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Abstract: Emphasis using phototheranostics has been placed on the construction of multifunctional
nanoplatforms for simultaneous tumor diagnosis and therapy. Herein, we put forth a novel nanosized
luminescent material using the incorporation of red emissive carbon dots on gold nanorods through
polyethylene glycol as a covalent linkage for dual-modal imaging and photothermal therapy.
The novel nanohybrids, not only retain the optical properties of the gold nanorod and carbon
dots, but also possess superior imaging performance in both confocal laser scanning microscopy
and fluorescence lifetime imaging microscopy. The nanohybrids also exhibit excellent photothermal
performance as phototheranostic nanohybrid probes for in vitro assays. This study promises a new
multifunctional nanoplatform for cancer diagnostics and therapeutics.
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1. Introduction

Cancer theranostics, which combine bioimaging diagnostics and cancer therapy, have the potential
to help millions of people in typically fatal situations [1]. Over the last decade, this field has witnessed
the rapid development of nanotheranostic devices. These devices are constructed using both organic
and inorganic nanomaterials to integrate both therapeutics and bioimaging agents into one entity,
simultaneously realizing their functionalities [2,3].

In theranostic systems, a pivotal concern is the choice of imaging techniques to accurately disclose
the location of tumors for a specific diagnosis. Several methods, such as computed tomography (CT),
fluorescence (FL) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET),
photoacoustic (PA) imaging and upconversion luminescence (UCL) imaging have been applied [4–6].
However, each technique has its own inherent limitations. To address their shortcomings, tremendous
efforts have been made in the development of multimodal imaging, which can take advantage of
different techniques to properly meet clinic requirements [7–9].

For instance, despite the excellent sensitivity of FL imaging, its limited tissue penetration
depth [10,11] and the finite information derived from fluorescence intensity micrographs of cells
have compromised its diagnostic abilities. Meanwhile, fluorescence lifetime imaging microscopy
(FLIM) has been proven as a highly advanced spectroscopic method for biological and biomedical

Nanomaterials 2018, 8, 706; doi:10.3390/nano8090706 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0002-6830-1593
https://orcid.org/0000-0003-0963-7908
http://www.mdpi.com/2079-4991/8/9/706?type=check_update&version=1
http://dx.doi.org/10.3390/nano8090706
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 706 2 of 12

applications [12]. The excellent performance of FLIM can contribute to high contrast images that are
independent of excitation intensity and fluorophore concentration [13]. Moreover, it provides both
temporal and spatial information of intracellular structures labeled fluorescently by detecting changes
in the fluorescence lifetime (FLT) [14]. Thus, the integration of FLIM with FL imaging could be more
favorable for accurate cancer diagnosis. Therefore, there is a need to find more appropriate fluorescent
probes for FLIM and FL imaging.

Fluorescent probes, such as organic fluorescent dyes and quantum dots (QDs), have been widely
explored in biomedical fields for imaging [15–18]. However, the biocompatibility, photo-bleaching and
photo scintillation of some probes hinder these applications [19,20]. In contrast, carbon dots (CDs) are
ideal candidates for biological applications due to their biocompatibility, chemical inertness, as well as
strong fluorescence performance, photochemical stability, and easy functionalization [21–26]. In the
current era, a range of research aims to investigate the potential of CDs as biocompatible nanoprobes
for targeting cancer cells in vitro. For example, CDs doped with heteroatoms (such as N, P, and S)
were widely studied for fluorescence imaging in cells [27–29]. However, CDs are rarely regarded as a
therapeutic agent [30]. Moreover, a variety of photothermal agents (e.g., layered double hydroxides,
gold nanorods, chlorin e6) were combined with CDs and the prepared hybrid system was successfully
used as a theranostic agent [31–33]. Therefore, photothermal agents can be integrated with CDs to
achieve multifunctional cancer theranostics.

