.713 [−74.39; 83.98] 0.533 (0.691–0.375)

Table 1.  Subject characteristics according to study group with respective average, standard deviation, p value 
and AUC for each variable. AHI: apnoea-hypopnoea index; AUC: area under the curve; BMI: body mass index; 
BMR: basal metabolic rate; CI: confidence interval; OSA: obstructive sleep apnoea; TST O2 sat <90%: total 
saturation time with oxygen saturation lower than 90%; VFA: visceral fat area.
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regulates the transcription of hundreds of genes to maintain a balance between O2 supply and demand in cells. 
When activated, HIF-1α activates a compendium of proteins involved in multiple pathways26, including meta-
bolic responses such as the activation of glycolytic enzymes25,27. In our study, deoxy sugar was increased in OSA 
patients compared to the control group. Deoxy sugar is a monosaccharide glucose analogue produced by the 
action of glucose oxidase28,29. Previous studies have shown that OSA is associated with an imbalance between oxi-
dant production and antioxidant activity30. This overabundance of oxidants may be associated with the multifac-
torial aetiology of metabolic disturbances, including insulin resistance31. Indeed, OSA is associated with insulin 
resistance and impaired glucose control12. Additional mechanisms and clinical implications concerning higher 
levels of deoxy sugar in OSA are unclear, but our findings suggest the biological plausibility of this association.

Growing evidence suggests that OSA promotes an inflammatory state that may partially explain the increased 
cardiovascular risk observed in these patients32. In our study, we detected several molecules involved with inflam-
matory pathways. In low oxygen availability, such as in myocardial ischaemia, energy deficiencies and membrane 
failures are indicated by intracellular and extracellular changes in [Na+] and [K+], as well as by a large influx 
of calcium33. Although high cytosolic calcium concentrations may disrupt various intracellular functions, the 
activation of phospholipase A1 (PLA1), A2 (PLA2) and C (PLC) is considered most damaging under hypoxic 
conditions32,33. A study developed in Chicago34 was able to correlate PLA2 activation in paediatric OSA and 
obesity with the presence of endothelial dysfunction. Supporting causality, OSA treatment promoted PLA2 inhi-
bition35. PLA2 is an important enzyme required for repairing and remodelling cell membranes. It is also involved 
in the generation of lipid signalling molecules by hydrolysis of the sn-2 ester-bound-glycerophospholipids to 
free long chain fatty acids and 2-lysophospholipids33,36. Our study is consistent with these data since PC were 
down-regulated and LPC and arachidonic acid were up-regulated in patients with OSA. Free arachidonic acid 
synthesised by PLA2 may serve as a substrate for cyclooxygenase enzymes (COX-1 and COX-2) in the genera-
tion of prostaglandin E237, which is believed to be critically involved in the mechanisms of regulation of vascu-
lar resistance, myocardial ischaemia, myocarditis and other CVD32–36. Other studies showed that arachidonic 
acid produced slowly developing inhibition of glutamate uptake38, a principal excitatory neurotransmitter in the 
brain39, and even though this study was related to the mechanisms in glial cells, we observed decreasing levels of 
glutamate in the biological fluid of patients with OSA.

Another target molecule observed in this study was sphingomyelin (SM d18:1/12:0). It is known that ather-
osclerotic lesions contain a high concentration of sphingolipids, with a strong association with inflammatory 
response, but the origin of these molecules is not clear40. They are also involved in cell apoptosis by proinflam-
matory cytokines such as TNF-alpha and interleukin-141. One possible pathway for the metabolism of sphin-
golipids is shown on Fig. 5. Depending on the severity of hypoxia, studies show increased levels of ceramides 
and sphingomyelin by sphingomyelin phosphodiesterase (SMase) activation, as well as increased levels of 
sphingosine-1-phosphate (S1P) and ethanolamine41. Our study corroborates this information, since we observed 
elevated levels of ceramides and sphingomyelin, as well as increased levels of ethanolamine in patients with OSA. 
OSA may activate the palmitoyl CoA enzyme, which is responsible for synthesis of fatty acid unsaturated in 9 
position42 (p.e. 9-hexadecenoic acid). Sequentially, an increase in ceramides and phosphatidylethanolamines lev-
els were observed, as well as SMase enzyme activation that increased sphingomyelin levels. All of these molecules 

Figure 2.  Supervised partial least-squares discriminant analysis (PLS-DA) from GC-MS analysis. Groups are 
shown in red without OSA and in green with OSA.
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are elevated in OSA patients independently of body fat composition, suggesting them as attractive biomarkers 
candidates.

