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Diabetic angiopathy including micro- and macroangiopathy is concerned with high rate of morbidity and mortality in patients
with long-standing diabetes. Receptor for advanced glycation end products (RAGE) and its ligands have been considered as
important pathogenic triggers for the progression of the vascular injuries in diabetes. The deleterious link between RAGE and
diabetic angiopathy has been demonstrated in animal studies. Preventive and therapeutic strategies focusing on RAGE and its
ligand axis may be of great importance in relieving diabetic vascular complications and reducing the burden of disease.

1. Introduction

Diabetes is a life-threatening disease attributing to its devas-
tating complications such as cardiovascular disease, stroke,
and microvascular diseases. The population worldwide with
diabetes is estimated to be 285 million adults in 2010, and
it will reach 439 million adults by 2030 with overall total
predicted 54% increase [1]. The very recent study reports
the number of people with diabetes already came to 347
million in 2008 [2]. In proportion to the rapid increase of
diabetic population, diabetic nephropathy is now a major
cause of end-stage renal disease and diabetic retinopathy
is a leading cause of blindness [3]. Extensive intracellular
and extracellular formation of advanced glycation end-
products (AGE) is considered to be a causative factor in sus-
tained hyperglycemia-induced vascular injuries in diabetes.
Receptor-dependent and receptor independent mechanisms
are known to work in the AGE-induced cellular dysfunction
and tissue damage. The receptor for AGE (RAGE) is origi-
nally found as an AGE-binding receptor and now recognized
as a proinflammatory molecular devise mediating danger
signals to the body. In this paper, our current understanding
about RAGE and its multiligand system will be reviewed
remarkably in the development and progression of diabetic

vascular complications and in possible therapeutic targets for
these diseases.

2. AGE

Maillard first described the formation of brown-colored
substances resulted from nonenzymatic reaction between
reducing sugar and proteins [4]. There is a chemical linkage
between the carbonyl groups and the amino group to
form Schiff bases and then Amadori compounds, followed
by irreversible dehydration, condensation, and crosslinking,
resulting in heterogeneous derivatives termed AGE [5].
Similar reactions have been found to occur with nonglucose
materials containing an aldehyde group by enzymatic and
non-enzymatic pathways. Metabolites from glycolysis path-
way such as dicarbonyls of methylglyoxal (MG), glyoxal,
and 3-deoxyglucosone (3DG) are known to interact with
protein residues to rapidly form AGE [6]. Reactive dicar-
bonyls can be also generated from ketones, lipids, and other
metabolic pathways [7]. Increased production of the reactive
dicarbonyls or reducing detoxification by the glyoxalase
system or endogenous scavengers leads to a state of carbonyl
stress, which is increasingly considered to be the major
driving force for AGE formation and accumulation [8].
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Ficure 1: RAGE and its ligands play a role in the development of diabetic vascular complications. Soluble RAGE (sRAGE) and endogenous
soluble RAGE (esRAGE) may work as decoy receptors against ligand-RAGE interactions. AGE: advanced glycation end product; AOPP:
advanced oxidation protein product; HMGBI1: high-mobility group box protein 1.

Glyoxal is also produced by auto-oxidation of glucose
and 3-deoxyglucosone (3DG) generated by hydrolysis from
Amadori rearrangement products [9]. Glycolaldehyde pro-
duction by myeloperoxidase from activated macrophages
and neutrophils plays a pathogenic role in generating
AGE and damaging tissues at sites of inflammation [10].
Formation of AGE is accelerated under hyperglycemia in
diabetes. Some AGE have intrinsic fluorescence which can
be used as a surrogate marker for the presence of AGE
modifications. AGE are chemically heterogeneous groups of
compounds with only 25 AGE structures fully characterized.
Ne¢-carboxymethyl-lysine (CML) is the simplest and best
characterized AGE and the main epitope for recognition
by most commercially available antibodies used for the
detection and quantification of AGE. Exogenously offered
AGE are absorbed in the gastrointestinal tract (~10%),
and approximately two-thirds remained in contact with
tissues for >72hr, whereas the rest is rapidly excreted by
the kidneys [11-13]. Reducing basal oxidative stress by
AGE restriction in mice, without energy or nutrient change,
alleviates inflammation, prevents vascular complications,
and extends normal life span [14, 15].