In photothermal therapy (PTT), near-infrared (NIR) light is applied for the generation of localized
heat energy from specifically-designed nanomaterials, which can cause hyperthermia and hence the
apoptosis or necrosis of cancer cells [30,34–36]. The unique surface plasmon resonance (SPR) of noble
metal nanoparticles, especially gold nanoparticles, promote their ability to quickly and effectively
convert absorbed photon energy into heat in the picosecond time domain [37]. In this catalog, gold
nanorods (GNRs) have been extensively studied due to their facile synthesis and surface modification,
biocompatibility, superior tunable optical properties and photostability, good cellular affinity and
long blood circulation [38]. One unique advantage of GNRs is their longitudinal SPR peak can be
adjusted to the NIR region by modulating the aspect ratio (length/width). NIR is known to have
optimal light penetration in biological tissues due to its minimal absorption by chromophores and
water [39]. Furthermore, the high scattering cross sections of GNRs render them good contrast agents
for dark field microscopy imaging.

Early diagnosis and definitive therapy can be integrated into an unprecedented nanoplatform
to break the limitations of individual functionality. To date, GNRs were integrated with fluorescent
dyes [14] or quantum dots (QDs) [40], either by electrostatic interaction [32] or covalent linkages [41],
for their utility as an imaging contrast agent. However, there is still a need for new agents with a stable
structure, excellent biocompatibility, and high therapeutic efficiency to meet the demands for clinical
applications. Polyethylene glycol (PEG) is a biocompatible polymer that has been used for an extremely
wide range of products, ranging from skin care products to tablet formulations, laxatives, and food
additives [42]. Thus, PEG is the most suitable material for latent clinical applications. In addition,
these biocompatible PEG chains can be easily functionalized as a covalent linker, which can improve the
chemical stability of the hybrids in physiological environments, as well as prevent absolute quenching
of CD fluorescence when bound to GNRs.

In this paper, we report the construction of a covalently-linked nanohybrid as a novel
nanoplatform for dual-modal imaging and phototherapy made up of GNRs and CDs bridged with
PEG (GNR–PEG–CDs), and these luminescent nanohybrid materials express excellent fluorescence
features for FLIM and confocal FL imaging, leading to good spatial resolutions and a strong response
to PTT. In addition, they have a low toxicity and good biocompatibility. This study exhibits a new
multifunctional nanoplatform, i.e., GNR–PEG–CDs, for cancer diagnostics and therapeutics.



Nanomaterials 2018, 8, 706 3 of 12

2. Materials and Methods

2.1. Materials

HAuCl4·3H2O and sodium borohydride (NaBH4), were purchased from J&K Chemical. Co.
(Beijing, China). Cetyltrimethyl Ammonium Bromide (CTAB), L-ascorbic acid, HCl, silver nitrate
(AgNO3) and p-phenylenediamine were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China). Thiolated and methoxyl terminated polyethylene glycol (mPEG-SH, molecular
weight 1000 Da), Thiolated and carboxyl terminated polyethylene glycol (SH-PEG-COOH, molecular
weight 1000 Da), were purchased from Peng Shuo Biological Technology Co., Ltd. (Shanghai, China).
1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide
(NHS), were purchased from Aladdin (Shanghai, China). All reagents were of analytical grade and
used without further purification. High glucose Dulbecco’s modified Eagle’s medium (DMEM) was
purchased from Gibco (Invitrogen, Carlsbad, CA, USA). Cell Counting Kit-8 (CCK-8) was obtained
by Dojindo China Co., Ltd. (Shanghai, China). HeLa cells were obtained from the Institute of Basic
Medical Sciences Chinese Academy of Medical Sciences (Beijing, China).