As previously discussed, evidence from metabolomics and lipidomics profiles for OSA is scanty. Previous 
studies screened potential OSA biomarkers, but the lack of matched controls and/or careful control of medica-
tions or habits (such as smoking) prevent appropriate interpretation of the potential role of OSA18–21. Moreover, 
since all previous studies used untargeted metabolomics platforms, there are significant differences compared to 
our findings. For instance, Ferrarini et al.19 applied LC-QTOF-MS using plasma samples and found 14 significant 

Figure 3.  Supervised partial least-squares discriminant analysis (PLS-DA) from untargeted lipidomic analysis. 
Red: Participants without OSA; Green: Patients with OSA; Blue: Quality controls. (a) All samples together 
before fraction collect and (b) samples after each fraction was collected.
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metabolites between glycerophospholipids, porphyrins, fatty acid, eicosanoids, amino acids and peptides in OSA 
patients; unfortunately, that study did not control for previous diseases, gender and smoking status. In another 
investigation, Xu et al.18 reported 31 significant metabolites from phospholipid biosynthesis, carbohydrate metab-
olism, TCA, glutamate metabolism, nucleic acid metabolism, indoles and derivatives, and spermine and tyrosine 
metabolism with a sensitivity and specificity model of no more than 85% and 80%, respectively, to screen OSA 
patients in comparison with other sleep disorders. However, these researchers used urine samples for untargeted 
metabolomics analysis. Recently, miRNAs measured from exosomes21 and proteomics20 have gained interest as 
potential biomarkers for OSA. Despite the analytical differences, all of these recent studies highlight the growing 
interest and challenges in pursuing reliable OSA biomarkers43.

Our study had strengths and limitations that should be acknowledged. Standard polysomnography, which 
is considered the gold standard method for diagnosing OSA, was used. A matched control group was carefully 
selected to avoid the obvious impact of conflicting factors on the metabolic analysis. A targeted LC-MS/MS 
approach was used to confirm the findings from the untargeted analysis of a select group of metabolites (amino 
acids). The following limitations should be addressed. First, this exploratory study comprised a relatively small 
sample size of young male subjects under no medication. These facts may limit the generalizability of our find-
ings. While it is interesting to explore potential pathways related to OSA, these results may not be true for women 
or patients with significant comorbidities. Second, this is a cross-sectional study. No cause-and-effect relationship 
may be claimed in this investigation. An ongoing randomized study addressing OSA treatment may help to clarify 
the potential role of OSA in the metabolomic/lipidomic profile. Finally, we share the opinion that biomarkers are 
most useful for clarifying pathways and predicting cardiovascular risk, rather than for use as a complementary 
tool for OSA diagnosis. We are not proposing to use biomarkers to OSA diagnosis. However, there are considera-
ble efforts to improve OSA screening and increase OSA diagnosis. All available sleep questionnaires do not have 
a great performance for screening OSA, as previously shown44 and confirmed by our study. Moreover, the PSG 
exam has long wait-lists and may causes some discomfort to patients. In this sense, it is necessary customize the 
selection of patients who merit objective sleep studies. However, it is not certain whether biomarkers are ideal 
candidates. This possibility would require significant improvement and validation using the analytical platform 
of choice, which, after optimization, could have low cost and absorb high-volume routines.

In conclusion, we identified plasma metabolites and lipids related to inflammatory and glycolytic metabolism 
in patients with OSA. Since these pathways are related to cardiovascular disease32–37 and these biomarkers may not 
be explained in our study as potential conflicting factors, such as age and fat composition, our results identified 
potential OSA biomarker candidates. Additional efforts to validate the selected metabolites in a population-based 
study may be helpful in the future to elucidate the potential role of biomarkers in OSA.

