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Abstract
Background  Surgical process modeling automatically identifies surgical phases, and further improvement in recognition 
accuracy is expected with deep learning. Surgical tool or time series information has been used to improve the recognition 
accuracy of a model. However, it is difficult to collect this information continuously intraoperatively. The present study aimed 
to develop a deep convolution neural network (CNN) model that correctly identifies the surgical phase during laparoscopic 
cholecystectomy (LC).
Methods  We divided LC into six surgical phases (P1–P6) and one redundant phase (P0). We prepared 115 LC videos and 
converted them to image frames at 3 fps. Three experienced doctors labeled the surgical phases in all image frames. Our 
deep CNN model was trained with 106 of the 115 annotation datasets and was evaluated with the remaining datasets. By 
depending on both the prediction probability and frequency for a certain period, we aimed for highly accurate surgical phase 
recognition in the operation room.
Results  Nine full LC videos were converted into image frames and were fed to our deep CNN model. The average accuracy, 
precision, and recall were 0.970, 0.855, and 0.863, respectively.
Conclusion  The deep learning CNN model in this study successfully identified both the six surgical phases and the redundant 
phase, P0, which may increase the versatility of the surgical process recognition model for clinical use. We believe that this 
model can be used in artificial intelligence for medical devices. The degree of recognition accuracy is expected to improve 
with developments in advanced deep learning algorithms.

Keywords  Image classification · Artificial intelligence · Phase recognition · Deep learning · Laparoscopic 
cholecystectomy · Surgical data science

Surgical process modeling (SPM) has various benefits 
owing to its ability to identify separate surgical phases. 
Furthermore, the possibilities of SPM will expand with the 

advanced image recognition of deep learning [1]. Recogni-
tion technology for surgical phases using deep learning has 
been used in a variety of cases; for instance, predicting an 
operation’s end time with an image of the surgical field, 
supporting surgeons’ intraoperative decision-making [1–3], 
indexing surgical videos in a database [4, 5], and assessing 
operation skill using videos. Notably, it is necessary that a 
deep learning model used in an operation room has high 
versatility for an unknown image. Recently, deep learning 
systems to assist surgeons’ decision-making have undergone 
remarkable developments [6], and the demands for surgical 
phase recognition techniques will increase in the near future.

In our research, surgical phase recognition based on deep 
learning has been applied to laparoscopic cholecystectomy 
[4, 7] and laparoscopic sigmoidectomy [8, 9]. In both cases, 
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the technology recognized the surgical phases of each opera-
tion with high accuracy, especially the surgical tools, which 
were important factors to increase the degree of recognition 
accuracy [7]. In an operation with standardized procedures, 
the current treatment and pre- and posttreatment can be 
predicted from the surgical field and the type of surgical 
tool. Similarly, related studies [10, 11] have reported that 
surgical tools provide effective information to improve the 
recognition accuracy of the surgical phase. Importantly, 
in this method, using surgical tools to identify the surgi-
cal phase, the recognition accuracy often declines owing to 
different colors of the hook shaft of endoscopic instruments 
[12]. Additionally, blood on surgical tools and manipulations 
behind the organs are factors decreasing the recognition 
accuracy of the surgical phase. Furthermore, after upgrad-
ing the appearance of a surgical tool, we must reconstruct 
the learning model by repeating a series of development 
cycles, such as annotation, training, and evaluation. If the 
learning model has already been embedded in a commer-
cially available medical device, the reconstructed learning 
model must undergo regulatory examination at each rede-
sign related to the appearance of a surgical tool. Considering 
the cost involved in updating the learning model, accurately 
recognizing the surgical phase without relying on the infor-
mation provided by surgical tools is important to predict the 
surgical phase.

EndoNet, proposed by Twinanda et  al. [7] achieved 
approximately 0.82 overall accuracy for surgical phase rec-
ognition in laparoscopic cholecystectomy (LC), in which 
the features of an image from an endoscopic camera and 
of a surgical tool are used to predict the surgical phase. 
The authors used the open datasets Cholec80 and EndoVis, 
which contain the video data of LC performed in a single 
facility. Additionally, the authors adopted long short-term 
memory (LSTM) in a recurrent neural network to estimate 
the surgical phase while considering the surgical phase to 
a certain point, resulting in 0.963 recognition accuracy [5, 
13]. Also, the authors proposed a deep learning model with 
LSTM to estimate the remaining surgery duration intraop-
eratively [14].

