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Abstract: The role of oral steroids in carpal tunnel syndrome (CTS) remains elusive. This study
aims to depict the ultrasound findings and conceivable mechanisms in relation to the efficacy of oral
steroids for patients with CTS by measuring the morphological and motion changes in the median
nerve. In this study, CTS patients were randomized to the oral steroid group (14 participants and
22 wrists) or nicergoline group (22 participants and 35 wrists) for 4 weeks. Both treatment arms were
given global symptom score (GSS) measurements and completed an ultra-sound at baseline and at 2-
and 4-weeks post-treatment. In the nerve conduction study (NCS), distal motor latency (DML) was
used to assess the treatment response at baseline and 4 weeks post-treatment. The cross-sectional area
(CSA) and amplitude (AMP) evaluated by the maximum lateral sliding displacement represented
the morphological and dynamic changes in the median nerve, respectively. The results showed that
AMP, CSA, GSS, and DML were significantly im-proved in the steroid group, as compared to the
nicergoline group at weeks 2 and 4 (p < 0.05). The mean improvement in ultrasound parameters
CSA (15.03% reduction) and AMP (466.09% increase) was better than the DML (7.88% reduction)
parameter of NCS, and ultrasound changes were detectable as early as 2 weeks after oral steroid
administration. Ultrasounds can serve as a tool for the quantitative measurement of treatment effects
and can potentially elucidate the pathogenesis of CTS in a non-invasive and more effective manner.

Keywords: carpal tunnel syndrome; steroid; ultrasound; cross-sectional area; amplitude

1. Introduction

Carpal tunnel syndrome (CTS) is the most common entrapment neuropathy caused by
compression of the median nerve in the wrist, with an estimated prevalence of 1–5% [1,2].
Its diagnosis can be established by a combination of clinical symptoms, physical ex-
amination, and is supported by nerve conduction studies (NCS), with or without elec-
tromyography. Nevertheless, NCS is an invasive and uncomfortable measurement for the
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patient and has been criticized as having limited diagnostic potential, with up to 16–34%
of patients clinically indicating CTS as being normal [3,4]. Recently, ultrasound im-aging
has been considered to be a very useful tool in the diagnosis of CTS as it provides the
capability to assess anatomical aspects of carpal tunnel and motion changes of the median
nerve. A number of measurements of the median nerve, such as size, vascularity, stiffness,
and mobility, have been investigated extensively [5–10]. Today, ultrasound imaging is
considered to be an important alternative test for the quantitative estimation of median
nerve entrapment in patients with CTS.

For ultrasound imaging, most studies have focused on investigating morphological
changes in the median nerve by measuring the cross-sectional area (CSA) of the median
nerve, which is the most important and commonly used ultrasound parameter for CTS
diagnosis [11–17]. There is much less agreement as to the best cut-off value for the CSA,
with the recommended cut-off values varying from 9 to 14 mm2 [12–17]. Moreover, the
median nerve is a mobile structure that stretches, compresses and translates with the
movement of the upper limb [18,19]. Several studies have also examined the mobility
of the median nerve and the structure of the carpal tunnel in relation to the diagnosis of
CTS [20–26]. The results of these studies support the thesis that patients with CTS have
less longitudinal and transverse sliding of the median nerve in the affected wrist than
healthy individuals during finger flexion or extension. This is because the movement of
the fingers causes a rise in the tensions of the flexor digitorum superficialis and flexor
digitorum profundus tendons, and the median nerve then moves in the direction of the
ulnar part, where a new space is created between the tendon and the transverse carpal
ligament [22,25]. This movement would pose no problem for normal median nerves.
However, in patients with CTS, it is limited by the narrowed volume of the carpal tunnel
or by increased pressure, usually resulting in less movement. Therefore, analyzing the
nerve kinematics by observing the movement of the median nerve during wrist or finger
movements is key to understanding entrapment neuropathy.

There are various treatment options for CTS, including the administration of non-
steroidal anti-inflammatory drugs, oral steroids, wrist splinting, steroid injections, and
surgery [27–29]. In conservative treatment, oral steroids provide symptom relief for patients
with CTS and are frequently used in clinical practice [30–36]. However, the degree of
improvement in patients after oral steroid treatment can always only be subjectively
quantified. Moreover, the mechanism of oral steroid treatment for CTS remains elusive.
Ultrasound assessment before and after the administration of oral steroids may help in
establishing a more comprehensive evaluation and to improve our understanding of how
oral steroids work.