Total (n = 53)
No OSA 
(n = 16) OSA (n = 37) p value VIP CI dif. 95% AUC (CI 95%)

DAG(45:8) 1.5 ± 0.3 1.7 ± 0.5 1.4 ± 0.3 0.022 2.016 [−0.14; 5.23] 0.699 (0.875–0.523)

Cer(d18:1/24:4) 0.3 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.044 2.540 [−5.63; 0.13] 0.676 (0.836–0.515)

PA(35:2) 1.3 ± 0.2 1.4 ± 0.2 1.3 ± 0.2 0.064 3.780 [−0.05; 2.42] 0.662 (0.828–0.497)

PE(36:5) 2.3 ± 0.8 1.8 ± 0.7 2.5 ± 1.0 0.023 3.426 [−11.69; −1.50] 0.698 (0.850–0.545)

PE(35:1) 2.4 ± 1.3 1.5 ± 0.9 2.2 ± 1.1 0.018 3.516 [−12.92; −1.30] 0.704 (0.856–0.553)

PE(38:6) 2.2 ± 1.0 1.7 ± 1.1 2.6 ± 1.5 0.032 3.893 [−16.44; −1.46] 0.688 (0.842–0.535)

PE(38:5) 2.6 ± 1.3 1.6 ± 1.3 2.7 ± 1.6 0.019 4.301 [−18.93; −2.04] 0.705 (0.858–0.552)

PE(37:3) 2.0 ± 0.9 1.7 ± 0.9 2.5 ± 1.3 0.018 3.768 [−14.44; −1.74] 0.704 (0.857–0.552)

PE(37:2) 2.4 ± 1.2 1.9 ± 1.3 2.9 ± 1.7 0.024 4.180 [−18.77; −1.78] 0.696 (0.850–0.542)

PE(39:4) 1.5 ± 0.6 1.2 ± 0.6 1.6 ± 0.07 0.040 2.749 [−8.25; −0.67] 0.679 (0.838–0.52)

PC(33:3) 7.8 ± 2.4 8.8 ± 3.3 7.4 ± 2.9 0.030 3.761 [−4.92; 34.14] 0.694 (0.850–0.539)

PC(36:4) 15.4 ± 2.3 16.4 ± 3.6 14.9 ± 3.4 0.021 3.548 [−6.86; 36.31] 0.706 (0.860–0.551)

PC(35:5) 10.2 ± 1.6 10.9 ± 2.4 9.8 ± 2.3 0.019 2.974 [−4.39; 24.70] 0.709 (0.865–0.554)

PC(34:0) 8.4 ± 2.1 9.3 ± 2.9 8.0 ± 2.6 0.022 3.505 [−4.41; 30.31] 0.704 (0.856–0.551)

PC(37:7) 8.1 ± 1.3 8.5 ± 1.9 7.9 ± 1.9 0.074 2.055 [−5.24; 17.79] 0.661 (0.817–0.505)

PC(37:6) 10.1 ± 1.6 10.8 ± 2.4 9.8 ± 2.3 0.030 2.883 [−4.86; 24.70] 0.694 (0.852–0.537)

PC(36:1) 9.4 ± 1.6 10.0 ± 2.0 9.1 ± 2.2 0.037 2.730 [−3.62; 21.58] 0.687 (0.833–0.541)

SM(d18:1/12:0) 2.8 ± 0.7 2.4 ± 1.0 3.0 ± 0.8 0.025 2.449 [−12.35; −1.06] 0.694 (0.860–0.529)

SM(d18:1/24:0) 2.9 ± 0.5 2.5 ± 0.9 3.1 ± 0.5 0.038 2.304 [−10.78; −0.46] 0.681 (0.855–0.507)

SM(d18:1/26:1(17Z)) 3.1 ± 0.4 2.8 ± 1.0 3.3 ± 0.4 0.048 2.157 [−10.50; 0.16] 0.666 (0.840–0.491)

LPC(27:1) 2.1 ± 0.4 1.8 ± 0.5 2.2 ± 0.5 0.008 2.955 [−7.41; −1.27] 0.730 (0.882–0.578)

LPC(27:0) 2.7 ± 0.8 2.4 ± 0.9 2.9 ± 0.9 0.01 2.837 [−10.90; −0.10] 0.671 (0.828–0.513)