3. RAGE

The best characterized AGE receptor is RAGE. RAGE
belongs to the immunoglobulin (Ig) superfamily of cell-
surface molecules and is composed of an extracellular region
containing one V-type and two C-type Ig domains [16]. This
portion of the receptor joins a hydrophobic transmembrane-
spanning domain and then a highly charged, short cyto-
plasmic domain that is essential for post-RAGE signaling

[16, 17]. RAGE is a member of a family of pattern-
recognition receptors that function at the interface of innate
and adaptive immunity. Its endogenous and exogenous
binding partners include AGE, high-mobility group box 1
(HMGB1), calcium-binding S100 protein group, 52-integrin
Mac/CD11b, amyloid B-peptide, f3-sheet fibrils, advanced
oxidation protein products (AOPPs), complement C3a,
lipopolysaccharides (LPS), and phosphatidylserine on the
surface of apoptotic cells [18-24] (Figure 1). Ligand engage-
ment of RAGE activates the nuclear factor-«B (NF-xB) and
other signaling pathways through stimulation of ERK (extra-
cellular signal-regulated kinase)1/2, p38 MAPK (mitogen-
activated-protein-kinase)-JNK (c-Jun N-terminal kinases),
JAK (Janus-kinase)-STAT (signal transducer and activator
of transcription), and Rac-Cdc42, many of which are the
results as well as the cause of reactive oxygen species (ROS)
[25]. Subsequently, expression of inflammatory cytokines is
increased, which leads to an inflammatory response with
associated cellular migration and proliferation. Recently,
mammalian homologue of Drosophila gene Diaphanous 1
(mDial) has been identified as a direct binding partner
of an intracellular domain of RAGE and as a part of the
machinery of RAGE intracellular signaling [26]. The mDial
exists widely from yeast to the mammal and is known to
link with cell division, polarity formation, and movements
by actin polymerization [26]. Ligation of RAGE causes a
positive feed-forward loop, in which inflammatory stimuli
activate NF-«B, which induces RAGE expression, followed
again by NF-«B activation [27].

Self-downregulation system of RAGE is also reported: as
an example, the binding of HMGBI1 to RAGE induces an
intracellular signal transduction as well as RAGE shedding
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by a disintegrin and metalloproteinase domain-containing
protein 10 (ADAM10) [28]. The cleavage of the membrane-
bound full-length and signal transducing RAGE yields sol-
uble RAGE (sRAGE), which could work as a decoy receptor
against ligand-RAGE interactions. In the strict sense of the
word, sRAGE is a heterogeneous population of total sSRAGE
proteins, including soluble splice variants of RAGE and the
proteinase-cleaved forms of membrane-bound RAGE and
of the soluble splice variants [29]. Endogenous secretory
RAGE (esRAGE) is one of the major splice variants of
RAGE detected in blood, cell surface and cytoplasm of
vascular endothelial cells, pancreatic f-cells, monocytes,
macrophages, and so on [30, 31]. The sRAGE is thought to
act locally and systemically as a decoy receptor. Reinforcing
the ectodomain shedding will decrease a total amount and
expression of signal-transducing RAGE and will reciprocally
increase an amount of decoy receptor sRAGE; this can
control ligand-RAGE signaling and subsequent cellular and
tissue derangement [32]. It is also reported that sRAGE
mediates inflammation by directly binding to monocytes
under less ligand conditions though the mechanism of action
is unknown [33]. Recent clinical studies have focused on
the significance of circulating SRAGE or esRAGE in diabetic
vascular complications. Findings in both type 1 and type 2
diabetic patients are quite confusing and both inverse and
positive correlations have been reported in diabetic retinopa-
thy, nephropathy, and incident cardiovascular disease events
and mortality outcomes [29, 34-39]. First, production of
sRAGE and esRAGE is inducible. Second, the presence of
renal insufficiency can strongly and positively influence
circulating SRAGE or esRAGE level [29]. Third, medications
may alter sSRAGE or esRAGE level. All phenomena may
explain controversial findings of SRAGE or esRAGE in
diabetes.

4. Other Receptors

Many other AGE receptors and soluble binding proteins
interacting with AGE may play an important role in the AGE
homeostasis: scavenger receptors class A (MSR-A), class B
(MSR-B) (CD36 and LOX1), AGE-R1 (OST48 oligosaccha-
ryltransferase), AGE-R2 (80K-H protein kinase C substrate),
AGE-R3 (galectin-3), and toll-like receptor (TLR) 4 [40—44].
There are also other molecules like lysozyme and lactoferrin-
like polypeptide involving in cellular uptake and degradation
of AGE [45]. AGE-R1 is a type I transmembrane receptor
found on the plasma membrane and in the endoplasmic
reticulum [40]. The cell surface membrane-associated AGE-
R1 blocks responses to AGE by blocking the induction of
ROS-mediated activation of MAPK/Ras and inflammatory
molecules, induced in part via RAGE [46]. Torreggiani et
al. showed that the overexpression of AGE-R1 in mice is
associated with decreased basal levels of circulating and tissue
AGE and oxidative stress and significant protection against
wire injury-induced femoral artery intimal hyperplasia and
inflammation [47]. AGE-R3 (galectin-3) is also reported to
work as an AGE receptor to protect AGE-induced tissue
injury via AGE removal or degradation [41, 42].