The purpose of this study was to depict the ultrasound findings and conceivable
mechanisms of the efficacy of oral steroids in patients with CTS by measuring the mor-
phological changes presented by CSA and motion changes presented by lateral sliding
movement patterns of the median nerve during finger flexion and extension in ultrasound
B-mode images.

2. Materials and Methods
2.1. Data Acquisition

Our study protocol was approved by the Institutional Review Board of Kuang Tien
General Hospital, and the recruitment period was 1 year. Several electrodiagnostic param-
eter estimates have been applied to the diagnosis of CTS, and this study was conducted
using the standard clinical confirmatory protocol recommended by the American Associa-
tion of Electrodiagnostic Medicine [37]. All patients included and analyzed in this study
were clinically diagnosed with CTS, and were considered to have median neuropathy
of the wrist, with the presence of at least one of the following electrodiagnostic results:
(1) slow wrist to palm (antidromic) sensory nerve conduction velocity, measured velocity
at a fixed distance of 8 cm less than 40 m/s; (2) slow wrist to index finger (antidromic)
distal sensory latency (DSL), measured latency at a fixed distance of 14 cm proximal to
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the active electrode that was equal or greater than 2.5 ms; and (3) slow wrist to abductor
pollicis brevis (APB) motoring, measured distal motor latency (DML) at a fixed distance of
8 cm proximal to the active electrode that was equal or greater than 4.5 ms. The severity
of CTS was determined according to the rules used in previous studies, including our
own [31,33,35,36]. Mild CTS refers to patients whose median sensory nerve action potential
(SNAP) amplitude and compound muscle action potential (CMAP) amplitude of the APB
in the palm–wrist segment remain normal, but whose conduction velocity shows a decrease
and DSL was delayed. Moderate CTS refers to a condition in which the patient’s DML and
DSL in the palm–wrist segment are not only abnormally delayed, but the median SNAP
amplitude or CMAP amplitude of the APB muscle also decreased. Patients with CTS who
had either fibrillation potentials or re-innervation on the needle electromyography of APB
were considered to be severe. For patients with severe CTS, open or endoscopic surgery
is generally recommended, as conservative treatment is less effective in relieving their
symptoms [27–31]. Therefore, severe CTS was excluded from this experiment. Previous
studies have shown that motor fibers might recover faster than sensory fibers after median
nerve decompression; thus, most of these studies demonstrated an improvement in DML
after treatment [19,33,35]. Therefore, among all NCS parameters, we selected DML in order
to evaluate the treatment response.

Our study cohort included 57 wrists of 36 patients with CTS, of whom 21 had bilateral
disease and 15 had unilateral disease. In order to investigate the issue of spontaneous
improvement and a possible placebo effect, this study was designed to be random, double
blind, and was an active controlled trial. The enrolled patients were randomly divided into
2 treatment arms: the steroid group was given 20 mg prednisolone daily for 14 days, fol-
lowed by 10 mg once daily for another 14 days, and the nicergoline group was given 20 mg
nicergoline daily for 14 days, followed by 10 mg once daily for another 14 days [31,33,35,36].
Computer-generated random numbers based on a stochastic indicator method were used
to assign patients to different treatment groups.

Patients in both treatment arms received global symptom score (GSS) measurements
and completed an ultrasound starting at the baseline, 2 weeks after, and 4 weeks after
treatment. The GSS is often used in the assessment of CTS due to its moderate num-
ber of rating levels [31–33,35,36]. Basically, patients were asked directly, and responded
subjectively, about the extent of the following five symptoms: pain, tingling, numbness,
weakness/clumsiness, and nocturnal awakenings. Each symptom was rated on a scale
from 0 (no symptoms) to 10 (very severe symptoms). Since the maximum score for each
symptom was 10, the maximum total score for assessing the five symptoms was 50 (most
severe symptoms) and the lowest score was 0 (no symptoms). Since only one hand for
each individual was used in the analysis, as we included only the affected hand with the
higher GSS in each individual, the number of participants was equal to the number of
affected arms in the analysis group. The procedures of NCS were carried out by the same
evaluator who did not have access to patient data throughout the experiment at baseline
and four weeks later.