However, we considered that LSTM is not desirable to 
intraoperatively identify the surgical phase because unex-
pected intraoperative events happen frequently. In this 
regard, no redundant phase between the surgical phases was 
defined in either Cholec80 and EndoVis; [7, 15] therefore, 
the benefits of LSTM were limited in these datasets. With 
the development of the latest deep learning models, it has 
become possible to recognize the surgical process with high 
accuracy without using the recognition information of surgi-
cal instruments for decision-making [8, 16]. However, for 
extracorporeal images, misty images during sectioning, and 
out-of-focus images, it is difficult for even deep learning 
models to accurately estimate the surgical process from the 

information from a single image. Therefore, in addition to 
improving the accuracy of the learning model, postprocess-
ing to estimate the surgical process is important for clini-
cal use of the learning model. In this study, we aimed to 
construct a deep CNN model that intraoperatively identifies 
the surgical phase in LC and can be available as embedded 
software in a medical device. To accomplish our purpose, 
the surgical phase was recognized using only the endoscopic 
images obtained in LC.

LC was developed approximately 30 years ago and is 
now a standard treatment for benign pathologies, such as 
cholelithiasis and cholecystitis. The operative procedure for 
LC is mature and standardized, and is currently frequently 
implemented [17, 18]. Therefore, LC is often chosen in SPM 
research. The incidence of bile duct injury (BDI) during 
LC is an issue [19]. To prevent BDI, it has been strongly 
recommended to archive critical view of safety (CVS) data 
[12, 20] or to confirm the anatomical landmarks, such as the 
common bile duct or cystic duct, during the surgical phase of 
confirming Calot's triangle in the gallbladder neck [21, 22].

Recently, the use of a deep CNN model to reduce the 
incidence of BDI has been reported. Tokuyasu et al. [23] 
proposed an AI system that intraoperatively indicates the 
anatomical landmarks during confirming Calot's triangle; 
Mascagni et al. [24] proposed an automatic assessment tool 
for CVS during dissection of Calot's triangle; and Madani 
et al.[25] developed a deep learning model that visually 
identifies safe (Go) and dangerous (No-Go) zones for liver, 
gallbladder, and hepatocytic triangle dissection during LC. 
The purpose of these applications is limited to the specified 
surgical phase of confirming Calot’s triangle and Calot’s tri-
angle dissection. We assume the surgical phase recognition 
model would be expected as a trigger for these applications.

In current LC, medical devices for confirming surgical 
field information include magnifying endoscopes, special 
light observation, such as narrow-band imaging and indo-
cyanine green, and intraoperative ultrasonography. However, 
it is the surgeon who grasps the surgical field situation from 
the visual information presented by these medical devices. 
The surgeon need to use knowledge based on their own sur-
gical experiences and the anatomical position of the organ 
to proceed with operation. Surgical field information mis-
interpretation by inexperienced surgeons may lead to an 
increased risk of intraoperative complications or an increase 
in surgical time. To address this issue, AI medical devices 
built on big data can objectively determine the status of the 
operation and present this information to the surgeon, which 
is important for improving the efficiency of the operation. In 
long operations, doctors as well as anesthesiologists, nurses, 
and other members of the team participate in the operation, 
and some members are replaced during the operation. Shar-
ing information regarding the surgical phase recognition 
inside and outside the operating room will help the surgical 
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team members understand the status of the operation and 
improve efficiency in the operating room. Our objective in 
this study was to assess the ability of a deep CNN model to 
identify the surgical phases during LC.

Materials and methods

Preparing the datasets

The videos of 115 cases of LC, after manually excluding 
cases with abnormal findings, such as fibrosis, scarring, and 
bleeding, were collected in this research. Cases with abnor-
mal findings such as fibrosis, scarring, and hemorrhage are 
difficult to collect a sufficient number of cases for machine 
learning. These LC procedures were performed between 
January 2018 and January 2021. As a retrospective study, 
all operation videos were fully anonymized. This study was 
approved by the ethics committee of Oita University, Japan. 
Although the LC procedure can be divided into 10 surgical 
phases [16, 23], the action of confirming Calot's triangle 
and/or the running direction of the common bile duct were 
addressed in this study as a single surgical phase.

It is difficult to identify the doctor’s action when con-
firming the surgical field from image recognition. The LC 
surgical phases should comprise the actions involving physi-
cal intervention in a patient's organs, such as dissection and 
excision. Cholec80 is a major open dataset for the LC pro-
cedure, which comprises seven phases (P1–P7) [7]. Basi-
cally, our definition of a surgical phase was in accordance 
with Cholec80; however we integrated P5 (packing the gall 
bladder (GB)) and P7 (retrieving the GB) into one phase 
(GB retrieving). In addition, we included a redundant phase 

between actions considered a surgical process; for example, 
cleaning the endoscopic camera and changing endoscopic 
instruments. Finally, we defined the LC procedure by seven 
surgical phases, as described in Table 1.

