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Ultrafast strong-field photoelectron 
emission from biased metal 
surfaces: exact solution to time-
dependent Schrödinger Equation
Peng Zhang & Y. Y. Lau

Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent 
electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the 
highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency 
laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary 
combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi 
level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field 
emission, are all included in this single formulation. The transition between different emission processes 
is analyzed in detail. The time-dependent emission current reveals that intense current modulation may 
be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide 
insights into the electron pulse generation and manipulation for many novel applications based on 
ultrafast laser-induced electron emission.

Ultrafast, laser-driven electron emission from metal nanostructures is of substantial current interest. The ultra-
short coherent electron bunches produced1–6 are crucial to many areas, including free electron lasers (FELs)7, 
laser acceleration of relativistic electrons8, picosecond cathodoluminescence9, and femtosecond electron diffrac-
tion10,11. They would enable exciting technological developments such as four-dimensional (4D) time-resolved 
electron microscopy12, spectroscopy, and holography3,13–15, single-electron sources16, and carrier envelope phase 
detection17–19. The underlying emission mechanisms have been extensively studied, both theoretically20–25 and 
experimentally1–4,14,17. Bormann et al.4 experimentally demonstrated the transition from multiphoton absorption 
in relatively weak laser fields to optical field emission in strong laser fields. Yanagisawa et al.13,14 studied the elec-
tron energy distribution for laser induced electron emissions. The effects of local nonuniform fields26, dc bias1,2, 
and short pulse illumination27 have been individually studied. Perturbative theory4,20,28 was developed to model 
ultrafast electron emission, usually done with the strong field approximation. Floquet models were developed20,29, 
but only for electron emission from metals excited by a laser wave field. Numerical simulations20,23–25 are very 
powerful tools, but the physics for the interplay between various complicated electron emission processes is not 
always transparent.

Here, we present an analytical model to study electron emission from a metal surface, under the influence 
of both a dc electric field and laser field illumination. Our exact solution is applicable to electron emission for 
arbitrary values of laser field, laser frequency, dc electric field, and metal properties (i.e. work function and Fermi 
level). The different electron emission processes, such as multiphoton absorption, multiphoton emission, dc 
or optical field emission, single-photon induced over-barrier emission, and various combinations of them, are 
included in this single formulation. Detailed analyses on the effects of dc and laser field strength, laser frequency, 
barrier height, as well as time-dependent emission behaviors are presented. We found that applying a strong dc 
electric field for laser illuminated metal surface would open up more possible emission processes and introduce 
intense modulation to the time-dependent emitted current. Thus, this work provides insights not only to the 
susceptibility of electron emission mechanisms under the combination of ultrafast laser illumination and dc bias, 
but also to coherent quantum state manipulation of free electron populations30. As a check, our model recovers 
the known limiting cases of zero dc electric field20 and static field emission for zero laser field31,32.
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Results
Analytical solution to time-dependent Schrödinger equation. Consider electron emission from a 
metal-vacuum interface at x =  0 driven by a combination of a dc electric field F0 and a laser field F1cos(ωt) with 
a single carrier frequency ω, as shown in Fig. 1a. All electric fields are assumed to be perpendicular to the metal 
surface. The electrons in the metal would see a time varying potential barrier across the metal-vacuum interface,
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where = +V E WF0 , EF and W are the Fermi energy and the work function of the metal respectively, and e is the 
electron charge. In eq. (1), the metal is approximated by jellium model, while the external fields are assumed cut 
off abruptly at the surface. The “sudden screening” of external fields may be justified, because the field penetration 
depth (i.e. skin depth) δm = (2/ωμ0σ)1/2 of metal is typically much smaller than the laser wavelength (e. g. for gold, 
the conductivity σ =  4.1 ×  107 S/m, for 800 nm laser, δm =  4.06 nm). To calculate the emission probability, we solve 
the time-dependent Schrödinger equation,
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where ψ(x,t) is the complex electron wave function, m is the electron mass, and the potential Φ (x,t) is given in eq. (1).  
Following the coordinates transformation given by Truscott33,34, it is found that eq. (2) has an exact solution for 
x ≥  0 (see Methods),
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where ε is the initial energy of an incident electron, Tn is a constant representing the transmission amplitude, and 
Gn(x, t) is given by,