2.2. Preparation of Gold Nanorods

The seed-mediated growth method was utilized to prepare GNRs according to Nikoobakht’s
method, with some modifications [43]. In this seed solution, ice-cold aqueous NaBH4 solution (0.01 M,
0.6 mL) was added to an aqueous mixture solution, which was composed of HAuCl4 (0.01 M, 0.25 mL)
and CTAB (0.1 M, 9.75 mL), followed by rapid mixing for 2 min. Then, the seed solution was kept at
27 ◦C for 2 h for use in growth solution. The growth solution was composed of CTAB (0.1 M, 200 mL),
HAuCl4 (0.01 M, 10 mL), AgNO3 (0.01 M, 2.6 mL), HCl (1 M, 5 mL) and L-ascorbic acid (0.1 M, 2.4 mL).
Next, 240 µL seed solution was injected into the growth solution, and was allowed to incubate at
30 ◦C for a period of 24 h. The resultant GNRs solution was then centrifuged and redispersed in
water several times to remove the unbound excess surfactant. Finally, the GNRs were obtained and
resuspended in water for further use.

2.3. Preparation of GNR–PEG

The protocol was adapted and modified from previous reports [14]. In short, 90% thiolated
mPEG (mPEG–SH) and 10% thiolated PEG–COOH (SH–PEG–COOH) were added to a solution of
GNR and allowed to incubate for 2 h at room temperature before removing excess thiolated PEG by
centrifugation to afford GNR-PEG. Three different molecular weights of PEG (400, 600, 1000) were
implemented in this process.

2.4. Preparation of GNR–PEG–CDs Nanohybrids

The CDs were prepared using a modified protocol by Jiang et al. [44] in which 0.5 g
p-phenylenediamine was dissolved in 20 mL of water at 180 ◦C for 12 h in a polytetrafluoroethylene-
lined stainless autoclave and then purified using silica gel column chromatography after cooling to
room temperature. The resultant CDs were dispersed in water and stored at 4 ◦C for the further use.
Subsequently, 100 µL of 10 mM EDC and NHS were added to 10 mL of the GNR–PEG solution and mixed
for 15 mins; then, 1 mL of CD solution was added. The solution was left to stir for 12 h at room temperature.
In addition, the aqueous solution was dialyzed against 2000 mL of water for 48 h with 6 changes.

2.5. Measurement of Photothermal Performance

A MDL-III-808 nm model laser was used in the photothermal experiment, in which the light source
was a NIR laser of 808 nm. The specific experimental steps and parameters were as follows: 1.5 mL of
each of phosphate-buffered saline (PBS), an aqueous solution of CDs, GNR–PEG and GNR–PEG–CDs
were introduced in a quartz cuvette and this was followed by irradiation treatments with the 808 nm
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laser, in sequence. The laser power output at the light source was 1.5 W cm−2. The temperature of the
liquid in the quartz cuvette was recorded with a digital thermometer equipped with a thermocouple
probe under irradiation. In addition, to prove the thermal and mechanical stability of the hybrid,
we provide the electron microscopic images of the hybrid after irradiation and ultrasound for 10 min.
An ultrasonic machine (KQ5200DE) (Kunshan Ultrasonic Instruments Co., Ltd., Kunshan, China) was
used to perform the ultrasound.

2.6. Cytotoxicity

HeLa cells were cultured in Dulbecco’s modified Eagle medium (DMEM) with 1% penicillin-
streptomycin and 10% fetal bovine serum (FBS). The cells (1 × 104 cells per well) were seeded into
a 96-well plate for 24 h at a humidified atmosphere maintaining 5% CO2 at 37 ◦C. Then, various
concentrations of sample the solutions were added to replace the culture media and subsequently
incubated at 37 ◦C. After further incubation for 24 h, the medium was replaced with 10% CCK-8
reagent solution and incubated for 2 h at 37 ◦C. The cell viability was calculated as the ratio of the
absorbance of the wells. The absorbance at 450 nm was measured by a microplate reader (Multiskan
FC, Thermo Scientific, Waltham, MA, USA).