For this research, we created an original annotation tool 
that enabled adding the surgical phase label (P0–P6) to 
the video data by checking the image from the endoscopic 
camera. After finishing the annotations, the video data were 
converted into still images with the annotated label at 3 fps, 
and the data were saved to the computer. To evaluate the 
quality of our annotation dataset, two surgeons (both per-
formed > 200 LC cases in over 10 years of surgical experi-
ence) performed the annotation, with consensus. In case of 
disagreement, a senior surgeon certified by the Japan Society 
of Endoscopic Surgery mediated.

We used 106 of the 115 annotated cases as the dataset to 
train our deep CNN model; 90 of 106 cases were used for 
training data, and the remaining 16 cases were used for vali-
dation. The training dataset was created by randomly extract-
ing 10 000 images from each surgery in all 106 cases in the 
annotation datasets. The validation data were constructed 
in the same manner; however, the dataset for each surgical 
phase comprised 100 images. Finally, the remaining 9 of 115 
cases were used to evaluate the trained deep CNN model.

Deep learning model

Algorithms addressing the three major categories of deep 
learning, classification, semantic segmentation, and object 
detection, are updated daily. Many algorithms’ source codes 
are freely downloadable from the appropriate website. 
Algorithms for image classification, such as AlexNet and 
Inception-ResNet-v2, have been used frequently in studies 

Table 1   Definitions of the seven surgical phases (P0–P6)

Phase Task Start point/end point

P0 Other Extracorporeal operation, trocar insertion, adhesiolysis, cleaning, 
other recovery, hemostasis, unexpected suture, drain insertion, trocar 
removal, etc.

P1 Preparation Start: lifting gallbladder with grasping forceps
End: completed clearance around the gallbladder

P2 Calot’s triangle dissection Start: incising the gallbladder neck
End: achieved critical view of safety

P3 Clipping and cutting Start: inserting a clipping device to cut the cystic duct or artery
End: completed cutting of the cystic duct or artery

P4 Gallbladder dissection Start: dissecting gallbladder from the liver bed
End: released gallbladder from the liver bed

P5 Gallbladder retrieving Start: inserting retrieving bag
End: removed the retrieving bag

P6 Cleaning and coagulation Start: inserting a suction device
End: removed the suction device
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of surgical phase recognition [7, 8]. In this study, we used 
EfficientNet [26] because its recognition accuracy assessed 
by general image datasets surpasses the performances of 
AlexNet and Inception-ResNet-v2. In addition, we also used 
the Sharpness-Aware Minimization (SAM) optimizer, which 
makes it possible to optimize the learning parameters of 
deep CNN models for image classification to smooth highly 
diverse image information for one label [27]. For the LC 
procedure, the appearance of an endoscopic image differs 
greatly between the start point and the end point of each 
surgical phase. We assumed that the combination of the lat-
est deep learning techniques, EfficientNet and the SAM opti-
mizer, have a higher possibility of achieving surgical phase 
recognition with high accuracy and versatility, especially 
for intraoperative use. In this research, EfficientNet-B7 was 
tentatively adopted as the base algorithm for our deep CNN 
model because this model has the highest accuracy among 
the EfficientNet series.

All work related to our deep CNN model was performed 
using a workstation (DGX Station V100; NVIDIA Corp., 
Santa Clara, CA).

Evaluation of the deep CNN model

The nine LC videos for evaluating our deep CNN model 
(described in Sect. 2.1) and the evaluation dataset comprised 
6300 images. Each surgical phase comprised 900 images 
randomly extracted from the nine LC videos. First, we evalu-
ated the deep CNN model with the evaluation dataset and 
the metrics generally used in machine learning: accuracy, 
precision, and recall. These metrics can be described by the 
following equations ((1)–(3), below) [12, 13, 28], where TP 
is true positive, FP is false positive, FN is false negative, and 
TN is true negative:

Measures to address incorrect transition

According to our preliminary investigation, with the speci-
fication of our workstation, the average processing speed for 
one-time prediction of a surgical phase was 12 fps. Next, 
it is desirable to have a time interval for the processes of 
predicting a surgical phase. Because recognition accuracy 
is never 100%, a strategy was necessary to prevent incorrect 
transition of a surgical phase owing to misprediction of our 
deep CNN model. To address these issues, first, images from 
the LC video were input to the deep CNN model at 5 fps. To 