Table 2.  Statistically significant lipids according to study groups. Average intensity value normalized (x1000) 
to each lipid is shown with standard deviation, p value, VIP score and AUC. AUC: area under the curve; 
CI: confidence interval; DAG: diacylglycerol; Cer: ceramide; LPC: monoacylglycerophosphocholines (lyso-
phosphocholines); PA: glycerophosphates; PC: glycerophosphocholines; PE: glycerophosphoethanolamines; 
OSA: obstructive sleep apnoea; SM: sphingomyelin; VIP: variable’s importance in the PLS-DA model.
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Material and Methods
Study population.  This study was approved by the Ethics Committee at the University of São Paulo Medical 
School. Written informed consent was obtained from each participant. All methods were performed in accord-
ance with the relevant guidelines and regulations. All participants were adult male non-smokers with no alcohol 
problems, no medications and no medical history of diabetes. Initially, we applied the Berlin questionnaire (see 
below) to determine patients with low and high risk for OSA. For each participant selected, we matched another 
participant for age (±5 years) and BMI (±3 kg/m²). It is important to mention, however, that the previous use of 
the Berlin questionnaire did not generate a potential bias because participants with low risk who presented OSA 
in the PSG crossed to the OSA group and vice versa (Fig. 1).

Participants who were diagnosed with central or mixed apnoea, as well as carriers of any pulmonary disease, 
CVD or chronic kidney disease, were excluded. Anthropometric parameters including height, weight, neck, waist 
and hip circumference were measured. BMI was calculated as weight/height2 (kg/m2). Blood pressure was meas-
ured in a quiet room three times at 5 min intervals, and the mean was calculated. Bioimpedance analysis was also 
performed for all included participants.

Berlin questionnaire.  The Berlin questionnaire45 is a 10-item questionnaire comprising questions from 3 
categories (snoring, sleepiness and comorbidities). High risk for OSA is defined by 2 or more positive categories.

NoSAS score.  The NoSAS score includes variables such as neck circumference, obesity, snoring, age and 
gender. The score ranges from 0 to 17 points. We attributed 4 points for a neck circumference of >40 cm, 3 points 
for a body mass index (BMI) of 25 to <30 kg/m2, 5 points for a BMI of ≥30 kg/m2, 2 points for snoring, 4 points 
for being older than 55 years of age, and 2 points for male gender. A score ≥8 points defines a high probability of 
OSA44.

Polysomnography evaluation.  Participants were previously selected using the Berlin questionnaire, after 
which they underwent a full-night polysomnography (PSG) exam at the Sleep Laboratory (InCor). This sleep 
examination utilizes electroencephalography, electrooculography in both eyes, sub-mental electromyography, 
nasal airflow, snoring sounds, electrocardiography, thoracic/abdominal movements, pulse oxygen saturation 
and body position to measure various parameters. The PSG indices included were the apnoea-hypopnoea index 
(AHI) and oxygen desaturation index. Apnoea was defined as the decrease in airflow of at least 90% for ≥10 s, 
while hypopnea was defined as a drop in airflow of >30% for ≥10 s with oxygen desaturation ≥3%. The AHI was 
calculated using the number of respiratory events per hour of sleep according to the American Academy of Sleep 
Medicine criteria46. OSA was defined by AHI ≥15 events/h due to the lack of cardiovascular consequences of 
mild OSA47. All PSG indices were manually checked by the same technician to avoid variability. After the PSG, 
subjects were divided into two groups: 1) patients without OSA: AHI < 15 (n = 16); and 2) patients with OSA: 
AHI ≥ 15 (n = 37).

