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Abstract: Robust action recognition methods lie at the cornerstone of Ambient Assisted Living
(AAL) systems employing optical devices. Using 3D skeleton joints extracted from depth images
taken with time-of-flight (ToF) cameras has been a popular solution for accomplishing these tasks.
Though seemingly scarce in terms of information availability compared to its RGB or depth
image counterparts, the skeletal representation has proven to be effective in the task of action
recognition. This paper explores different interpretations of both the spatial and the temporal
dimensions of a sequence of frames describing an action. We show that rather intuitive approaches,
often borrowed from other computer vision tasks, can improve accuracy. We report results based
on these modifications and propose an architecture that uses temporal convolutions with results
comparable to the state of the art.
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1. Introduction

Action Recognition is one of the key features for implementing Ambient Intelligent (AmI) systems
today. Knowing which action the user is performing at a given time and location offers the means to
create systems that react accordingly in a timely fashion.

The classical solution is to use a multitude of sensors embedded throughout the environment or
to replace most devices and appliances with ‘smart’ ones, capable of reporting back their interactions
with the user. Due to cost, the extensive infrastructure needed, and the technical expertise required to
deploy and maintain such systems, the solution quickly becomes intractable.

Instead, Computer Vision techniques have more chances to be able to extract patterns from the
behavior of the user, at a fraction of the cost, considering that, for example, it would only require a
handful of cameras to cover a typical residence or workplace.

In Ambient Assisted Living (AAL) scenarios, AmI systems are even more sensible to correctly
detecting what the user is doing. People with special needs, for example, often require some form
of remote monitoring. This is either for measuring and reporting their activity levels or to possibly
intervene in case of dangerous situations. For example, fall detection [1] has been a central topic for
systems looking to extend the independence of elderly users in their own homes. Moreover, improving
personal hygiene, keeping the proper medication schedule, and managing food intake are all part of
the Activities of Daily Living (ADL) group of activities which are essential to keep track of activities
when dealing with vulnerable users. Action recognition techniques are useful for detecting low-level
action patterns that are needed for this type of human behavior analysis problems.

The problem of recognizing human activity using the RGB image extracted from video is not
new. It is one of the first problems that computer vision has tried to solve. From the beginning,
this problem was considered a challenging one, because there are many variables that need to be taken
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into consideration: height of the person, the scene in which the action takes place, brightness levels,
the angle from which it is viewed, the fact that an action can be executed in a different manner from
one person to another, and more. In the past, the information provided by the video cameras has
been extensively studied and analyzed as input for systems capable of identifying and recognizing
human actions. Initial models designed for action classification used 2D images as inputs on top of
which engineered features were extracted and used by classifiers such as Support Vector Machines
(SVM—[2,3]) and Hidden Markov Models (HMM—[4,5]). Recently, classifying user actions by means
of Convolutional Neural Networks is a major direction of research in the area.

Action recognition based on 3D skeleton joints aims to identify human actions using information
from a series of sensors, with the RGB images, depth maps and coordinates of the of the points that
make up the human skeleton being the main types of inputs used to perform this operation.

Compared to RGB images, depth maps have the advantage that the regions of interest in the image
are easier to segment. Differentiating the silhouette of a person, even if his clothes are very similar
with the background, is more robust when using depth data. Moreover, due to optical characteristics
of the sensor, depth maps are far less susceptible to brightness variations or low light situations,
not least the 3D context obtained through depth maps provides a clear structure of the action scene,
which has a positive influence on the accuracy of the learning algorithms due to more information
being available at input.

This paper reports work based on this approach: depth-based sensors and data for classifying
actions based on 3D motion of skeleton joints. Using the Kinect from Microsoft, an RGB-D sensor
capable of providing multimodal data, we investigate how actions may be recognized with high
accuracy by using the skeleton joints which the sensor provides, inferred from the depth data.
We explore different ways of expressing the input features in combination with the interpretation of
the spatio-temporal aspects thus producing different types of architectures for the proposed solutions.
In particular, we propose an architecture based on the temporal convolutional network (TCN) presented
by Bai et al. [6].

In Section 2 we provide a brief overview of related work, with a focus on various interpretations
on what an action means. Section 3 describes different variants of an architecture based on temporal
convolutions, with reference to relevant work, as our main contribution. Section 4 presents the results
of these proposed solutions. In Section 5 we discuss the major takeaways regarding action recognition
based on 3D skeleton joints.

2. Related Work

In this section, we focus on the main approaches used to represent the information that describes
the human skeleton, specifying for each approach how it can be used to encode a spatio-temporal
sequence of skeletal joint points based on which the human action is recognized. The concept of basic
human skeleton representation was first introduced by Johansson in 1973 [7], demonstrating that a
small number of points can effectively represent the behavior and characteristics of the human body.