(1)Accuracy = (TP + TN)∕(TP + FP + TN + FN)

(2)Precision = TP∕(TP + FP)

(3)Recall = TP∕(TP + FN)

prevent incorrect transition of a surgical phase, we adopted 
the following measures: During periodic prediction of the 
surgical phase at 5 fps, if the probability of one-time predic-
tion of the deep CNN model exceeded 80%, the predicted 
surgical phase was recorded as the candidate surgical phase. 
After 25 repetitions, if 24 or more of the same predictions 
were stocked, then the surgical phase was updated. Accord-
ingly, the surgical phase updated every 5 s. The effect of this 
time lag of updating the surgical phase must be investigated 
through future verification testing. This measure to address 
misprediction of the deep CNN model in its online use may 
become an effective postprocessing method in the practical 
application of this model for surgical phase recognition.

Results

Statistics used to analyze the LC videos

The analyzed LC videos had an average surgical time of 
94.0 min (standard deviation (SD): ± 41.6 min; n = 115). 
There was high variance in duration between cases, as 
described in Fig. 1. We used the full length of the video 
data, when all seven phases (P0–P6) were observed once 
or more in all videos. Basically, both the start phase and 
the end phase of the videos were considered P0 because 
the endoscopic camera is removed from the abdominal cav-
ity, and this phase was considered a redundant phase in this 
study. The number of transitions of the surgical phase was 
15.6 (SD: ± 5.4). In particular, the number of appearances of 
phase P0 was 5.6 (SD: ± 2.5). Figure 2 shows a representa-
tive case of surgical phase transition.

Results of the surgical phase recognition evaluation

Table 2 shows the prediction results of our deep CNN model 
for all 6300 images from the evaluation dataset. The left 
column in Table 3 shows the results of converting the nine 
videos in the evaluation dataset into still images at 5 fps 
and continuously inputting the images into the deep CNN 
model. The overall accuracy, precision, and recall were 
0.96 (SD: ± 0.04), 0.76 (SD: ± 0.21), and 0.85 (SD: ± 0.15), 
respectively.

The right column in Table 3 shows the results of con-
verting the nine videos in the evaluation dataset to apply 
strategies to prevent accidental transitions in the surgical 
phase. The results of postprocessing against the mispredic-
tion of the surgical phase, as described in Sect. 2.4, are also 
shown in Fig. 3. Using these results, the average number of 
transitions of the surgical phase could be reduced from 966.4 
(SD: ± 620.6) to 26.4 (SD: ± 12.8 SD).
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Fig. 1   Analysis of the duration 
of the surgical phases in 115 LC 
cases. The duration differed for 
each phase and varied strongly 
between cases. The duration 
was 36.9 ± 19.8 min for P2, 
which was the longest surgical 
process, and 1.8 ± 2.1 min for 
P6, which was the shortest 
surgical process

Fig. 2   Schematic diagram of a representative transition in the surgical phase. The colors show each surgical phase. The horizontal axis of the 
color bar shows the time course of surgery, indicating the transition in surgical phase for each time point

Table 2   Results of the Offline 
Performance Test

Prediction result (original) for each phase

P0 P1 P2 P3 P4 P5 P6

Ground truth P0 677 40 30 15 39 25 74
P1 49 663 168 2 6 8 4
P2 7 22 770 30 54 4 13
P3 9 1 93 719 42 4 32
P4 5 1 16 7 848 9 14
P5 80 7 2 0 38 737 36
P6 46 0 4 2 7 9 832

Table 3   Recognized result with 
evaluation dataset

Surgical phase Prediction result (original) Prediction result (postprocessing)

Accuracy Precision Recall Accuracy Precision Recall

P0 0.944 0.903 0.776 0.953 0.938 0.792
P1 0.965 0.779 0.759 0.975 0.830 0.837
P2 0.910 0.919 0.848 0.939 0.930 0.923
P3 0.975 0.586 0.824 0.986 0.745 0.772
P4 0.947 0.802 0.923 0.959 0.824 0.961
P5 0.988 0.507 0.853 0.994 0.802 0.807
P6 0.969 0.785 0.935 0.987 0.915 0.945
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Discussion

In this study, the results using the deep learning model and 
postprocessing showed that average values were 0.97, 0.85, 
and 0.86 for overall accuracy, precision, and recall, respec-
tively. The accuracy was higher than with the deep learning 
model alone, and flickering of the surgical process owing to 
false inference was suppressed.