Clinic Profile Total (n = 53) No OSA (n = 16) OSA (n = 37) p value CI dif. 95% AUC (CI 95%)

Glucose (mg/dL) 91.7 ± 5.4 94.6 ± 9.6 90.4 ± 5.4 0.159 [−1.18; 9.56] 0.623 (0.804–0.442)

CRP (mg/dL) 0.31 ± 0.18 0.27 ± 0.21 0.32 ± 0.33 0.907 [−0.20; 0.10] 0.511 (0.682–0.340)

Cholesterol (mg/dL) 190.0 ± 22.3 184.1 ± 32.4 192.6 ± 26.1 0.265 [−27.53; 10.35] 0.598 (0.784–0.412)

HDL cholesterol (mg/dL) 40.3 ± 7.5 40.1 ± 7.8 40.3 ± 11.3 0.756 [−5.72; 5.14] 0.528 (0.697–0.359)

VLDL cholesterol (mg/dL) 29.9 ± 11.2 28.1 ± 17.8 30.7 ± 14.0 0.309 [−12.92; 7.77] 0.590 (0.768–0.411)

LDL cholesterol (mg/dL) 119.9 ± 21.7 115.9 ± 24.2 121.8 ± 28.3 0.318 [−21.42; 9.65] 0.588 (0.759–0.416)

Triglycerides (mg/dL) 149.4 ± 56.1 140.2 ± 88.5 153.3 ± 70.0 0.304 [−64.62; 38.47] 0.590 (0.768–0.413)

TSH (mU/I) 1.9 ± 0.7 2.1 ± 1.1 1.9 ± 0.8 0.485 [−0.43; 0.89] 0.562 (0.750–0.373)

Insulin (mU/I) 15.2 ± 6.4 14.5 ± 7.9 15.5 ± 8.8 0.801 [−5.99; 3.96] 0.523 (0.706–0.340)

HOMA-IR 3.4 ± 1.5 3.4 ± 1.9 3.4 ± 2.0 0.946 [−1.24; 1.18] 0.507 (0.693–0.321)

Free fatty acid (nmol) 0.6 ± 0.2 0.6 ± 0.2 0.6 ± 0.3 0.839 [−0.18; 0.11] 0.519 (0.702–0.335)

Adiponectin (ug/mL) 682.7 ± 334.8 718.9 ± 400.8 667.1 ± 373.4 0.498 [−189.38; 293] 0.560 (0.746–0.374)

Leptin (ng/mL) 4.6 ± 5.0 6.3 ± 10.7 3.9 ± 7.1 0.140 [−3.63; 8.47] 0.628 (0.794–0.463)

Interleukin-6 (ng/mL) 69.8 ± 9.1 72.1 ± 13.3 68.8 ± 10.9 0.361 [−4.54; 11.06] 0.581 (0.772–0.390)

Cortisol Morning (ng/dL) 91.7 ± 5.2 239.5 ± 119.8 256.4 ± 185.5 0.822 [−103.72; 69.89] 0.521 (0.687–0.355)

Cortisol Afternoon (ng/dL) 91.7 ± 5.19 67.9 ± 40.5 76.8 ± 70.7 0.717 [−40.19; 22.33] 0.533 (0.696–0.370)

Cortisol Night (ng/dL) 91.7 ± 5.20 33.5 ± 40.6 22.8 ± 17.2 0.766 [−11.59; 32.89] 0.473 (0.649–0.297)

Noradrenaline (ug/24 h) 91.7 ± 5.2 33.3 ± 18.2 40.1 ± 20.8 0.277 [−18.32; 4.86] 0.596 (0.771–0.422)

Adrenaline (ug/24 h) 91.7 ± 5.2 5.5 ± 5.8 6.4 ± 5.8 0.289 [−4.46; 2.61] 0.590 (0.752–0.427)

Dopamine (ug/24 h) 91.7 ± 5.2 144.9 ± 81.1 180.4 ± 84.3 0.186 [−85.74; 14.65] 0.617 (0.794–0.439)

Table 3.  Targeted metabolomics results to clinical evaluation study group. Averages are shown with standard 
deviation, p value, VIP score and AUC for each metabolite. AUC: area under the curve; CI: confidence interval; 
CRP: C-reactive protein; HDL: high density lipoprotein; LDL: low density lipoprotein; OSA: obstructive sleep 
apnoea; TSH: thyroid-stimulating hormone; VLDL: very-low-density lipoprotein.
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Sample collection.  Blood was obtained from all participants in the same place and at the same time of day 
(8:00 AM), after fasting for 12–14 hours; urine and saliva were collected by each participant at home. All samples 
were obtained using materials from the same manufacturer to avoid experimental artefacts. Plasma was collected 
by EDTA anticoagulant tubes for metabolomic and lipidomic analysis, serum was collected in gel tubes for bio-
chemical analysis, and saliva was collected by Salivette, at three different times of day (between 7:00 AM and 9:00 
AM, between 4:00 PM and 5:00 PM and between 11:00 PM and 12:00 AM), to measure cortisol alterations. Urine 
was collected over a period of 24 hours to measure catecholamine.