One popular RGB+D sensor, capable of providing RGB images, depth maps and infrared (IR)
images, is Microsoft’s Kinect sensor. Apart from images, it also provides algorithms to estimate
positions of the human skeleton joints, both in 2D (relative to the RGB image) and in 3D. Even though
Microsoft recently announced that Kinect will be discontinued, the capabilities of the sensor are
now also available for other sensors on the market. Moreover, there are other related computer
vision tasks which are also interested in collecting and processing depth information, for example,
robotic navigation and mapping. For these reasons, action recognition based on 3D joints is still a
current subject of research.

3D skeleton-based representations deliver promising performance, especially for applications
running in real time, including games that use Kinect. This representation of human body, based on
the coordinates of the points that make up skeleton, can model relationships between joints and codify
the whole-body configuration using a very small amount of information.
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The configuration considered in the presented approaches is the one proposed by the NTU RGB+D
Dataset authors [8]. Thus, the human skeleton is composed of 25 points, as presented in Figure 1.

Figure 1. Configuration of 25 body joints proposed in NTU RGB+D Dataset [8]. 1—base of the spine,
2—middle of the spine; 3—neck, 4—head, 5—left shoulder, 6—left elbow, 7—left wrist, 8—left hand,
9—right shoulder, 10—right elbow, 11—right wrist, 12—right hand, 13—left hip, 14—left knee, 15—left
ankle, 16—left foot, 17—right hip, 18—right knee, 19—right ankle, 20—right foot, 21—spine, 22—tip of
the left hand, 23—left thumb, 24—tip of the right hand, 25—right thumb.

2.1. Using Raw 3D Joints Positions

One first approach was to use the coordinates of the joints that make up the human skeleton as
input features for a deep neural network classifier. For each action there is a T× N× S tensor, where T
is the number of frames, N is the number of joints and S the number of coordinates for each joint [8].

Veeriah et al. [9] proposed to add a new gating mechanism for Long Short-Term Memory (LSTM)
to model the derivatives of the memory states and explore the salient action patterns. All the input
features were concatenated at each frame and were fed to the differential LSTM at each step.

Zhu et al. [10] introduced a regularization term to the objective function of the LSTM network
to push the entire framework towards learning co-occurrence relations among the joints. To ensure
effective learning of the deep model, an in-depth dropout algorithm for the LSTM layers was designed,
which performs dropout for the internal gates, cell, and output response of the LSTM cell.

The order in which the joints are arranged in the input is important, from the spatial perspective,
since just ordering them by index means that there are cases when there is no direct correspondence
between two adjacent joints. From this point of view, several approaches have been tried, for example
seeing the human skeleton as a tree, rooted in the central joint (the joint with index 1 in Figure 1).
By performing a traversal of this tree, the order in which the joints are arranged into the feature vector
ensures that any two consecutive joints are adjacent.

The 3D skeleton joints representing the human body can be grouped into five parts: two arms,
two legs and one trunk; and human actions can be interpreted as a series of interactions of different
parts of the body. The points that form each part of the body move most often together, and the
combination of 3D trajectories forms more complex motion patterns.
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Starting from this perspective, Hierarchical Models have exploited the inherent structure of
the human body and asserted that simple human actions are executed by skeleton components.
Using Recurrent Neural Networks (RNNs) for accessing contextual information, Du et al. [11] proposed
a hierarchical bidirectional model for the classification of human actions. This model is composed
of 9 layers, where each layer is concerned with different structures, having different roles in the
proposed architecture. The first layer contains five bidirectionally recurrently connected sub-nets,
one for each part of the skeleton, while the second is the fusion layer, which ensures the combination
of the five parts. Furthermore, the component parts are fused, from one layer to another, and the
result is a representation covering the entire body. The first part of this proposed architecture, stacked
Bidirectional Recurrent Neural Networks (BRNNs), can be considered to extract the spatio-temporal
features of the skeleton sequences, while the second one, composed of a fully connected (FC) layer and
SoftMax layer, performs the classification.