2.2. Ultrasound Imaging

A commercial ultrasound scanner (Model t3000, Terason, Burlington, MA, USA) with a
frame rate of 25 fps and a linear array probe at 10 MHz (Model 12L5A, Terason, Burlington,
MA, USA) was used. The ultrasound transverse scans at the wrist level were carried out
by a musculoskeletal physician who had more than 10 years of related experience. The
arms of the patients were in a supine resting position when their wrists were scanned by
the scanner with exactly the same settings. The transducer was placed horizontally at the
level of the distal wrist crease at the entrance of the carpal tunnel and was perpendicular
to the long axis of the forearm. The image depth was set to 2.5 cm. The scanning duration
for obtaining the ultrasound frames along the transverse wrist line was about 2 seconds.
It started with the fingers in their natural positions in the beginning (Figure 1a), and was
followed by one cycle of the finger flexion–extension movement, in which the median nerve
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was moved towards the ulna bone with the patients fingers in a flexion first (Figure 1b),
and then the radius bone with fingers in extension last (Figure 1c).
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Figure 1. A scanned median nerve movement cycle consisted of a series of finger movements from
(a) neutral posture to (b) fist clenching (finger flexion, acquisition time 1 s) and then to (c) palm
opening (finger extension and acquisition time 2 s).

2.3. Median Nerve Mobility Pattern Estimation

A speckle-tracking algorithm for dynamic sequential ultrasound image scanning was
applied to measure the lateral displacement of the median nerve in the radial-ulnar plane
within the carpal tunnel [38]. All scanned image sequences were converted to a digital
format for offline analysis on a frame-by-frame basis. The multilevel block-sum pyramid
(BSP) algorithm, with a matching process and a searching process at its core, was an
integrated algorithm of multilevel block-matching and BSP, and this was used for speckle
tracking between sequential transverse B-mode ultrasound images in this study. This was
because it had been proven to be an algorithm with excellent computational ability for
two-dimensional speckle-tracking in B-mode ultrasound images. The matching process of
this algorithm was based on the BSP algorithm, which not only reduced the complexity
of the computation, but also maintained the same accuracy as the conventional sum of
the absolute differences approach. Meanwhile, the searching process further utilized
a multilevel strategy by “comparing matched blocks on a level-by-level basis” instead
of using a “comprehensive search strategy”, as is the case in most conventional search
methods. As the BSP enabled the elimination of unnecessary searches and the enhanced
algorithm was performed in a multilevel manner from the top level down to the bottom
level, the implementation of motion estimation in ultrasound images is in real-time or is in
near-real-time.

A matching block of a 32 by 32 pixels (15.56 pixels/mm) squared region in the original
image, which served as the reference image, was selected for comparison with the test
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blocks of the same size in the search area of the target image. In order to search in finer
detail, but to provide acceptable speckle-tracking results in the same time, the search block
was set to a 21 by 21 pixels squared region, which was smaller than the matching block,
but was large enough to cover at least 10 independent speckles. The algorithm used a loop
process to compute the displacements between the test block and the matching block as
the position difference of each best-matched pair of pixels between the test block (in the
ith frame) of the target image and the matching block in the fourth previous image was
calculated, and it continued until the displacements of all central pixels of the matching
block in the reference image were obtained.

The median nerve region was the focus of this study, and we used a multilevel BSP
algorithm to calculate the lateral displacement of each image pixel within the boundary
of the median nerve and between the sequential cross-sectional ultrasound images. As
defined in this study, the positive displacement of the median nerve corresponded to
its transverse sliding motion during finger flexion toward the ulnar direction, whereas
the negative displacement was toward the radial direction during finger extension. This
definition was also based on the theory that the transverse movement of the median
nerve over the ulnar radial axis covers the same traversal distance, and only the directions
of finger flexion and extension are reversed when the patient performs a standardized
repetitive finger movement. In the calculation of the median nerve displacement, all the
pixels contained within its boundaries were included in the calculation. Subsequently, the
average transverse displacements of the B-mode images collected at each time point during
the full finger flexion and extension cycle were accumulated to obtain the cumulative
lateral displacement.