η η( , ) = (− ) − (− ), ( )G x t Ai iBi 4n n n
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1
2 2. It can be easily verified that eq. (3) is a solution of eq. (2) by direct substitution. Equation 

(4) represents an outgoing wave traveling to the right, with Ai and Bi being the Airy function of the first kind and 
second kind, respectively. It is clear that both Gn(t) and the second exponential term in eq. (3) are time-periodic 
functions with period of 2π/ω, thus, eq. (3) represents the superposition of electron plane waves with energies of 
ladder states with spacing of the photon energy ω  coupled to the initial energy at ε, as shown in Fig. 1b. The 
transfer of incident electrons at ε to sub-bands of ε ω+ n  is made possible by processes such as multiphoton 

Figure 1. Energy diagram for strong field photoelectron emission. (a) The metal-vacuum interface under 
both laser illumination and dc bias. The metal has Fermi level EF and work function W. The applied dc electric 
field is F0, the laser electric field is F1cosωt. The initial electron energy is at ε. (b) The resulted ladder states for 
electrons with spacing of the photon energy ω  coupled to the initial electron energy at ε. The incident electron 
wave is ψi, the transmitted and reflected electron waves are ψt and ψr respectively, both are superposition of 
plane waves with energies at the ladder states.
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absorption (n >  0) or multiphoton emission (n <  0). Note that these ladder eigenstates are similar to Volkov states 
for a time-periodic potential4,20,35, whose eigenenergy ε ω+ n  consists of a drift kinetic energy En and a ponder-
omotive energy Up due to electron quiver motion, both of which are defined in the sentence following eq. (4).

For x <  0, the solution to eq. (2) may be written as,
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which is the superposition of an incident plane wave and a set of reflected waves with reflection amplitude Rn, 
where ε= /k m20

2 , and  ε ω= ( + )/k m n2n
2 . The reflected waves consist of an elastic reflected wave 

(n =  0) and waves with ladder eigenenergies representing multiple photon energy (n ≠ 0), as shown in Fig. 1b. 
Although the general solution in eq. (5) includes the reflected waves with n <  0, whose energies are below the 
initial electron energy ε (typically assumed to be the Fermi energy), it is verified that almost all the reflected cur-
rent is through the initial energy level, i.e. n =  0. When ε ω≤ − /n , kn becomes imaginary and the correspond-
ing reflected wave becomes evanescent, resulting in zero reflected current through the channels with ε ω≤ − /n  . 
Note that in eq. (5) a plane wave is assumed for the incident electron, which turns out to be a good approximation 
to the bound-state electron wavefunction inside the metal solid, since its dimension in the longitudinal direction 
(perpendicular to the surface) is typically much larger than the electron wavelength. In fact, the laser field inter-
acts only with the evanescent part of the electron states near the metal surface, which is found to be very similar 
to the bound-state wave function in the atomic case29.

The solutions in eqs (3) and (5) are matched at the metal-vacuum interface from the conditions that both ψ 
and dψ/dx are continuous at x =  0. By taking Fourier transform, we obtain, in nondimensional quantities, 
ε ε= /W , = /E E WF F , = /U U Wp p , λ = / mW20