Attention-Based Models have been employed for human action recognition with the idea that
identifying key frames and key joints in the sequence will ensure that classification is based mainly
on relevant information. Sijie Song et al. [12] have used a model based on spatial and temporal
attention, implemented using an end-to-end multi-layered LSTM network. This network can choose
the dominant joints for each frame, from the perspective of spatial attention, and assign to each frame
a different degree of importance. Considering a skeleton composed of K joints, each joint having
3 coordinates, each frame is represented as: xt = (xt,1, . . . , xt,K)

T ; the scores describing the importance
of each joint are calculated using Equation (1), where Us, Wxs, Whs are learnable parameter matrices,
bs, bus are the bias vectors and hs

t−1 is the hidden variable from an LSTM layer. By passing these
scores through a SoftMax layer, the probability for the importance of each joint is obtained. Temporal
attention is also important because prediction is more accurate when considering only the frames that
compose the essential moment of the action.

st = Ustanh(Wxsxt + Whshs
t−1 + bs) + bus (1)

2.2. 2D Spatio-Temporal Interpretations

Convolutional Neural Networks (CNNs) are very good at extracting relevant features for image
classification. Their success has inspired researchers to propose bi-dimensional representations of
human actions. Researchers have tried to collapse both the spatial configuration of every body pose at
each frame, and their individual movements into 2D planes, which are then easy to feed into CNNs
for classification.

Liu et al. [13] proposed an approach in which they transformed the joint sequence into a
spatio-temporal representation that can be used as input for a CNN. Starting from a coordinate
sequence for the skeleton joints, they propose a matrix I ∈ RH×W×3, using a tensor ψ ∈ Rh×w×3,
obtained by arranging the indexes of the joints in the form of a 2D-grid. For each frame, they have
generated m matrices in Rh×w with unique elements in range [1, h× w], and used these to generate
2D images. They also enriched their data by adding values for velocity. The features extracted by the
neural network were then used to train an SVM classifier.

Yang et al. [14] have proposed transforming the vectors representing the 3D coordinates of joints
in the sequence into a 2D image. All values were scaled to the [0, 255] range, and the resulting image
was re-sized to use a constant size representation for all actions. They considered a fixed order of
the joints, determined by a traversal of the tree with root in joint 2 (see Figure 1), in which some
joints appear several times. According to this order, the joints were arranged in a line, each line
containing 49 joints. Considering that the skeleton image is already capturing the information from the
spatio-temporal point of view, they used a two-branch attention architecture, which includes ‘mask
branches’ for learning a 2D attention mask, and ‘residual branches’ for refining and reusing features
from the previous layers; thus, the network learns attention masks from a single skeleton image.
These two branches are merged to output a feature block. Considering that the previous approach had
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a major limitation, the fact that the height of the image was capped to 224, information was lost for
longer actions. To solve this issue, they generated several images by splitting the skeleton sequences
into overlapping sub-sequences. They then extracted CNN features from each image and then fed the
results through LSTM layers for performing sequence classification.

2.3. Graph-Based Representations

Since the representation of a human skeleton is in essence composed of points that are connected
to each other, it is natural to perceive it as a graph. Thus, the joints that make up the human skeleton
are seen as vertices of the graph and the links between the points become the edges of the graph. At the
same time, there is an increased interest in applying neural networks in problems formulated on data
represented as graphs, with several proposals already presented in the past few years [15–17]. Some of
the results for the tasks that have been tackled have surpassed older techniques (not based on neural
networks) and proved the potential of these new approaches. Defferrard et al. [18], have proposed a
method, based on the spectral theory of graphs, for generalizing convolutions from low-dimensional
regular grids (e.g., 2D images) to high-dimensional irregular domains that can be represented by
graphs. Kipf et al. [15] have proposed a simplified version of graph convolutional networks (GCNs)
which performed better in terms of inference accuracy and training efficiency by simply operating
directly on the graphs.

The advantage of using a graph approach for the action recognition task is that the structure
chosen for the graph is fixed, the adjacency matrix is constant and only the cost of the edges varies
based on the spatial placement of the joints. Thus, from a spatial point of view, this representation
is advantageous. Given that to identify an action, we need a sequence of positions of the human
skeleton, the information must be arranged in accordance with the structure of the graph. Therefore,
for each vertex of the graph, the coordinates of the associated joint must be specified for each frame.
Unfortunately, in this approach, the advantages of temporal representation are lost.

Consequently, Sijie Yan et al. [19] have proposed a model that also preserves temporal connections,
considering the graph composed of a series of sub-graphs. They assumed that for every graph Gi
that models the human skeleton for the ith frame, a connection exists between each node vi,j and the
similar node from the sub-graph of the next frame vi+1,j. With this approach, they have managed
to obtain state-of-the-art results on the NTU RGB+D dataset. Moreover, their architecture combines
graph convolutions with temporal convolutions. They also present a baseline based on TCNs, which is
similar but less accurate.

Zhang et al. [20] expanded the approach in which the convolution was applied from the
perspective of the nodes that contained useful information, and the edges were used only to specify the
relationships between nodes, proposing thus a method called graph edge convolution. To implement
this approach, they used a metric to determine the distance for shortest path between two edges:
the shortest path between two edges is the one with the smallest number of nodes, and this number is
defined as the length of the path. To apply the convolution operation, they have defined the notion of
neighborhood for a given edge, epq, as the set of edges with the shortest path to epq less than R. In their
experiments, they considered the value of R equal to 1. To perform the normalization, in the case of
edges with different weights, they used as a normalizing term the number of neighboring edges with
the same labeling values.