One of our previous studies has demonstrated that: (i) the relationship between cu-
mulative lateral displacement and acquisition time during a cycle of finger movements
would be symmetrical with respect to the transverse sliding of the median nerve; (ii) the
temporal cumulative lateral displacement could be fitted to the curve by a second-order
polynomial function; and (iii) the fitted curve could be considered as the transverse sliding
pattern of the median nerve during flexion and extension movements in the carpal tun-
nel [38]. Therefore, the amplitude (AMP) estimates represented the maximum value of
the fit, indicating the maximal transverse sliding displacement of the median nerve or the
spatial pressure in the carpal tunnel. To assess the morphological changes in the median
nerve, the physician outlined the inner margin of the hyperechoic epineurium to measure
the CSA of the median nerve with the finger in a neutral position.

2.4. Statistical Analysis

The sample size calculation referenced one of our previous studies that investigated
an improvement in GSS from the baseline to 1 month after in the oral steroid-treated
group [36]. This study was set to achieve a statistical power of 0.8 and a significance level
of 0.05. Therefore, a minimum sample size of nine pairs for paired t-tests was required.

Differences in the distribution of age, AMP, CSA, GSS, and DML between the steroid
and nicergoline groups were determined by Student’s t-test and were presented as mean
± standard deviation (SD). The categorical variables, including gender, side of hand, and
severity, were examined by Fisher’s exact test and were expressed as a number (%). The
AMP, CSA, GSS, DML were considered to be repeated measurements. The AMP, CSA, and
GSS values were recorded at baseline and at 2 weeks and 4 weeks after treatment. The
DML values were only recorded at baseline and 4 weeks after treatment. The least square
means, mean change over time, and the difference in mean change over time between the
steroid and nicergoline groups were derived from the multivariable linear mixed-effects
model. The difference in mean change over time was calculated by the interaction term of
time*treatment in the model. The model was adjusted for age, gender, and the side of hand.
Restricted maximum likelihood estimation was used, along with unstructured covariance
structure. All statistical analyses were performed with SAS 9.4 (SAS Institute, Cary, NC,
USA). A two-sided p value of 0.05 was considered to be significant.
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3. Results

In total, 13 right and 9 left wrists were evaluated in 14 patients, which constituted the
steroid group. Additionally, 18 right and 17 left wrists were evaluated in 22 patients, which
constituted the nicergoline group. There were no significant differences before treatment in
gender, age, side of hands, severity, AMP, CSA, GSS, and DML between the steroid and
nicergoline groups (Table 1).

Table 1. Baseline characteristics.

Variable Steroid (n = 14,
22 Wrists)

Nicergoline (n = 22,
35 Wrists) p-Value

Age (years), mean ± SD 58.00 ± 11.29 52.95 ± 7.16 0.109
Gender, n (%)

Male 5 (35.71%) 3 (13.63%) 0.217
Female 9 (64.28%) 19 (86.36%)

Side of hands, n (%)
Left 1 (7.14%) 4 (18.18) 0.528

Right 5 (35.71%) 5 (22.73%)
Both 8 (57.14%) 13 (53.09%)

Severity, n (%)
Mild 4 (28.57%) 2 (9.09%) 0.181

Moderate 10 (71.43%) 20 (90.91%)
AMP (cm), mean ± SD 0.25 ± 0.16 0.25 ± 0.09 0.912

CSA (mm2), mean ± SD 12.50 ± 3.39 12.25 ± 2.08 0.807
GSS, mean ± SD 10.86 ± 13.11 20.36 ± 9.48 0.692

DML (ms), mean ± SD 5.68 ± 1.29 5.63 ± 1.20 0.899
Notes: AMP, amplitude; CSA, cross-sectional area; GSS, global symptom score; DML, distal motor latency.