Untargeted metabolomic analysis.  GC-MS analysis was performed on an Agilent 7890B gas chromato-
graph (Agilent Technologies) coupled to an Agilent 5977 A MSD (Agilent Technologies). A 29-m long DB-5 MS 
column (0.25 mm × 0.25 μm) with a 10-m DuraGuard pre-column was used with other parameters as previously 
described48. An Agilent Mass Hunter WorkStation and Agilent Fiehn GC/MS Metabolomics RTL Library were 
employed for raw data processing and metabolite identification. The Agilent Fiehn GC/MS Metabolomics RTL 
Library has a list of metabolites that correlated the retention time with mass spectrum; the metabolites analysed 
are identified by an RTL (retention time lock) and mass spectrum using a chromatography method default by 
this library48. The chromatography method cannot be modified, in order to preserve the relationship with the 
library. The protocols to extract plasma samples used 400 μL of methanol (MeOH) and isopropanol (1:1 v/v), 
and 6 μL of internal standard (3 mg/mL d27-myristic acid, Sigma-Aldrich) added to 100 μL of plasma. The mix-
ture was ultrasonicated for 5 min, mixed for 20 min at 4 °C and centrifuged at 15,800 × g at 4 °C for 10 min. The 
supernatant (350 μL) was transferred to an Eppendorf tube and dried for 16 h in a SpeedVac Savant SC210A. The 
pellet was derivatized in two steps. First, the carbonyl functional groups were protected by methoximation using 
50 μL of a 40 mg/mL solution of methoxyamine hydrochloride in pyridine at 25 °C for 16 h. Next, the samples 
were derivatized using 100 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane 
(MSTFA + 1% TMCS, Sigma-Aldrich) at 25 °C for 60 min. After centrifugation at 15,800 × g at 4 °C for 10 min, 
120 μL of the supernatant was transferred to a GC vial and injected. Quality control samples were extracted and 
derivatized in the same way as subject samples.

Untargeted Lipidomic analysis.  Lipids from plasma were extracted using a modified methyl tert-butyl 
ether (MTBE) method49. Plasma samples (250 µL) were combined with 1.25 mL of MeOH and 250 µL of water and 
the mixture was then stirred and centrifuged at 4000 × g for 10 min. The supernatant (1 mL) was transferred to a 
clean tube and extracted with MTBE (1.25 mL) by shaking the mixtures for 15 min at 850 rpm using Eppendorf 
Thermomixer vortex. After the addition of 1.5 mL of water, the upper phase was collected and dried in a SpeedVac 
Savant SPD131DDA. The dried extract was resuspended with 50 µL of isooctane. Ten microliters of the extract 

Amino acid 
(µmol/L)

Total 
(n = 53)

No OSA 
(n = 16)

OSA 
(n = 37) p value CI dif. 95% AUC (CI 95%)

Aspartic acid 4.9 ± 1.0 4.7 ± 1.0 5.1 ± 1.5 0.467 [−1.05; 0.40] 0.564 (0.734–0.395)

Glutamic acid 71.8 ± 20.7 83.5 ± 22.5 66.7 ± 24.5 0.023* [2.70; 30.92] 0.698 (0.847–0.549)

Alanine 337.9 ± 50.4 333.8 ± 61.1 339.7 ± 71.2 0.723 [−45.07; 33.25] 0.532 (0.710–0.354)

Allo-isoleucine 3.6 ± 1.2 3.9 ± 1.4 3.4 ± 1.4 0.378 [−0.42; 1.30] 0.578 (0.750–0.405)

Arginine 61.8 ± 10.2 57.6 ± 10.6 63.6 ± 14.1 0.119 [−13.15; 1.10] 0.637 (0.803–0.471)