3. Proposed Methods

The first idea we explored to recognize actions from 3D skeletal joints was to directly use the
raw frame by frame positions of the 3D skeleton joints. We used a handy treatment of the temporal
aspect by first processing the features of each frame and then feeding a sequence of these processed
frames to an RNN. Hence, the spatial and temporal dimensions are clearly separated. For the spatial
treatment of each skeleton we avoided directly using the raw values and resorted to using several FC
layers which run in parallel and recombine later, before reaching the recurrent stage of the network.
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The reason for using the FC layers is to allow for the network to detect and learn any key combination
of joints that might help later in the temporal stage. We connected multiple such layers in the spatial
transformation stage to allow for concepts akin to distances between joints (lines), angles between lines,
angles between lines and planes and so on, to be potentially discovered by the network. Our attempt
was to benefit from the approach of Zhang et al. [21] that do an extensive exploratory search into which
types and combinations of features derived from joints are more informative. The intent was to let the
network discover them itself, since that would be potentially more robust when learning a completely
different set of actions than the one resulted from a hand-engineered process. In treating the temporal
dimension, we used LSTM layers to aid in classifying the action sequence. We did experiment with
Gated Recurrent Unit (GRU) layers also but found that the LSTMs yielded marginally better results.
In this architecture, we increased the depth of the LSTM to 3 levels for the added capacity. Moreover,
we used the last third of the outputs of the last LSTM layer as inputs for another stage of FC layers.
This draws from empirical observations on our training data, where we have seen that most of the
relevant parts of an action happen somewhere in the last third of the sequence. The way recording
sessions are scripted for dataset gathering processes means that actors are usually motionless for the
first part of the sequence and sometimes just before the sequence ends. The outputs of the last layer are
used for computing the cross-entropy loss. The above described architecture is presented in Figure 2.

Figure 2. FCs + LSTM - Illustration of the network structure of our first model with FC layers and
Stacked LSTM with depth 3. For each layer, the output size is specified.

Continuing the idea of just performing simple transformations on the raw 3D skeleton positions,
we have drawn inspiration from the Densely Connected Convolutional Networks proposed by
Huang et al. [22]. In this case, the transformations that each layer applies are concatenated with all the
inputs of the previous layers. This may allow the recurrent layer to access the original information
that the skeleton provided. The temporal stage of the network is treated by using a LSTM layer of
depth 2, whose outputs are treated as in the previous architecture before computing the cross-entropy
loss. Figure 3 describes this architecture.

Figure 3. Densely Connected FCs + LSTM—Network structure of the Densely Connected model.
The first 4 layers are applied for concatenated input with the output of previous ones.

Apart from actually computing relations between different joints, we considered that the
network would benefit from being provided with movement information localized within a small
window around the frame in question, considering the Moving Pose Descriptor proposed in
Zanfir et al. [23]. For each joint, P(t0), we compute the two derivatives (velocity and acceleration),
using the approximations indicated in Equations (2) and (3). These are then concatenated with
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the coordinates of the joints and passed as input to the neural network. One important step in
preprocessing the input data is normalization. In our case, this is performed by subtracting one of
the joints of the skeleton from all the others thus placing the origin of the 3D coordinate system in
that joint. We used the joint placed at the hip center due to it being the closest to both the geometric
center and the mass center of the human body. To increase robustness to varying body shapes of the
persons performing the actions, it was necessary to resize each segment that makes up the skeleton of
the human body. To perform this operation, the average distance for each segment was determined
using the training dataset. Thus, the coordinates of the joint corresponding to the center of gravity
were kept constant and the coordinates of the other points were changed, to be able to normalize
the distances for each segment. In this way, every body pose was reported to the characteristics of a
fictitious individual, chosen as a standard. For parts of our proposed architectures we have performed
tests where the inputs are also enriched with the Moving Pose Descriptor.

δP(t0) ≈ P(t1)− P(t−1) (2)

δ2P(t0) ≈ P(t2) + P(t−2)− 2P(t0) (3)

Using the raw features, in our case the x, y, z positions of the 3D joints, grouped in vectors
of num_joints× 3 components, entails that the latent space obtained after the transformation stage
contains all the ‘combinations’ of the joints. This lack of structure at the input loses information on
the account that it does not exploit facts like arm or leg joints moving together or having the arm
and the leg on the opposite sides of the body moving in opposite directions while walking. In some
sense, such a structure was exploited by Du et al. [11] since they processed each major body part
separately. However, this prevents somewhat dilutes joints influencing one another across limb, e.g.,
left hand–right foot. Liu et al. [24] also have an approach where they use the LSTM layers in a 2D
layout, where one direction is time and the other is the body joints fed in a sequence. They arranged the
body joints according to a tree traversal from a root node (central spine node). This does increase the
amount of context information coming into each node but still does not allow composing information
from distant nodes.