5. Diabetic Nephropathy

To evaluate whether RAGE and ligand system may participate
in the development of diabetic nephropathy, we created
transgenic mice that overexpress human RAGE proteins in
endothelial cells and crossbred them with another transgenic
mouse line that develops insulin-dependent diabetes early
after birth [48]. The resultant double transgenic mice
showed significant increases in kidney weight, albuminuria,
glomerulosclerosis, and serum creatinine compared with
the diabetic control [48-50]. Indices diagnostic of diabetic
retinopathy were also most prominent in double transgenic
mice. Our group also generated RAGE knockout (KO) mice
and reported the marked improvement of nephromegaly,
albuminuria, glomerulosclerosis, and increase of serum cre-
atinine level in diabetic RAGE-KO mice [51]. The kidneys of
streptozotocin (STZ)-injected RAGE-KO mice were reported
to be protected from early mesangial matrix expansion and
thickening of the glomerular basement membrane (GBM)
seen in wild-type diabetic mice [52]. Moreover, RAGE
deletion was also beneficial to diabetic nephropathy seen in
OVE26 type 1 diabetic mice with progressive glomeruloscle-
rosis and decline of renal function [53]. Riister et al. reported
an interaction between the renin-angiotensin system and the
AGE-RAGE axis in podocytes [54]. Since intraglomerular
angiotensin II levels are increased in diabetic nephropathy,
this interaction may have pathophysiological consequences
for podocyte injury and inflammation associated with the
development of diabetic nephropathy [54]. Pharmacological
blockade of RAGE, using sRAGE in db/db diabetic mice,
protected against glomerulosclerosis and other classical
lesions of early diabetic nephropathy [52]. It admits no
doubt that RAGE plays a major role in diabetic nephropathy
(Table 1).

6. Diabetic Retinopathy

Diabetes retinopathy is classified into nonproliferative stage
(NPDR) and proliferative stage (PDR). NPDR is character-
ized by capillary microangiopathy, microaneurysms, base-
ment membrane thickening, and loss of pericytes [55]. An
association between accumulation of CML and expression
of vascular endothelial growth factor (VEGF) has also been
found in eyes with non-PDR and PDR [56]. VEGF appears to
be the most important growth factor in diabetic retinopathy.
It is also well documented that oxidative stress is linked to
AGE formation, and involved in retinal vascular dysfunction
[57]. RAGE expression has been predominantly localized
to glia in the inner retina, and the expression appeared to
be upregulated in diabetic conditions [58]. Other ligands
for RAGE including S100 proteins and HMGB1 are evident
in the vitreous and preretinal membranes of eyes with
PDR [59]. Kaji et al. demonstrated blood-retinal barrier
breakdown and increased leukostasis in endothelial RAGE-
overexpressing mice and their amelioration by the treatment
of sRAGE [60]. RAGE activation by ligand in Miiller glia
results in ERK1/2 activation and subsequent production



TaBLE 1: RAGE and its ligand axis in diabetic angiopathy using
RAGE gene-manipulated animal models.

Animal models Phenotypes References
Diabetic nephropathy
RAGE transgenic mice Nephropathy 1 [48, 50]
(Type 1 diabetes)

+ AGE inhibitor Nephropathy |
RAGE knockout mice Nephropathy | [51, 93]
(Type 1 diabetes)

+ LMWH treatment Nephropathy |
RAGE knockout mice Nephropathy | [53]
(Type 1 diabetes, OVE26)
db/db mice + sSRAGE Nephropathy | [52]
RAGE knockout mice Nephropathy |
(STZ-diabetes)
Diabetic retinopathy
RAGE transgenic mice Retinopathy 1 [60]
(STZ-diabetes)

+ sRAGE treatment Retinopathy |
RAGE transgenic mice Retinopathy 1 [80]
(Type 1 diabetes)
Diabetic neuropathy
RAGE knockout mice Neuropathy | [63]
(STZ diabetes)

+ sRAGE treatment Neuropathy |
RAGE knockout mice Neuropathy | [64]
(STZ diabetes)

of inflammatory cytokines such as VEGF and MCP-1,
implicating the critical role of RAGE in neovascularization
and recruitment of immune cells such as microglia into the
deep retinal layers during diabetic retinopathy to induce
inflammation [58].