In the nicergoline group, adverse effects were reported by 9% of patients, and the most
frequently noted adverse effects were nausea, hot flushes, mild gastric upset, and dizziness.
In the steroid group, adverse effects were reported in 21.4% of patients, and the most
frequently noted adverse effects were nausea and epigastralgia. No serious adverse effects
were noted in either group and no patients dropped out due to intolerance of adverse
effects in this study.

Figure 2 shows the ultrasound images of the median nerve during finger movements
of a CTS patient in the steroid group. The degree and direction of transverse displacement
of the median nerve varied at baseline, 2 weeks after, and 4 weeks after treatment. The
transverse sliding of the median nerve during finger flexion or extension was greater at
4 weeks after treatment (Figure 2c) than at either baseline (Figure 2a) or 2 weeks after
treatment (Figure 2b). After 4 weeks of oral steroid treatment, the median nerve had a
larger and more regular transverse sliding motion than before treatment, and its temporally
accumulated lateral displacement fitted curve showed a steady increase. Furthermore, the
median nerve CSA decreased after oral steroid treatment.

Figure 3 showed the changes over time of the AMP, CSA, GSS, and DML values of the
median nerves in the steroid and nicergoline groups. Table 2 presented the least squares
means of AMP, CSA, GSS, and DML values at baseline, 2 weeks after, and 4 weeks after
steroid or nicergoline treatment. The AMP values increased and the CSA (except for CSA
in the nicergoline group), GSS, and DML values decreased over time in both groups. After
2 or four 4 of treatment, the AMP value increased more in the steroid group than in the
nicergoline group (p < 0.001) and the GSS value decreased much more in the steroid group
than in the nicergoline group (p = 0.0037).
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Table 2. Least squares means of AMP, CSA, GSS, and DML at the 1st (baseline), 2nd, and 4th week with a mixed-
effects model *.

Variable
Steroid Nicergoline

Difference in
Change over Time

p-Value
Mean (SE) within Group

Change Mean (SE) within Group
Change

AMP (cm)
baseline 0.27 (0.04) reference 0.22(0.04) reference reference
2 week 0.73 (0.09) 0.46 (0.10) 0.24(0.04) 0.01 (0.02) 0.45 (0.10) <0.001
4 week 0.96 (0.11) 0.69 (0.11) 0.25 (0.04) 0.03 (0.02) 0.66 (0.11) <0.001

CSA (mm2)
baseline 12.18 (0.86) reference 12.29 (0.42) reference reference
2 week 10.94 (0.69) −1.24 (0.50) 12.16 (0.46) −0.13 (0.34) −1.12 (0.60) 0.0665
4 week 10.13 (0.72) −2.05 (0.90) 12.42 (0.45) 0.13 (0.35) −2.18 (0.96) 0.0255

GSS
baseline 19.97 (3.86) reference 21.47 (2.35) reference reference
2 week 9.38 (2.03) −10.6 (3.09) 20.59 (1.81) −0.89 (1.10) −9.71 (3.28) 0.0037
4 week 9.97 (3.09) −10.0 (4.28) 19.79 (2.12) −1.69 (1.43) −8.31 (4.51) 0.0676

DML (ms)
baseline 5.61 (0.33) reference 5.68 (0.26) reference reference
4 week 5.13 (0.23) −0.47 (0.24) 5.48 (0.25) −0.19 (0.12) −0.28 (0.27) 0.297

* Adjusted for age, gender, and side of hand. Difference in change over time: mean change of the steroid group—mean change of the
nicergoline group. Notes: AMP, amplitude; CSA, cross-sectional area; GSS, global symptom score; DML, distal motor latency.

Moreover, the percentage changes between the baseline and the fourth week of AMP,
CSA, GSS, and DML in the steroid group were shown in Figure 4. The percentage change
is the ratio of the difference in quantity to its initial value multiplied by 100. The results
showed an average increase of 466.09% in AMP, an average decrease of 15.03% in CSA, an
average decrease of 48.86% in GSS and an average decrease of 7.88% in DML from baseline
to the fourth week.

Diagnostics 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

an average decrease of 48.86% in GSS and an average decrease of 7.88% in DML from 
baseline to the fourth week. 

 
Figure 4. Boxplot of the percentage change in AMP, CSA, GSS, and DML values at the fourth week 
in the steroid group from baseline. 