We propose a way to add structure to the input features, which comes from our desire to fulfill
two goals. The first one is to take into account spatial connections between body joints and the
second is to take advantage of the capability of convolutional layers to discover patterns in localized
regions while managing to abstract over them in subsequent layers. Therefore, we have proposed an
arrangement of the 25 3D body joints into a 5× 5 matrix whose corner regions correspond to body
limbs while the center holds information on the head and torso. Then, several 2D convolutional layers
are applied on the input, completing the spatial transformation stage. We found that a 3× 3 kernel
size is most appropriate given our input matrix. In addition, we have also tested architectures where
we concatenated the initial raw joints to the convoluted features and passed the resulting vector to the
temporal stage. The temporal stage of the network is presented in Figure 4.

Figure 4. 2D Arrangement CNN + LSTM—Illustration of the network architecture based on
convolutions on the 2D joint matrix arrangement we proposed. For each convolutional layer,
the number of channels produced by the convolution, the size of the convolving kernel and the
padding are specified.
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As we have discussed in Section 2, the graph-like interpretation of the human skeleton joints
seems to be the most natural. We have first explored this view by using an implicit representation of
graphs, in which we actually study relationships between nodes of the graph. This is similar to the
idea presented by the Interaction Networks of Battaglia et al. [25]. In their work they also consider a
graph-like structure of the environment, extracting pairwise interactions that would correspond to the
edges of this graph (in their case a complete one), with effects of the interactions being approximated
via a relational model. Our spatial transformation process follows the same architecture, in the end
combining via FC layers the results of each interaction pair into a single feature vector. This vector is
then passed to a temporal stage network similar to those already proposed above.

Alternatively, starting from the explicit representation of graphs and the application of
convolutions on top of them, inspired by Kipf et al. [15], we replaced the spatial transformation
part with GCNs. Adding a layer of graph convolution has allowed for a reduced number of parameters
compared to the implicit representation approach, due to not needing to specify a complete graph
anymore. Therefore, the spatial representation has access to the degree of bilateral influence the left
palm and the right foot have regarding each other. Unlike the approach in [19], we did not take
advantage of the hyper-graph-like structure which collapses all body poses in a sequence into a
large graph. Instead, we processed the temporal aspect in the same manner as described previously,
to measure in a consistent way any advantage the influence of the graph representation of the input
may have over the ones used in the architectures presented above. Figure 5 depicts the architecture
based on our graph convolutional network.

Figure 5. GCNs + LSTM—Network structure of the GCN model with one GCN layer, one Stacked
LSTM with depth 3 and one FC layer.

In the case of all other proposed architectures we have extensively explored and discussed the spatial
stage of our networks. For our main proposed architecture, we reconsidered the temporal interpretation
of the actions, especially given findings such as those reported by Bai et al. [6]. The empirical evaluation
in their work has pointed out that there are many tasks in supervised learning for which the paradigm
of temporal convolutions surpasses that of recurrent networks modeled by LSTMs or GRUs. Therefore,
in testing this hypothesis for our case, we replaced the temporal stage of our networks with temporal
convolution layers. The output of the last temporal convolution layer is then passed to FC layer
reducing it to a size allowing to perform cross-entropy optimization. The architecture is presented
in Figure 6.

The performances obtained for the first proposed architecture, namely the one that uses FC layers
for feature extraction and LSTM for sequence analysis, indicate that combining even simple spatial
transformations and then sequence analysis, using a recurrent neural network, performs strongly.
The analysis of the second proposed model, which is a dense one, shows that a too large number of
parameters used for spatial transformation actually harms performance. Therefore, we need a better
strategy for treating skeleton frames before feeding them to RNNs. We have tried to reduce these
inconveniences in our third proposed architecture, which uses joint rearrangement. Because CNNs are
analyzing areas of interest with reduced size, the 2D joint arrangement aims to facilitate the detection
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of relationships between different skeleton joint groups (for example, the left hand may be located far
away from the right hand). The idea used in this approach is strong, but the additional information
provided by the CNNs is lost when switching to the treatment of the temporal aspect, in our case when
feeding the information through LSTMs. In conclusion, this might indicate an essential drawback
when decoupling the spatial and temporal dimensions. This can be also deduced from the weak results
obtained by Relational + LSTM and GCNs + LSTM, as described in Section 4. Moreover, the implicit
graph representation (relational) is not only more computationally costly but yields far weaker results
than explicit graphs.