2.7. Confocal Fluorescence Imaging Measurements

Confocal fluorescence imaging measurements were performed on HeLa cells with Hoechst
staining. Hoechst is a nuclear dye of which optimal excitation wavelength is 350 nm, and the emitted
wavelength is 460 nm. Briefly, HeLa cells (1 × 105 cells per well) were seeded onto a plate for 24 h at
37 ◦C, followed by incubation with pristine CDs and GNR–PEG–CDs for another 24 h. Subsequently,
the cells were washed with PBS three times and stained with Hoechst. Subsequently, CDs and
GNR–PEG–CDs were cultured with HeLa cells to perform confocal imaging measurements. A dual-
channel imaging mode was used in this test. Channel I used a 405-nm wavelength laser as the
excitation light to excite Hoechst, and the location information of the nuclei stained by Hoechst was
collected. Channel II was stimulated by a laser of 485 nm wavelength to get information of CDs
and GNR–PEG–CDs.

2.8. FLIM Measurements

The GNR–PEG–CDs sample was measured in terms of HeLa cells to observe the changes in
fluorescence lifetime and imaging effect. In this test, the dual-channel imaging mode was used, that is,
Channel I used the 405-nm wavelength laser as the excitation light, and an emission light of 482 nm
(±35 nm) was collected; Channel II was stimulated by a laser with a 485-nm wavelength and an
emission light of 550 nm (±49 nm) was collected.

2.9. Sample Characterization

Transmission electron microscopy (TEM) images and high-resolution (HR) TEM were obtained
using a HT7700 biological transmission electron microscope (Hitachi, Tokyo, Japan) with an
accelerating voltage of 100 kV, and a JEM-2100F high-resolution transmission electron microscope
(JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV. Fourier transform infrared (FT-IR) spectra
were obtained by an Excalibur HE 3100 (Varian, Palo Alto, CA, USA) in the range from 4000 to 400 cm−1.
The ultraviolet (UV–vis) absorption spectra were obtained from a U-3000 (Hitachi, Tokyo, Japan).
A Cary Eclipse spectrophotometer (Varian, Palo Alto, CA, USA) was used to record the fluorescence
spectra and relative quantum yield (QY) values. Rhodamine B (RhB) was used as reference to measure
the QY values of CDs and the hybrids. More details about the method can be found in Reference [44]
and the Supplementary Materials (SM). Confocal fluorescence imaging and fluorescence lifetime
imaging were performed using confocal laser scanning microscopy (CLSM, Nikon, Tokyo, Japan) and
a Nikon two-photon fluorescence lifetime imaging microscope (ARsiMP-LSM-Kit-Legend Elite-USX,
Picoquant, Berlin, Germany).
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3. Results and Discussion

3.1. Synthesis of GNR–PEG-CDs

Scheme 1 demonstrates the preparation protocol of GNR–PEG–CDs. Figure 1 shows TEM images
of GNRs, CDs and GNR–PEG–CDs. GNRs, with an average aspect ratio (length/diameter) of ~3.5,
were synthesized (Figure 1a) via the seed-growth method. To prevent an absolute quenching effect of
fluorescence of the CDs, aggregation of GNRs [45], and, most importantly, to achieve covalent linkage
between GNRs and CDs; PEG-SH was grafted onto the surface of GNRs to form highly-monodispersed
GNR-PEG. To verify the synthetic results and choose a proper length of chain for PEG, three different
molecular weights of PEG (400, 600, and 1000) were tested and evaluated using Zeta potential and
UV-vis spectra. The results of the Zeta potential are shown in Figure S1. The potential of GNRs
was 45.8 mV. In contrast, the potentials of GNR–PEG400, GNR–PEG600 and GNR–PEG1000 were 44.0,
19.5 and 14.3 mV, respectively. We found that GNR–PEG had a lower Zeta potential than GNR,
especially GNR–PEG600 and GNR–PEG1000. The differences in Zeta potentials are attributed to cationic
CTAB being replaced by PEG on the GNR surface. Subsequently, absorption peaks in the UV-vis
spectrum were measured. As shown in Figure S2, the SPR peak of the GNRs is centered at 776 nm,
which is in the NIR region. While the peaks at 789, 798 and 804 nm were attributed to GNR–PEG400,
GNR–PEG600 and GNR–PEG1000, respectively, revealing that the SPR of GNR red-shifts after PEG was
grafted onto GNRs. Movements in the position of maximum absorption became much more obvious
with an increase in PEG molecular weight, which can be attributed to an increase in the local refractive
index of the medium surrounding the GNRs [46]. The above results indicate that PEG was successfully
grafted on the surface of GNRs. Hence, GNR–PEG1000 was detailed in the following study.
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TEM image of CDs.