7. Diabetic Neuropathy

In diabetic neuropathy, both autonomic and peripheral
nerves are affected. Endothelial injury may impair the
blood flow which leads to hypoxia and oxidative stress in
peripheral nerves [61]. Wada and Yagihashi demonstrated
the expression of RAGE in the perineural and endoneurial
endothelial cells and schwann cells of peripheral nerve in
rat by in situ hybridization [62]. Models of experimental
diabetic neuropathy provided sound evidence that deletion
of the RAGE gene protected animals from the detrimental
effects of diabetes, while overexpression of RAGE promotes
diabetic neuropathy [63—66]. Moreover, the loss of thermal
pain perception observed in mice with diabetes could be
prevented by treatment with sRAGE. In agreement with
these observations, NF-«B activation and the loss of pain
perception were largely blunted in RAGE-KO mice [63].
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8. Atherosclerosis

AGE stimulate ROS generation in vascular wall cells
and subsequently induce redox-sensitive atherosclerosis-
related molecular expressionsuch as MCP-1, matrix metallo-
proteinase-9 (MMP-9), and plasminogen activator inhibitor-
1 (PAI-1), all of which could contribute to the formation and
destabilization of coronary atherosclerotic plaques [67, 68].
AGE induce increased vascular permeability, procoagulant
activity, migration of macrophages and T cells into the
intima, and impairment of endothelium-dependent relax-
ation [69]. AGE inhibition attenuated accelerated atheroma
associated with diabetes [70]. STZ-induced diabetic ApoE-
KO mice clearly showed that RAGE activation has a central
role in the formation and progression of atherosclerotic
lesions and that the absence of RAGE was associated with
a significant attenuation of the atherosclerotic plaque [71].
Competitive inhibition of RAGE by exogenously adminis-
trated sSRAGE resulted in a decrease in mean atherosclerotic
lesion area and number of complex lesions [72, 73]. In
addition, RAGE inactivation also inhibited atherosclero-
sis through blocking the RAGE-mediated inflammatory
reactions and oxidative stress in nondiabetic models with
atherosclerosis of ApoE-KO and low-density lipoprotein
(LDL) receptor KO mice [74].

In atherosclerosis, increased level of LDL and presence of
small dense LDL are strong and independent risk factors and
both are features of dyslipidemia [75]. The specific protein
of apolipoprotein B (ApoB) on LDL is glycated in diabetes
[76], and this leads to rapid scavenger uptake of the LDL
[77], which gives rise to foam cell formation in atherogenesis
[69]. The oxidation and glycation of LDL are partially
interdependent and indisputably coexist, and both prevent
LDL receptor-mediated uptake and promote macrophage
scavenger receptor-mediated LDL uptake. Small dense LDL
is more preferentially glycated in vivo and more susceptible
to glycation in vitro than buoyant LDL [78]. Glycated-high
density lipoprotein (HDL) has also been linked to decreased
ability to prevent monocyte adhesion to aortic endothelial
cells [79], while lipoprotein A glycation has been shown
to increase PAI-1 production and decrease t-PA generation
[80, 81]. Glycated LDL and HDL may also play an important
role in atherogenesis.

9. Conclusion

Diabetic angiopathy is still a burden disease worldwide
even though new pharmaceutical interventions are available.
Applications of inhibitors for AGE and RAGE may be
prospective therapeutic approaches for prophylaxis and
treatment of diabetic angiopathy. Benfotiamine is a synthetic
S-acyl derivative of thiamine and has antioxidant and anti-
AGE formation properties [82]. Thiazolium compounds
ALT-711 (algebrium), C36, TRC4186, and TRC4149 and
their prototype N-phenacylthiazolium bromide (PTB) are
known as AGE breakers, which break preaccumulated AGE
or existing AGE cross-links [83-86].

TTP488 is an antagonist against RAGE [87]. Low-
molecular-weight heparin (LMWH) can bind RAGE and act



Experimental Diabetes Research

as an antagonist to RAGE [51]. LMWH treatment of mice
showed preventive and therapeutic effects on albuminuria
and increased glomerular cell number, mesangial expan-
sion, and advanced glomerulosclerosis in a dose-dependent
manner [51]. Thiazolidinediones, calcium channel block-
ers, angiotensin-converting enzyme inhibitors (ACEIs),
angiotensin II receptor blockers (ARBs), and statins are
reported to suppress RAGE expression [88-90]. Treatment of
statins and ACEI stimulated circulating sSRAGE production
in human studies [91, 92]. It is interesting in the future to
develop new devices and remedies of controlling the RAGE
ectodomain shedding. New therapeutic strategies are desired
to prevent diabetic vascular complications and to improve
both quantity and quality of life in patients with diabetes.
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