Figure 6. TCNs—Network architecture of the TCN model. For each TCN layer, the number of channels
produced by the convolution and the stride (if it is different than 1) are specified. For this model,
we used 1D convolutional layers with kernel_size = 9 and stride = 2 for units with different size for
output and stride = 1 for others.

Starting from the aspects observed in the previous approaches, in the TCN-based architecture we
did not separate the data from spatio-temporal perspective, but treated them concurrently, using TCN
layers. Also, we have not applied major transformations on the input space, leaving the values
arranged as a 1D vector. To speed up the training process by reducing the number of epochs needed to
learn the optimal parameters for the classifier, we used the Moving Pose Descriptor and we normalized
the distance of each segment by their average, calculated for the training dataset. The CNNs,
by design, are good for discovering local patterns in the input space. Therefore, before applying
the first convolution layer that reduces the number of input channels, we have rearranged the joints.
This has been performed using a pre-ordering traversal of the tree with the root set in joint with label 2.
This traversal helps strengthening the local interaction between joints.

To analyze the sequence of joints from a temporal perspective, we used several TCN layers.
The architecture of such a unit is shown in Figure 7. To reduce over-fitting, we introduced a dropout
layer with probability 0.5 at the latter stages of the model.
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We have explored two variants of this architecture. The first is based on one-dimensional inputs,
where all 9D joints (3 values for coordinates, 3 values for velocity and 3 values for acceleration)
are passed in a single vector, which are then passed to a 1D convolutional layer to reduce the
number of input channels. The result of the convolution layer is passed through a series of TCN,
average pooling and FC layers with a dropout layer applied at the end. For this model, the TCN layers
were implemented using 1D convolutional layers. The second variant arranges the joints in the same
layout of a 5× 5 matrix which is then fed the 3D convolutional layers. The rest of the model has been
preserved, but the implementation of a TCN layer has been changed, replacing the 1D CNNs with 3D
CNNs. However, rearranging joints in a 2D grid and using 3D CNNs did not actually help obtaining
better results.

Due to our intent to use the human action recognition classifier within a pipeline that must run in
real time and with low computational costs, we have also proposed a TCN-based architecture with a
reduced number of network parameters without sacrificing much accuracy. This “light” architecture
was obtained by removing the last two TCN layers from the architecture shown in the Figure 6.

4. Results

4.1. NTU RGB+D Benchmark Dataset

To validate the proposed models for action recognition we used the NTU RGB+D dataset [8],
which includes over 56,000 sequences, representing a series of 60 possible actions: 50 actions performed
by one person and 10 actions performed by two persons. This dataset includes two protocols proposed
for testing: cross-subject and cross-view.

In the cross-subject test protocol, one half of the subjects are used for training and the remaining

subjects for testing. In the second evaluation protocol,
2
3

of the viewpoints are used for training and
1
3

for testing.
The dataset contains 60 action classes in total, which are divided into three major groups: 40 daily

actions (drinking, eating, reading, etc.), 9 health-related actions (sneezing, staggering, falling down,
etc.) and 11 mutual actions (punching, kicking, hugging, etc.). 40 people were invited to perform the
actions collected in this dataset, with ages of the subjects between 10 and 35. To ensure invariance
to perspective three cameras were used to record simultaneously during data collection, with two of
the cameras being placed at 45◦ on either side of the central camera [8]. A sample from the dataset is
presented in Figure 8.

Figure 8. Sample frames of the NTU RGB + D dataset.
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Analyzing the coordinates of the joints provided by the dataset for a series of actions and using a
skeleton viewing tool, we have discovered some inconsistencies. For example, if chairs appear in the
scene, these can sometimes be perceived as skeletons. Also, the reflections of some person in windows
or TV panels are detected as being separate persons for which skeletons are then computed. For actions
involving the interaction of two people, their skeleton indices could be interchanged. To overcome
this problem, we determined the skeleton coordinates with index i at step t by choosing the closest
skeleton of the one with index i from step t− 1.

Because some joints out of the 25 proposed in the dataset are usually quite noisy and not so
relevant for the available actions, we tried to reduce the number of joints, ignoring those for fingers
and those at the feet. Therefore, we also performed some experiments using only 17 joints out of 25 for
the human skeleton.

4.2. Experimental Results

Using the data representation approaches and the neural network architectures presented in
Section 3, a series of experiments were carried out, and their results are presented in the Table 1.

For the actions involving two people, the model was trained from the perspective of each
participant and the result was determined as the arithmetic mean of the action classification scores for
each of the two individuals. In an alternate approach, which we abandoned, we determined the most
active skeleton of the sequence where two persons were involved and used just this skeleton during
training and testing, but the results obtained by this approach actually decreased.