CDs were prepared through a hydrothermal method with p-phenylenediamine as a carbon source,
and separated by silica gel column chromatography. The TEM images presented in Figure 1b reveal
that the sample was well dispersed in water, with an average particle size of approximately 2.1 nm
(Figure S3). The HRTEM images further show that CDs exhibit identical lattice fringes with a spacing
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of 0.21 nm, corresponding to (100) in-plane of graphene. Figure 2b reveals that CDs have an intense
UV-vis absorption peak at 514 nm and exhibit a strong red fluorescence emission at 625 nm when
excited at 480 nm. By taking RhB as a reference, photoluminescence (PL) QYs of the CDs were estimated
to be 16%.
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Finally, the GNR–PEG–CDs conjugate was prepared by coupling PEG and CDs with amide
bond (Scheme 1 and Figure 1). During the synthesis of GNR–PEG, SH–PEG–COOH was mixed with
mPEG-SH in a 1:9 molar ratio and thereby CDs were able to be conjugated on a polymer layer of
GNR–PEGs. As depicted in Figure 1c, CDs are surrounding the GNRs at a distance between 6 to 20 nm
according to the molecular weight of the spacer. To further verify the hybridization of GNR-PEG-CDs,
FT-IR spectroscopy was performed, and the results are presented in Figure 2a. FT-IR showed that the
O–H vibration was from 2739 cm−1 to 3600 cm−1 and the C=O stretching vibration of intramolecular
hydrogen bonding was at 1633 cm−1 from the carboxyl group of GNR–PEG. This shows that the
bending vibrations of the N–H bond in the primary amine group of CDs are at 881cm−1 and 1626 cm−1.
Furthermore, the peak at 1118 cm−1 belongs to the C–N stretching vibration from the fatty amine of
CDs. Noticeably, it revealed that the stretching vibration of the C–H bond is at 1633 cm−1, the bending
vibration of the N–H bond is at 1550 cm−1 and the swing vibration of the N–H bond is at 772 cm−1 for
GNR–PEG–CDs. The results infer the interaction, i.e., secondary amide bonding between the amine
functionalized CDs and carboxylic acid terminated PEG. These data confirm that functionalization
of CDs onto the surface of GNR was successful. One key point in designing new multifunctional
comparative materials is to maintain the unique properties of each component. Therefore, the optical
properties were investigated. UV-vis absorption spectra (Figure S4) showed that the nanohybrids
retained the plasmon resonance absorption feature of GNRs, showing two absorption peaks at 859
and 519 nm. Notably, the long absorption wavelength had a large bathochromic shift of about 83 nm
when compared to GNRs. Additionally, GNR-PEG-CDs exhibited a luminescent emission peak at
580 nm when being excited at 480 nm, as shown in Figure 2c. By taking RhB as a reference, PL QYs
of the GNR–PEG–CDs were only 1%. The reason for the decrease of PL QYs may be the quenching
effect, considering the following points: First, CDs as an energy donor can transfer energy to an
acceptor (GNR), constructing a luminescence resonance energy transfer (LRET) system [47]. Second,
the stronger optical absorption of GNR than that of CDs can enhance the quenching effect of integrated
hybrid materials. In addition, a larger surface area and higher surface energy of GNR can provide
more quenching site and thus improve the quenching efficiency [45]. Meanwhile, the distance is close
enough to cause emission quenching from LRET. This effect can be explained by changes in the phase
of the reflected field with distance and the effects of the reflected near-field on the fluorophore [48].