4. Discussion 
The results of the present study show that clinical symptoms of CTS, as indicated by 

the GSS scores, DML values of NCS of CTS, and median nerve morphology and mobility 
in terms of CSA and AMP values, were significantly improved in the oral steroid group, 
but not in the nicergoline group. To the best of our knowledge, this is the first study to 
propose the use of an ultrasound model for the quantitative measurement of median 
nerve dysfunction after oral steroid administration, and this provides clinicians with the 
option of a simple, rapid, and non-invasive tool to assess treatment effects. Furthermore, 
it is crucial to the understanding of the plausible mechanisms of how oral steroids work 
and how the morphology and tissue dynamics could be observed with real-time images. 
The key strengths of this study include the application of a combination of validated and 
standardized measures of clinical assessment, NCS and ultrasound images to evaluate 
CTS. In addition, we adopted active drugs rather than a placebo as controls to minimize 
ethical issues and to encourage patients to be recruited into the current study. Moreover, 
all measurements were carried out at the same time and by the same group of specialists, 
which made it easier and more reliable to accomplish the protocol. 

In the present study, the median nerve responded positively to oral steroid treatment 
during the first two weeks, demonstrating decreased CSA and GSS and increased AMP. 
It seems that ultrasound parameters could be used to detect the morphological and mo-
bility recovery of the median nerve very early after oral steroid use. The improvements 
observed with an ultrasound were maintained over the subsequent 2 weeks of treatment, 
and persistent improvement was evident. The morphological changes, in the present 
study, of the median nerve over a period of 4 weeks of oral steroid administration, showed 
a mean decrease in CSA of 15.03%, while the movement changes showed a mean increase 
in AMP of 466.09%. After 4 weeks, the NCS revealed a decrease in DML values, but this 
improvement did not return to normal levels. As can be seen from the results, the DML 
values decreased by an average of 7.88% from baseline to week four, which was a lower 
change rate than the ultrasound measurements. The results of this study can support the 
notion that ultrasound parameters have an advantage over NCS in quantifying the degree 
of improvement in CTS patients after treatment. The above-mentioned results are yet to 
be further confirmed by future studies with larger sample sizes.  

Figure 4. Boxplot of the percentage change in AMP, CSA, GSS, and DML values at the fourth week
in the steroid group from baseline.

4. Discussion

The results of the present study show that clinical symptoms of CTS, as indicated by
the GSS scores, DML values of NCS of CTS, and median nerve morphology and mobility
in terms of CSA and AMP values, were significantly improved in the oral steroid group,
but not in the nicergoline group. To the best of our knowledge, this is the first study
to propose the use of an ultrasound model for the quantitative measurement of median
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nerve dysfunction after oral steroid administration, and this provides clinicians with the
option of a simple, rapid, and non-invasive tool to assess treatment effects. Furthermore,
it is crucial to the understanding of the plausible mechanisms of how oral steroids work
and how the morphology and tissue dynamics could be observed with real-time images.
The key strengths of this study include the application of a combination of validated and
standardized measures of clinical assessment, NCS and ultrasound images to evaluate
CTS. In addition, we adopted active drugs rather than a placebo as controls to minimize
ethical issues and to encourage patients to be recruited into the current study. Moreover,
all measurements were carried out at the same time and by the same group of specialists,
which made it easier and more reliable to accomplish the protocol.

In the present study, the median nerve responded positively to oral steroid treatment
during the first two weeks, demonstrating decreased CSA and GSS and increased AMP. It
seems that ultrasound parameters could be used to detect the morphological and mobility
recovery of the median nerve very early after oral steroid use. The improvements observed
with an ultrasound were maintained over the subsequent 2 weeks of treatment, and
persistent improvement was evident. The morphological changes, in the present study,
of the median nerve over a period of 4 weeks of oral steroid administration, showed a
mean decrease in CSA of 15.03%, while the movement changes showed a mean increase
in AMP of 466.09%. After 4 weeks, the NCS revealed a decrease in DML values, but this
improvement did not return to normal levels. As can be seen from the results, the DML
values decreased by an average of 7.88% from baseline to week four, which was a lower
change rate than the ultrasound measurements. The results of this study can support the
notion that ultrasound parameters have an advantage over NCS in quantifying the degree
of improvement in CTS patients after treatment. The above-mentioned results are yet to be
further confirmed by future studies with larger sample sizes.