Because the number of frames differs from one action to another, we used the maximum number
of frames for a sequence describing an action, 300, and, in the case of shorter actions, we completed
the data with zero values. We also considered an alternate interpretation in which each action is
described by a sequence of 50 frames. Because from one action to another or from one sample to
another the essential moment of the action is placed differently over time, we randomly extracted
50 frames describing the action at each epoch. For this operation, we divided a sample in p ranges,
where p = [ num_ f rames

50 ], and from each range we selected one frame, using uniform selection of a
random element. In this way, we can achieve generalization, as an action may take less or more time,
depending on the person who executes it. Moreover, taking into account that each sequence was
recorded at 30 frames per second and that the average sequence length in the dataset is 82, not much
information is lost due to sub-sampling. Therefore, for the most part, we have obtained better results
using the smaller rather than the larger sequences.

Considering the work of Zanfir et al. [23], we have tried to determine if the noise which occurred
when the data was collected has any adverse effects. The sources of noise are multiple and most of
them are related to the Kinect sensor. Thus, to reduce noise, a Gaussian filter was applied over the
joints coordinates of each frame, considering a window of 5 frames. Analyzing the results obtained
after applying the Gaussian filter, together with the preprocessing inspired from the Moving Pose
Descriptor described in Section 3, we noticed no significant increase in the performance of the classifier.
However, it did help the model learn much faster, almost halving the number of epochs necessary to
reach the best accuracy.

During experiments, we have tried several types of optimization methods and varied parameter
values, but the best results were obtained using the Adam optimization method [26], with learning
rate values of 10−3 and 10−4. As the results show, TCNs have proved to be the best solution of the
different architectural variants proposed. It is worthy to note that the simple architecture of FCs
+ LSTM does not lag behind too much in terms of accuracy, having the added advantage of being
a much simpler architecture with a reduced number of parameters. We can observe high drops in
accuracy if we use graph convolutions on the input, for each skeleton in the sequence, and then feeding
the LSTM (GCNs + LSTM). In contrast to typical graph architectures which obtain state-of-the-art
results on this problem, our graph-based model suffers from not encoding the whole sequence into
the same graph, a problem which the TCN-based model does not have since every layer has access to
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the entire sequence. Results for all other architectures are emphasizing the stated intuitions presented
in Section 3 regarding the strengths and weaknesses of each approach. The lessons learned from the
other proposed architectures have enabled us to achieve very good results based on TCNs.

Table 1. Experimental results for the different proposed architectures.

Architecture Sequence Size
Accuracy

CS CV

FCs + LSTM 300 72.04% 79.41%
FCs + LSTM 50 72.16% 80.39%

FCs + LSTM + Moving Pose Descriptor 50 73.11% 79.06%
Densley Connected FCs + LSTM 300 70.80% 78.34%
Densley Connected FCs + LSTM 50 68.20% 74.07%

Relational + LSTM 50 65.42% 67.46%
Relational + LSTM + Initial data 50 66.14% 69.44%

2D Arrangement CNN + LSTM + Initial data 50 71.48% 77.11%
2D Arrangement CNN + LSTM 50 71.62% 79.18%

2D Arrangement CNN + LSTM + Initial data 300 73.85% 77.31%
2D Arrangement CNN + LSTM 300 74.19% 76.89%

Graph Conv + LSTM 50 63.00% 62.87%
TCNs 50 77.30% 82.47%

Table 2. Reported results on the NTU RGB+D Dataset as compared to other methods. Methods in bold
font use different modalities of action recognition based on RGB or depth sequences, unlike the rest
which only use 3D skeleton joints.

Method Cross-Subject Cross-View

Lie Group [27] 50.1% 52.8%
Dynamic Skeletons [28] 60.2% 65.2%
Hierarchical RNN [11] 59.1% 64.0%
Deep RNN [8] 56.3% 64.1%
Part-aware LSTM [8] 62.9% 70.3%
ST-LSTM (Tree) + Trust Gate [29] 69.2% 77.7%
Frames + CNN [30] 75.73% 79.62%
Clips + CNN + Concatenation [30] 77.05% 81.11%
Clips + CNN + Pooling [30] 76.37% 80.46%
Clips + CNN + MTLN [30] 79.57% 84.83%
ST-GCN [31] 81.5% 88.3%
BPLHM [20] 85.4% 91.1%
TSSI + GLAN + SSAN [14] 82.4% 89.1%
DSSCA-SSLM [32] 74.86% -
CNN + Motion + Trans [33] 83.2% 89.3%
Fusion All [34] 87.08% 84.22%