3.2. Temperature Evaluation in Solutions

The photothermal properties of GNR–PEG–CDs were evaluated by measuring the temperature
change of GNR–PEG–CDs aqueous dispersion under an irradiation of a 808-nm laser at a power of
1.5 W cm−2. Then, 1.5 mL of GNR-PEG-CDs dispersion with various concentrations from 0 to 100
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µg mL−1 of the whole nanoprobe were injected into the quartz cuvette. After consistent exposure for
10 min, the real-time temperature was recorded with a digital thermometer equipped with a
thermocouple probe at a detection sensitivity of 0.1 ◦C. As shown in Figure 3a, while NIR irradiation
only led to a slight change of temperature in PBS buffer solution, i.e., 25.0 to 29.7 ◦C, the photothermal
effect was observed in GNR–PEG–CD dispersion from the significant increase of temperature.
The values ranged from 41.0, 49.1, 59.9 and 67.5 ◦C in accordance with GNR–PEG–CD concentrations
of 10, 20, 50 and 100 µg mL−1, respectively. It appeared that both a continual irradiation and
sufficient concentration were efficient for killing cells. A sufficient concentration is optimal for the
best therapeutic effects. Several control experiments were done to clarify prior the performance of
GNR–PEG–CDs. For example, the time-dependent increase in the temperature of GNR–PEG–CDs
(100 µg mL−1), GNR-PEG (95 µg mL−1), CDs (5 µg mL−1) and PBS are shown in Figure 3b. The results
show that SPR in the NIR region of GNR–PEG–CDs led to an incremental increase in temperature
to a maximum when compared to either GNR-PEG or CDs alone, indicating the GNR-PEG and
CDs can synergistically contribute to the light heat conversion efficiency of the GNR–PEG–CDs
solution. Figure 3c presents the photothermal effect of GNR–PEG–CDs illuminated with an 808-nm
laser (1.5 W cm −2) for 10 min after shutting off the laser. In addition, the photothermal conversion
efficiency of the GNR-PEG-CDs solution was calculated according to Roper’s method, through fitting
the cool-down curve of the dispersion (Figure 3d), and was determined to be 33.5% (the details of
the calculations are shown in the Supplemental Materials). As such, a noticeably higher efficiency
was derived from the nanohybrids of GNR with CDs. Furthermore, the plasmonic absorption peak
of the structure is located in the NIR region, and thus, facilitates the heat conversion. The above
results indicate that the combination of the gold nanorods and carbon dots evidently amplifies the
photothermal efficiency. In addition, TEM images of the hybrid (100 µg mL−1) after irradiation and
ultrasound for 10 min are shown in Figure S5. The results demonstrate that the structure of the hybrid
was stable under the laser irradiation and after the ultrasound, indicating the thermal and mechanical
stability of the hybrid.
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Figure 3. (a) The concentration-dependent temperature elevation; (b) a time-dependent increase in the
temperature; (c) photothermal effect of GNR-PEG-CDs; (d) the time constant for heat transfer from
the solution is determined by applying the linear time data from the cooling stage in (c) versus the
negative natural logarithm of the driving force temperature. Samples were carried out under 808 nm
(1.5 W cm−2) irradiation.
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3.3. In Vitro Dual-Modal Imaging and PTT

3.3.1. Confocal Laser Scanning Imaging

The remarkable optical properties of GNR–PEG–CDs make it a suitable agent for cancer imaging.
First of all, we examined the incubation of the probes with HeLa cells. CLSM images exhibit that the
GNR–PEG–CDs nanorods could be efficiently taken up into the cells and distributed mainly in the
cytoplasm region (Figure 4d–f). Comparably, free CDs are distributed in both the cytoplasm and the
nucleus regions (Figure 4a–c).
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3.3.2. Fluorescence Lifetime Imaging

The FLIM measurement was performed in the HeLa cells, a double-component lifetime model
was required (Figure 5a,b). Moreover, in the case of the CDs (both with and without GNRs), the FLIM
images displayed a significant change in FLT. Visually, the two FLTs of CDs were τ1 = 1.8 ns and τ2