The full-length LC videos we used in this study had an 
average surgical time of 94.0 min (SD: ± 41.6; n = 115), 
and the number of surgical phase transitions was 15.6 
(SD: ± 5.4). Notably, the average surgical time in the videos 
contained in Cholec80 was 38.4 (SD: ± 17.0; n = 80) min-
utes, and the surgical phase transitioned 5.8 (SD: ± 0.39) 
times. Because Cholec80 was constructed as open datasets 
to stimulate research in SPM, the variation in the surgical 
difficulties in the LC videos might have been lower. In our 
assumption, there may be a redundant scene between the 
surgical phases, which was classified as surgical phase P0 
in this study. However, the scene that we classified as the 
redundant phase was categorized as its previous surgical 
phase, uniformly, in Cholec80. We considered that the defi-
nition of the redundant phase (P0) is an essential factor to 
ensure that the deep CNN model keeps predicting the sur-
gical phase stably intraoperatively because it is difficult to 
avoid dealing with extracorporeal images or to prevent an 
abnormal image owing to the visuality of the endoscopic 

camera. Most of the LC videos collected in this study were 
benign biliary tract diseases, and few had strong abnormal 
findings in acute cholecystitis. Although we intentionally 
excluded LC videos with many abnormal findings and poor 
anatomical visibility, all of the remaining videos showed 
average surgical difficulty, in accordance with usual dif-
ficulty in a university hospital. The AI learns to correlate 
the information in the image with the surgical process. 
However, if the features of abnormal findings are strongly 
reflected in the image, the AI cannot relate the findings to 
the surgical process. However, we have to consider the nec-
essarily for making a surgical phase recognition model for 
high-difficulty cases such as acute cholecystitis in the future, 
that needs a sufficient number of LC data with abnormal 
findings.

In the present article, we successfully constructed a 
deep CNN model that achieved 0.970 overall accuracy for 
full-length LC videos. However, the metrics, precision and 
recall were approximately 0.700 for P3. As causes, we 
considered that the deep CNN model we trained tended 
to misunderstand phases P2 and P3, as shown in Table 2. 
There were many mistakes between the scene of incising 
the gallbladder neck (P2) and the scene of cystic duct cut-
ting (P3). The reason for these mistakes is that AI mechan-
ically classifies image classes from a single image feature, 
and it is difficult for AI to determine the surgeon’s inten-
tions from a single image. We can determine the surgeon’s 

Fig. 3   Transitions in surgical phases over time for ground truth, 
offline testing, and online testing. The left-hand column shows the 
order from the highest recall value in the nine test datasets. The right-
hand column shows the order from the lowest recall value in the nine 
test datasets. The postprocessing results show inference by the arti-

ficial intelligence (AI) model, inference accuracy, and mode algo-
rithm. The original results show inference from the AI model using 
EfficienteNet-B7 and SAM optimizer. The ground truth results show 
the time-dependent transition of the correct surgical process
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intent from the flow of work before and after as a video. 
The awareness of confirming the cystic duct and the gall-
bladder artery crosses phases P2 and P3, and the change of 
image features is not so different between the endo of P2 
and the beginning of P3. This small difference limits the 
classification from the image features. In previous studies 
[7, 28], the accuracy of determining P2 and P3 was also 
low. However, there is need to improve the accuracy of 
detecting P2 and P3, which are important processes in LC, 
in future work.

Regarding the result for P0, owing to an out-of-focus 
image corresponding to improper operation of the endo-
scopic camera, and overexposed, enlarged, and misty images 
related to using energy devices, P0 was misjudged regard-
less of the surgical phase. These issues related to the visual-
ity of the endoscopic image were also confirmed in similar 
research [29] and became the causes of incorrect transitions 
of the predicted surgical phase. Although some misjudg-
ments can be dealt with by future hardware technological 
innovations, it is desirable to solve this issue by devising 
appropriate software.

Previous studies [4, 7, 13, 15, 29–31] used a variety of 
methods to improve the degree of accuracy in the online use 
of deep learning models, such as the recognition information 
of surgical tools, LSTM, and the hidden Markov model. Cer-
tainly, LSTM and the hidden Markov model are effective for 
LC videos that proceed according to a standardized opera-
tion procedure; in other words, the transition pattern of the 
surgical phase is fixed to some extent [5]. No surgeon accu-
rately knows the situation even a few seconds ahead in an 
operation. The surgical phase changes in multiple patterns 
depending on the surgical situation; therefore, we decided 
to use the redundant phase, P0, and created a new simple 
postprocessing method for online use of a deep CNN model.