Asparagine 36.0 ± 5.8 36.2 ± 4.8 36 ± 8.1 0.691 [−3.34; 3.90] 0.535 (0.693–0.378)

Citrulline 29.7 ± 5.2 30.0 ± 5.3 29.6 ± 7.0 0.642 [−3.17; 3.93] 0.541 (0.703–0.380)

Phenylalanine 45.8 ± 17.2 44.6 ± 16.5 46.3 ± 20.9 0.846 [−12.61; 9.13] 0.518 (0.678–0.358)

Glycine 210.2 ± 34.7 208.4 ± 52.2 211.1 ± 41.4 0.574 [−33.11; 27.71] 0.550 (0.734–0.366)

Glutamine 618.9 ± 73.1 585.2 ± 61.9 633.5 ± 93.7 0.067 [−92.43; −4.32] 0.660 (0.812–0.509)

Hydroxyproline 11.2 ± 3.4 10.4 ± 4.0 11.6 ± 4.3 0.318 [−3.71; 1.27] 0.588 (0.762–0.414)

Histidine 72.5 ± 6.4 69.8 ± 10.5 73.6 ± 6.8 0.215 [−9.82; 2.10] 0.609 (0.794–0.424)

Isoleucine 85.1 ± 11.9 84.8 ± 15.4 85.3 ± 16.5 0.757 [−10.17; 9.06] 0.528 (0.710–0.346)

Leucine 152.2 ± 18.9 152.9 ± 24.0 152.0 ± 24.0 0.946 [−13.82; 15.64] 0.507 (0.695–0.319)

Lysine 178.1 ± 26.2 173.7 ± 34.2 180.0 ± 31.4 0.342 [−26.80; 14.24] 0.584 (0.757–0.411)

Methionine 25.9 ± 2.3 25.1 ± 3.1 26.4 ± 2.9 0.337 [−3.14; 0.61] 0.584 (0.754–0.415)

Ornithine 80.8 ± 15.2 81.5 ± 18.8 80.5 ± 19.5 0.794 [−10.59; 12.69] 0.524 (0.707–0.340)

Proline 204.0 ± 15.2 200.1 ± 48.8 205.7 ± 39.0 0.611 [−34.11; 22.86] 0.546 (0.732–0.359)

Serine 96.6 ± 12.9 100.6 ± 11.2 94.8 ± 18.2 0.104 [−2.46; 14.05] 0.643 (0.794–0.492)

Taurine 28.6 ± 20.0 28.1 ± 25.4 28.8 ± 21.6 0.969 [−15.71; 14.23] 0.496 (0.679–0.312)

Tyrosine 55.3 ± 14.0 52.4 ± 19.1 56.5 ± 17.1 0.584 [−15.41; 7.35] 0.549 (0.728–0.370)

Threonine 92.8 ± 12.9 91.2 ± 12.1 93.6 ± 17.5 0.786 [−10.82; 6.04] 0.476 (0.639–0.312)

Thriptophan 71.33 ± 6.8 71.5 ± 11.4 71.2 ± 8.4 0.713 [−6.28; 6.89] 0.533 (0.733–0.332)

Valine 252.6 ± 27.5 252.8 ± 29.3 252.6 ± 37.6 0.698 [−19.24; 19.63] 0.465 (0.632–0.299)

Table 4.  Targeted metabolomic results to amino acid analysis. Averages are shown with standard deviation, 
p value, VIP score and AUC for each metabolite. AUC: area under the curve; CI: confidence interval; OSA: 
obstructive sleep apnoea.
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were fractionated by normal phase liquid chromatography using a UPLC I-Class (Waters Corporation) equipped 
with a Luna Silica (100 mm × 2 mm × 3 µm) column (Phenomenex). Lipid classes were separated using a binary 
gradient composed of dichloromethane (mobile phase A) and MeOH with 0.2% acetic acid (mobile phase B). 
At a constant flow rate of 0.9 mL/min, the proportion of B was ramped from 0 to 100% in 23 minutes. Nine 
fractions were collected using Gilson 215 Liquid Handler and dried in a SpeedVac for mass spectrometry anal-
yses. MALDI-TOF-MS detection was performed on a Synapt G1 (Waters Corporation) in positive mode with 
an extraction voltage of 20 kV, a laser step rate of 20 kV and laser frequency and energy of 300 Hz. Lock mass 