2  (for typical work functions of metals 2 <  W <  6 eV, λ0 is 
of the order of 1 Angstrom), λ= /x x 0, λ= /F F e W0 0 0 , λ= /F F e W1 1 0 , ω ω= /W , = /t tW ,
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ε ω= + − − −E n E U1n F p, α α α( ) = ( ) − ( )r Ai iBin n n , α α α( ) = ( ) + ( )′ ′s iAi Bin n n , and a prime denotes 
derivative with respect to the argument. In eq. (7b), pn and zn represent the phase factor of the wavefunction in the 
nth state and of its spatial derivative at =x 0, respectively. In eq. (7a), Pnl and Znl are the lth Fourier coefficients of 
pn and zn in eq. (7b), respectively. The summation rule in eq. (6) physically means the conservation of probability 
at the metal-vacuum interface, =x 0. It is derived from the conditions that both the wave function and its first 
derivative be continuous there. The transmission amplitudes Tn is calculated from eq. (6). The normalized emis-
sion current density is defined as w(ε, x, t) ≡  Jt(ε, x, t)/Ji(ε), which is the ratio of the transmitted current density 
over  the  incident  current  density,  ca lculated by using the  probabi l ity  current  density 
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where wn  describes the emission current density through the nth channel, with emitted electrons of energy 
ε ω+ n , due to the n-photon contribution. Once the dc electric field F0, laser field F1, laser frequency ω, and 
metal properties (EF and W) are specified, the time-dependent and time-averaged emission current density may 
be calculated from eqs (8) and (9) respectively, with Tn given by eq. (6), for any given initial electron energy ε. For 
simplicity, we take the energy of the initial electrons to be ε =  EF, which is justified by the well-known fact that the 
probability of electron tunneling drops rapidly when electron energy decreases, with most of the electrons being 
emitted from sources near the Fermi level20,23,31,32,36. Numerical calculations have verified that the emission cur-
rent drops exponentially as the initial electron energy decreases below the Fermi level.

Main results and discussion. Figure 2 shows the time-averaged normalized emission current density wn  
through the nth channel, under various combination of dc electric field F0 and laser field F1, calculated from eq. (9). 
The laser wavelength was chosen to be 800 nm, or a photon energy of ω =  1.55 eV. The metal is assumed to be 
gold, with Fermi energy EF =  5.53 eV and the work function W =  5.1 eV. Unless stated otherwise, these would be 
the default values for the calculations in this paper. It is clear that the total emission current density w  increases 
when either F0 or F1 increases. When both F0 and F1 are small (Fig. 2a), the dominant emission process is the 
three-photon absorption, which is consistent with the ratio of the work function to the photon energy 
ω/W   =  3.29, where the electrons at the Fermi level need to absorb at least three photons to substantially reduce 

the effective potential barrier W (Fig. 1a). As F1 increases, higher order channels become important (Fig. 2b,c). In 
Fig. 2c, all the emission processes with 3 ≤  n <  10 contribute significantly to the emitted current. The energy 
distribution of emission current (i.e. the envelope in Fig. 2a–c), exhibiting a transition from narrow-peaked spec-
trum to a broad plateau-like spectrum, shows striking resemblance to the experimentally measured kinetic 
energy spectra17, for the transition from multiphoton regime to the strong field regime (c.f. the measured spectra 
in the insets of Fig. 2a in ref. 17). In Fig. 2c, the emission process with highest probability shifts to four-photon 
absorption, this is consistent with the well-known feature of channel closing when considering the laser field only 
(i.e. F0 =  0)28,29. The minimum value of n increases if the given laser field F1 increases, as determined by the drift 
kinetic energy of the electrons ε ω= + − − −E n E U1n F p, which has to be nonnegative. However, complete 

Figure 2. Time-averaged normalized emission current density wn  through the nth channel, under various 
combination of dc electric field F0 and laser field F1, calculated from eq. (9). The laser wavelength is 800 nm 
(corresponding to ω =  1.55 eV). The metal is assumed to be gold, with EF =  5.53 eV and W =  5.1 eV. The dashed 
lines represent the envelopes of wn . For the laser electric field F1 =  1, 5, and 10 V/nm, the corresponding laser 
intensity I [W/cm2] =  ε0cF1