It has been widely recognized that archiving CVS data is 
a significant factor to avoid BDI during LC. Numerous stud-
ies have focused on the process of archiving CVS [23, 24, 
32, 33] by developing technology in deep CNN models as 
AI software. In our experimental results, we determined that 
devising a model that correctly recognizes Calot’s triangle 
dissection would contribute to making the CVS archiving 
technology more practical.

AI software for clinical use has been developed world-
wide since deep learning has become a common medical 
technology. Currently, the concept of “software as a medi-
cal device” (SaMD) has been discussed in pharmaceuti-
cal approval organizations, such as the Food and Drug 
Administration [34], Pharmaceuticals and Medical Devices 
Agency [35], and related medical societies [36]. To obtain 
pharmaceutical approval as an SaMD, we must verify the 
function of our deep CNN model using datasets obtained 
with informed patient consent for commercial use. This 
also applies to post-commercial updates of SaMD. Before 

commercialization of an SaMD, fewer software updates are 
required, to decrease development costs.

The considerable factors involved in updating an SaMD 
are the evolution of core software algorithms and expanding 
the scope of the target surgical level. Jin et al. [28] achieved 
0.924 accuracy using SV-RCNet after reaching the limit of 
improving accuracy of a CNN algorithm. Regarding the evo-
lution of core algorithms for image classification using deep 
learning, Inception-ResNet-v2 [8], Xception [16], and other 
custom CNN models [4] have progressively updated their 
worldwide accuracy. The SAM optimizer we used to train 
our deep CNN model using EfficientNet-B7 was introduced 
in 2020.

In our preliminary research, we constructed a CNN model 
using Inception-ResNet-v2 to predict the LC surgical phase 
using the same training dataset that we used in this paper. 
The results for the nine full-length videos resulted in post-
processing scores of 0.936, 0.679, and 0.689 for overall 
accuracy, precision, and recall, respectively. Using the SAM 
optimizer to train the CNN model using Inception-ResNet-
v2, the results improved noticeably to 0.944, 0.719, and 
0.705 for overall accuracy, precision, and recall, respectively.

Current AI technology could drastically improve the per-
formance in a few months. However, the scope of the target 
surgical difficulty is a significant issue for the medical appli-
cation of AI software. Abnormal findings owing to acute 
cholecystitis and excessive visceral fat decrease the visibil-
ity of anatomical structures. Deep CNN models rely on the 
image features of anatomical structures drawn on the input 
image. It is easy to say our results might have been worse if 
we did not exclude the LC videos of acute cholecystitis and 
excessive visceral fat. Although we did not discuss how to 
address expanding the scope of target difficulty in this paper, 
a solution is needed for this issue, to increase the practicality 
of our proposed method. It is generally believed that with 
surgical advances in endoscopic surgery, surgical processes 
such as laparoscopic sigmoidectomy [8, 37] are becoming 
increasingly standardized. If the surgical process can be 
clearly defined, as in Table 1, it is possible to create anno-
tation data, and the proposed method in this paper can be 
applied. However, it may not be possible to obtain the high 
accuracy rate that we obtained for LC in this study because 
of patient factors, numerous changes in the order of surgical 
phases, and procedures with a small number of cases.

The sharing of objective information on the recognition 
of the surgical process by AI inside and outside the operat-
ing room facilitates communication among the members of 
the surgical team and also helps improve operating room 
efficiency. Previous studies [23–25] have evaluated AI to 
support the surgeon's judgment, and these AIs are now being 
used to support the surgeon's decision-making. By recog-
nizing objective scenes, it will be possible to automatically 
switch AI on and off. In addition, considering the future of 
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robotic surgical support, the robot can be expected to pass 
the appropriate surgical forceps to the surgeon based on the 
recognition information of the surgical process.

Conclusions

In this study, we successfully established a deep learning 
CNN model that enables automatic identification of the sur-
gical phase in full-length LC videos. In addition, we dras-
tically reduced the number of incorrect transitions of the 
surgical phase owing to misidentification by the deep CNN 
model. The application of deep CNN technology to intraop-
eratively identify the surgical phase is expected to improve 
operating efficiency. For this technology to have sufficient 
functionality to be approved as a medical device, we will 
perform clinical performance tests and determine the issues 
that must be resolved for its practical clinical use.
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