= 5.9 ns, while those of GNR–PEG–CDs were τ1 = 1.6 ns and τ2 = 4.3 ns. We observed a substantial
decrease in the FLT of GNR–PEG–CDs in cells, which is due to the proximity between the GNRs and
the CDs. These results reflect both the quenching effects of GNRs on the FLT of the CDs, as well as the
microenvironments of the HeLa cells. In addition, FLIM imaging of the CDs allows for the localization
of hybrids within cancer cells.
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3.3.3. In Vitro Biocompatibility and PTT

The biocompatibility and PTT potential of GNR–PEG–CDs were investigated in HeLa cells.
As shown in Figure 6a, without laser irradiation, cell viability remained at almost 100% with
GNR–PEG–CDs at a concentration of 400 µg mL−1, which represents good biocompatibility of the
nanomaterial. It was found that irradiation of HeLa cells at 808 nm caused serious cell death in the
case of GNR–PEG–CDs (Figure 6b). The cell viability decreased by about 20% with GNR–PEG–CDs
concentration of 10 µg mL−1. When the concentration of GNR–PEG–CDs was raised to 50 µg mL−1,
survival of the cell dropped to only about 30%. Further increasing of the concentration did not result
in decrease in viability. To visualize the anticancer effect of the GNR–PEG–CDs material, the dead
and live HeLa cells were stained with propidium iodide (PI) and Calcein-AM, respectively. As shown
in Figure 6c, there was no cell death in the control group (PBS) and GNR–PEG–CDs without laser
irradiation group because almost all cells display green fluorescence, an indication of biocompatibility
of GNR–PEG–CDs. However, upon laser irradiation, all of the cells were killed in the GNR–PEG–CDs
sample, as indicated by the intense homogeneous red fluorescence. These results agree with the cell
viability data and prove the excellent abilities of this hybrid nanomaterials for PTT.
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Figure 6. (a) In vitro viability results of HeLa cells treated using GNR-PEG-CDs without lasers
irradiation (from 0 to 400 µg mL−1); (b) in vitro viability results of HeLa cells treated with
GNR-PEG-CDs (from 0 to 100 µg mL−1); (c) CLSM images of GNR-PEG-CDs (100 µg mL−1) before and
after NIR irradiation with Calcein-acetoxymethylester and propidium iodide (PI) co-staining. Scale
bars: 100 µm.

4. Conclusions

In summary, we accomplished the preparation of a novel GNR–PEG–CDs multifunctional
nanoplatform through a convenient and facile method. The compact structure presented in this paper
is more stable owing to a strong covalent bond between the CDs and the GNRs. As a luminescent
nanomaterial, it exhibited ideal characteristics for dual-modal bioimaging and photothermal
performance in vitro. Upon irradiation with NIR light, GNR–PEG–CDs could efficiently inhibit
the growth of HeLa cells, and the distribution of the nanomaterial can be imaged via fluorescence
microscopy, as well as a fluorescence lifetime imaging technique. It is worth mentioning that this
nanohybrid is highly biocompatible at higher concentrations, and it can produce visible effects even
at lower concentrations. Therefore, the hybrid GNR–PEG–CDs demonstrated intriguing potential
for biomedical applications. In the future, we are committed to preparing CDs with high QYs
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and optimizing the distance of GNR and CDs to enhance the emission. Meanwhile, this new
biocompatible nanohybrid can be exploited in both multimodal imaging and synergistic therapeutics
in vivo, which may provide new opportunities for cancer diagnostics and therapeutics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/9/706/s1,
Figure S1: (A) The test curve of Zeta potential: (a) GNR, (b) GNR–PEG400, (c) GNR–PEG600, (d) GNR–PEG1000.
(B) The fit curve of Zeta potential of (a), (b), (c), (d); Figure S2: UV-vis spectra of GNR and GNR–PEG (molecular
weights of PEG are 400, 600 and 1000, respectively); Figure S3: Histograms and Gaussian fittings of particle size
distribution of the CDs; Figure S4: UV-vis spectra of GNR, GNR-PEG1000 and GNR-PEG-CDs; Figure S5: TEM of
the hybrid (100 µg mL−1) after irradiation (a) and ultrasonic (b) for 10 min.
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