2/2 =  1.33 ×  1011 ×  (F1[V/nm])2 is 1.33 ×  1011, 3.33 ×  1012, and 1.33 ×  1013 W/cm2, 
respectively.
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channel closing is not observed, especially for cases with larger dc electric field F0 (Fig. 2d–i), where substantially 
more channels are opened for electron emission. The number of possible emission channels increases with both 
F0 and F1. Besides multiphoton absorption (n >  0), electrons may also emit through processes such as optical 
direct tunneling (n =  0) and multiphoton emission (n <  0). As the dc field increases, the effective potential barrier 
becomes narrower (Fig. 1a), which would not only increase the probability for electron emission through existing 
channels, but also facilitate electron emission through more channels. For a given F0, increasing F1 tends to shift 
the dominant emission process to channels with larger n, which is consistent with the trend shown in the experi-
ment by Schenk et al.37. In particular, Schenk et al.37 observed the electron emission yield at the S = 1 peak exceeds 
that of S = 0 peak at a laser intensity of ~2 ×  1011 W/cm2 for the illumination of a sharp tungsten tip, where 
S = n −  ω/W  is the above-threshold order. Similar peak shift is noted in Fig. 2b–c, and in Fig. 2d–e. For a given 
F1, increasing F0 tends to bring the dominant emission process closer to optical tunneling n =  0.

Figure 3a shows the time-averaged normalized total emission current density w  as a function of laser electric 
field F1 (and laser intensity I) for various dc electric fields F0. When F1 <  2 V/nm (I <  5.32 ×  1011 W/cm2), the 
emission current density is well scaled as ∝w Fn

n
1
2 , indicating the dominant n-photon process. The value of n 

decreases as the dc electric fields F0 increases, which is consistent with the results in Fig. 2.
For the special case of zero dc electric field F0 =  0, the solution in the previous section is simplified by replac-

ing eq. (4) with ξ( , ) = ( / )G x t i mEexp 2n n , so that Tn is still calculated from eq. (6), with eq. (7a) unchanged, 
but eq. (7b) replaced by ω ω( ) = ( ) ω ω( / ) ( )p t q t en

i F E t2 cosn1
2
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malized emission current density in eqs (8) and (9) is modified to read,
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Equation (11) is identical to eq. (46) of Yalunin et al.20. The emission current density for F0 =  0 calculated from eq. (11) 
is also shown in Fig. 3a, which serves as the lower limit for F0 →  0. When F0 =  0, four-photon absorption is the 

Figure 3. The time-averaged normalized total current density w  calculated from eq. (9). (a) w  as a 
function of laser electric field F1 (and laser intensity I), for various dc electric fields F0. The special case for F0 =  0 
is calculated from eq. (11). The dotted lines represent the scale ∝w F n

1
2 , with n =  1, 2, 2.5, 3 and 4 (top to 

bottom, corresponding to F_0 = 5, 3, 2, 1, 0 V/nm, respectively). The inset shows the contribution from 
individual nth channels for the specific case of F0 =  5 V/nm, with the dotted lines for ∝w Fn

n
1
2 . (b) w  as a 

function of dc electric fields F0 for various laser electric fields F1. The dashed line is for eq. (12), and the dotted 
line is for the FN equation. The inset shows the contribution from individual nth channels for the specific case 
of F1 =  3 V/nm. The laser intensity is related to the laser electric field as I [W/cm2] =  1.33 ×  1011 ×  (F1[V/nm])2.
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dominant emission process, as ∝w F n
1
2  with n =  4. The abrupt drop of w  around F1 =  11.6 V/nm is due to the 

channel closing effect20, which is accurately predicted by letting ε ω= + − − − =E E U4 1 0F p4 , giving 
F1 =  11.74 V/nm.