Figure 4.  Receiver operating characteristic curve (ROC curve) with, respectively, AUC for (a) NoSAS score 
parameters, (b) metabolites statistically significant to screening OSA group and (c) lipids statistically significant 
to screening of OSA.



www.nature.com/scientificreports/

1 0SCIentIFIC ReporTs |  (2018) 8:11270  | DOI:10.1038/s41598-018-29727-6

solution (m/z 613,3411) was used to correct mass after acquisition. Mass range acquisition was 400–1700 m/z. 
Different matrix types (DHB 1 mol/L inMeOH:water (9:1 v/v) and 9-aminoacredine 10 mg/mL in IPA:ACN 
(6:4 v/v)) were used to detect features from each previously separated lipid class. Control samples used DHB 
1 mol/L in MeOH:water (9:1 v/v) for MALDI detection. The raw data were processed and analysed using the R 
statistic package (MALDIquant and MALDIquantForeign). The algorithm for data processing starts with a raw 
unprocessed MALDI spectrum followed by smoothing, baseline correction, peak detection, merging and visual-
ization of data. Lockmass correction was applied before R statistic package and was performed using commands 
previously developed by the Fleury Group. Finally, the results were exported as peak intensity list for statistical 
tests and mass identification. Each fraction was processed individually and feature identification was done using 
the LIPID MAPS library with an error of less than 50 ppm.

Targeted metabolomics.  Serum glucose, insulin, homeostasis model assessment of insulin resistance 
(HOMA-IR), thyroid-stimulating hormone (TSH), C-reactive protein (CRP) and lipid profile (TG, LDL, HDL, 
VLDL, total cholesterol and N-HDL) were measured by the Fleury Group using enzyme immunoassays from 
Roche Diagnostics GmbH. Serum adiponectin, interleukin-6 (IL-6), leptin and free fatty acids were measured 
using the enzyme-linked immunosorbent assay (ELISA), respectively: human adiponectin/Acrp30 ELISA, 
Sigma-Aldrich Co. LLC, human IL-6 sR ELISA, Sigma-Aldrich Co LLC, human leptin ELISA, Sigma-Aldrich Co. 
LLC, and free fatty acid quantitation kit, Sigma-Aldrich Co. LLC.

Salivary cortisol was quantified using a fully validated laboratory-developed test using UPLC-MS/MS50, and 
urinary catecholamine was quantified by HPLC and an electrochemical detector using a Chromsystems rea-
gent kit (Catecholamines in Urine, ChromSystemsCE Instruments & Chemicals GmbH). Plasma amino acids 
were quantified by a fully validated laboratory-developed test using UPLC-MS/MS (Waters Corporation) 
using reversed-phase octadecylsilane (BEH C18 – Waters Technologies) with perfluoropentanoic acid as the 
ion-pairing agent51.

Statistical analysis.  The statistical analysis was performed using MetaboAnalyst 3.0 and the R package. For 
untargeted metabolomics and lipidomics, normalized data were mean-centred and divided by the square root 
of the standard deviation of each variable (Pareto Scaling). Principal component analysis (PCA) and supervised 
partial least-squares discriminant analysis (PLS-DA) were performed to visualize the metabolic and lipid differ-
ences between the groups. Significantly altered metabolites and lipids with a VIP score >2 in PLS-DA models 
and Student’s t-test (p < 0.05) were selected. A similar approach was used by Xu and colleagues18. For targeted 
metabolomics, Student´s t-test (p < 0.05) was applied to compare variables. Pearson’s correlation was performed 
between significant metabolites and OSA markers (AHI, minimum saturation and TTS < 90%) as well as between 
targeted and untargeted metabolomics in order to validate the results. The metabolites confirmed by LC-MS/
MS approach (targeted metabolomics) and other metabolites and lipids which were statistically significant with 
non-zero correlation to OSA markers were submitted to logistic regression, concomitantly with NoSAS score 
values and stepwise regression using Akaike criteria52 to highlight a potential biomarker panel for OSA.
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