FCs + LSTM (ours) 73.11% 79.06%
Densley Connected FCs + LSTM (ours) 70.8% 78.34%
Relational + LSTM (ours) 66.14% 69.44%
2D Arrangement CNN + LSTM (ours) 74.19% 76.89%
GCNs + LSTM (ours) 63.00% 62.87%
TCNs (ours) 77.30% 82.4%
TCNs-light (ours) 77.03% 79.98%

Our proposed method based on TCNs has been able to achieve comparable results to the state
of the art, as described in Table 2. It was able to get better results than [30] which use 2D image
representations for the actions. The results in [14] are better than ours, but the complexity of their
solution, including the number of parameters, is increased due to the global and sub-sequence attention
mechanisms they introduce. The results of their ablation studies indicate that, without the attention
sub-networks, the accuracy drops significantly, below our solution. On the other hand, even though
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our reported results are above those reported for the temporal convolution baselines in [31], expressing
the 3D skeleton sequences as a single graph and using graph convolutions does yield better results
than those of temporal convolutions. This is likely because each joint is directly connected to its
past and previous values, unlike the TCNs. It is to be noted though that in [31] the use of graph
convolution layers in the construction of the network is intermittent with temporal convolutions,
therefore increasing the number of parameters of the network.

Although accuracy results are slightly below those obtained by methods based on graph
convolutions, the less complex architecture we propose has the potential to better suit our purpose,
namely finding a model which interprets sequences of actions and composes them into different
activities. For example, in the ROBIN-Social project (http://aimas.cs.pub.ro/robin/en/robin-social/)
for assistive robots, one goal is to integrate the proposed model into a larger model or a pipeline
responsible for detecting the actions of an elderly person from a large number of different actions,
and be able to spot when an action actually starts and ends given a continuous stream of images
(the robot having the goal to understand what the person is doing and assisting her). In such a case,
it is expected that the network will grow considerably to be able to successfully fulfill these tasks,
thus guiding our research towards less complex and more supple architectural models. In this regard,
the “light” version of our TCN-based method sees a 3.5× reduction in the number of parameters and
a 2× reduction for inference speed as compared to [31]. This allows our model to be deployed in
more constrained scenarios, such as on assistive robots with limited hardware capabilities, or in setups
where multiple cameras are deployed, and action recognition is performed simultaneously on each
data stream. For our size and performance comparison we did not take into account networks that use
different modalities (e.g., RGB images or depth images) or which do not have any implementation
published and available.

5. Conclusions

If we analyze the results obtained over the past two years by action recognition methods based
on 3D skeleton joints the registered progress is consistent. Larger datasets, which previously seemed
to pose multiple problems to all methods, are now slowly becoming insufficient. Most of the methods
recently used are based on different CNN and recurrent network architectures, as presented in Section 2.
The advances flow from understanding which feature space representations are actually meaningful
and informative when using neural networks to recognize human actions. Exploiting the interaction
between the spatial and temporal dimensions has yielded better results. This is also the case of our
proposed TCN-based architecture, as our experimental results show.

In this paper, we have presented our design decisions and the experimental results based on
different convolutional neural network architectures and their variants to recognize human actions
using 3D skeletal joints, with the intent to identify a less complex and more supple model, which has
the potential to be extended to a larger number of actions. We have also investigated the impact
of different input features and associated representations on the models and the accuracy of the
obtained results.

Our main contribution is the TCN-based architecture using the extended joint descriptor,
for which we obtained results comparable to those of state-of-the-art methods, but using a simpler
model, which requires a smaller number of parameters as compared to other performant approaches.

The results in the reviewed literature indicate that graph-based architectures manage to better
capture the dynamics of a moving skeleton than some of the other proposed solutions. However,
to integrate action recognition in a real-world solution of an assistive robot, as is the case of the ROBIN
project for example, the TCN-based model seems more appropriate.

For future work, we have two directions of research. The first one relates to extending our
proposed approach to multi-user scenarios, which implies the capability of extracting multiple
individual skeletons from the scene and consistently tracking them throughout the actions sequence.
One major difference from the actions provided in the NTU dataset is that having multiple persons in

http://aimas.cs.pub.ro/robin/en/robin-social/
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the scene does not imply that the performed action involves everyone. Thus, people need to be tracked
both separately and together to determine if their action is performed “solo” or in groups.

The second direction of future developments is to combine our proposed architecture with
techniques for extracting human pose from RGB and depth data. Moreover, we would like to be
able to analyze a given stream of images and signal the frame where an action most likely started or
ended, taking into consideration that the length of actions always varies (between different types of
actions, persons or even repetitions). This is necessary to achieve our final goal, namely understanding
complex human activities composed of several correlated actions, as required by AAL applications.
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