When F0 is non zero but small (1 V/nm), the sharp peak of w  near the channel closing region is smeared, 
however, there is still a clear transition from multiphoton absorption to optical tunneling emission, indicated by 
a slope change around F1 ~ 10 V/nm (I ~ 1.33 ×  1013 W/cm2). The corresponding Keldysh parameter, which is 
usually used to characterize this transition, is γ ω= / = /W U F2 p 1 ≈  1.8. For F1 <  10 V/nm, the emission cur-
rent is well scaled as ∝w F n

1
2  with n =  3, indicating the dominant three-photon absorption. For F1 >  10 V/nm, 

the scale ∝w F n
1
2  no longer applies, as the emission enters the optical field emission regime.

When F0 becomes large (≥ 2 V/nm), the slope of w  changes gradually as F1 increases, indicating that multiple 
processes of high photon numbers contribute, and that the dominant process changes as F1 increases, consistent 
with Fig. 2. The insets in Fig. 3a shows the contribution of different processes for the case F0 =  5 V/nm. The dom-
inant process changes from single-photon absorption (n =  1) when F1 <  2 V/nm (I <  5.32 ×  1011 W/cm2) to 
two-photon absorption (n =  2) when F1 >  2 V/nm (I >  5.32 ×  1011 W/cm2). The individual n-photon absorption 
follows closely the scaling ∝w F n

1
2  for n ≥  1, when F1 is small. The small dips along F1 are due to the channel 

closing effects20,28. The direct tunneling process (n =  0) is almost independent of F1. The single-photon emission 
process (n =  − 1) follows the same scaling as the single-photon absorption (n =  1), with ∝w F n

1
2 , but with a 

substantially smaller emission current density.
Figure 3b shows the total time-averaged emission current density w  as a function of dc electric fields F0 for 

various laser electric fields F1. When F0 is small (< 2 V/nm), w  is insensitive to F0 for small F1 (≤ 5 V/nm), 
because the dominant emission mechanism in this regime is multiphoton absorption, which presumably is inde-
pendent of the dc field F0. For larger F1 (≥ 7 V/nm), w  increases with F0, since optical field emission would be 
important and applying a larger F0 will further assist the tunneling by lowering the potential barrier. When F0 is 
large (> 3 V/nm), Fowler-Nordheim like field emission31 from the dc electric field becomes important, thus w  
increases with F0, for all the values of F1. As F0 further increases (> 8 V/nm), w  approaches that of field emission 
in static electric field (i.e. F1 =  0), which, when calculated from eq. (9), gives identical emission current density to 
that of the known exact solution31,32,
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2 3. This may serve as one validation of our analytical solution. Note that eq. (12) 
reduces to the Fowler-Nordheim (FN) equation, = /( + ) ( − / )w E E F4[ 1 ]exp 4 3FN F F 0 , in the limit of 
F 10 , which is also plotted in Fig. 3b. In the regime of large F0, a larger F1 increases <w> even further. Note that 

the trends of w  in Fig. 3b are very similar to those in the voltage- and laser power-dependent electron flux meas-
ured experimentally by Ropers et al. (c.f. Fig. 2c of ref. 2). The insets in Fig. 3b shows the contribution of different 
emission processes for the case F1 =  3 V/nm. The dips for the individual n-photon absorption is due to the chan-
nel closing effects20,28. As F0 increases, the dominant emission process changes continuously, from three-photon 
absorption (F0 <  2 V/nm), to two-photon absorption (2 V/nm < F0 <  5 V/nm), to single-photon absorption (5V/
nm <  F0 <  10 V/nm), and eventually to direct tunneling with n =  0 (F0 >  10 V/nm).