While the pathophysiology of CTS is not fully understood, CTS is thought to involve
inflammation and ischemic injury of the median nerve caused by elevated pressure within
the carpal tunnel, which in turn leads to exudative edema, and subsequent fibrosis [39].
Management of CTS is based on disease severity. For patients with severe CTS, conservative
treatment, including the administration of non-steroidal anti-inflammatory drugs, oral
steroids, wrist splints, and steroid injections, which have been suggested for mild or
moderate CTS, is less effective in reducing CTS symptoms [27–31]. Open or endoscopic
surgery is recommended for patients with severe median nerve damage characterized
by sustained axonal loss or denervation in electrodiagnostic studies [29,34]. Therefore,
conservative treatment, such as oral steroid therapy, could be given to patients with CTS
who do not fulfill surgical indication. Previous studies confirmed that short-term and low
dose oral steroids (20 mg prednisolone daily for 14 days followed by 10 mg once daily
for another 14 days) could be of great benefit to patients with mild or moderate CTS and
serious adverse effects could be avoided [31,33,35,36]. It is generally assumed that steroids
are effective in reducing swelling because of their anti-inflammatory response. However,
the role and mechanism of oral steroid therapy in patients with CTS after its administration
remains uncertain and unquantified. It is generally believed that the increased CSA of
the median nerve in patients with CTS is due to edema and fibrotic proliferation [19,40].
Notably, our previous studies have shown that finger movements in normal subjects reveal
greater lateral sliding of the median nerve in 2D dynamic ultrasound images and a steeper
fitted curve when compared to patients with mild or severe CTS [38]. In this study, we used
2D dynamic ultrasound images to assess the morphology and motion of the median nerve
during finger movements in patients with CTS treated with oral steroids or nicergoline.
We found that only in patients treated with oral steroids was the size of the median nerve
presented by CSA decreased and the transverse sliding motion of the median nerve and
the curvature of its fitted curve increased; this was not the case in patients treated with
nicergoline. In addition, the improvement in the steroid group cannot be explained by
spontaneous improvement or merely placebo effects, because the randomization means
that spontaneous and placebo effects occurred evenly in both groups. Although we did
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find that oral steroids were effective in the treatment of CTS, with no serious adverse effects
during 4 weeks of treatment, 21.4% of patients in the steroid group experienced adverse
effects, which was greater than the reported 9% of patients in the nicergoline group.

There are several limitations of this study. First, the sample size was small and the
observation period was relatively short. The effects of short-term and low-dose steroids
can last up to 8 weeks in patients with mild or moderate CTS [28,30,31,33,35]. Due to
this, the effectiveness of ultrasounds could be observed over a period of 2 months and
more significant improvements may be found at the end of the second month. However,
ultrasound parameters might be affected by decreased drug efficacy or symptom relapse
as the time increased. Larger and longer periods of clinical studies, including a continuous
observation of ultrasound changes over time, are needed to corroborate our findings.
Second, only one musculoskeletal physician performed all the studies to minimize potential
measurement variability, but the consistency of the individual’s self-reliability is worth
noting. Third, we only identified the morphologic and motion changes of the median nerve
in patients with CTS. If the elasticity of the median nerve, which is thought to be afflicted
by neuropathy and has higher values, is included in further studies, this may provide
further evidence regarding the pathogenesis of CTS and its response to treatment [10,41,42].
Fourth, the body mass index and wrist circumference were not taken into consideration in
patient assessment. These variables represent the possible effects in the carpal tunnel and
median nerve areas, and might have contributed to further statistical bias [43,44].

5. Conclusions

In conclusion, the ultrasound study of the median nerve demonstrated significant
changes in CSA and AMP following oral steroid treatment for CTS. Ultrasound may serve
as a potentially useful follow-up tool to assess the morphological and mobility changes in
CTS patients after oral steroid administration, and the results may have implications for
clinicians in utilizing ultrasounds to evaluate the outcomes of interventions and to further
elucidate the pathogenesis of CTS in the future.
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