Figures 4 and 5 show the time-dependent total electron emission current density w(t), under various combi-
nation of dc electric field F0 and laser field F1, calculated from eq. (8). The average emission current is the same as 
those shown in Fig. 2. The emission current is periodic in time, producing electron bunches with the same period 
as the laser field 2π/ω. This is consistent with the experimental observation of periodic variation (at the laser 
period) of the electron yield due to the carrier-envelope phase (CEP) effects17. It is interesting to note from eq. (8) 
that the emission current from each individual channel, ψ ψ ψ ψ( , ) ∝ ( ∇ − ∇ )⁎ ⁎w x tn n n n n  (i.e. set n =  l in eq. (8)) 
has only a ω( )tsin  dependence in time for large x, thus is always π/2 out of phase with the laser field ω( )F tcos1 . 
However, this is not the case for the total emission current, as shown in Figs 4 and 5. The complicated shape and 
phase shift of the total emission current are due to the highly nonlinear cross-terms between different channels 
(i.e. terms with n ≠ l in eq. (8)). Note that the instantaneous emission probability does not necessarily go to zero 
when the net electric field is pointing away from the surface, because of highly nonlinear dynamics of electrons 
near the metal-vacuum interface. This nonlinear process has been thoroughly discussed in previous work (e.g. 
Figs 5 and 6 of ref. 20, or Fig. 5 of ref. 38). In general, increasing the laser field F1 would increase the 
peak-to-average ratio of the emitted current, meanwhile reducing the FWHM of the current pulse. In contrast, 
increasing F0 tends to increase the FWHM of the current pulse. Most importantly, for a given laser field F1, 
increasing the dc electric field could substantially lower the valley of the current pulse, sometimes even close to 
zero (Figs 4d,h,i and 5d,h,i), thus giving an intensive modulation of the emitted current. When the dc bias F0 is 
sufficiently high, profound modulation of the current emission is even possible for a relative small F1, (Figs 4d,g 
and 5d,g), i.e. for a low intensity laser. It is interesting to note that, at locations x larger than 10 (beyond the local-
ized surface current oscillations, as shown in Fig. 4), the current keeps approximately a fixed temporal profile with 
only a phase shift, especially when dc bias F0 is larger than laser field F1 (Figs 5a,d,g,h). Physically, the phase shift 
is primarily due to the drift and acceleration motion of the electrons under the influence of dc and laser fields. The 
time dependent emission current and its relative phase shift would be important for the study of carrier envelope 
phases (CEPs)1,17,19,39.

Figure 6 shows the effects of laser frequency (or wavelength) on the emission current density. When the dc 
electric field F0 is small, the effects of laser frequency become more pronounced. Figure 6a plots the current 
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Figure 4. Time-dependent total emission current density w(x, t) normalized to the time-average emission 
current density w , as a function of time and space, under various combination of dc electric field F0 and 
laser field F1, calculated from eq. (8). For the laser electric field F1 =  1, 5 and 10 V/nm, the corresponding laser 
intensity I =  ε0cF1

2/2 is 1.33 ×  1011, 3.33 ×  1012 and 1.33 ×  1013 W/cm2, respectively.



www.nature.com/scientificreports/

8Scientific RepoRts | 6:19894 | DOI: 10.1038/srep19894

emission w  as a function of laser field F1 (and laser intensity I), for various combinations of laser wavelength and 
F0. When F0 =  1 V/nm, the emitted current follows closely the power scale ∝w F n

1
2  in the multiphoton regime 

when F1 is small, where n is determined by the integer round off of the ratio ω/W   =  2.06, 3.29, and 4.11, for 
wavelength of 500 nm, 800 nm and 1000 nm, respectively. The laser field F1 for the transition from multiphoton 
absorption to optical field emission increases with the laser frequency, consistent with the Keldysh parameter, 
γ ω= /F1. For larger F0, the effects of laser frequency become less important. When F0 =  10 V/nm, the electron 
emission depends little on the laser frequency. Figure 6b confirms that the effects of laser frequency are important 
only when the dc bias is small. Figure 6c plots the current emission w  as a function of laser frequency, for various 
combinations of F0 and F1. When F0 =  1 V/nm, there are distinct peaks near ω =  1/n (n >  1), corresponding to the 
n-photon process, with decreasing electron emission current as n increases. For ω > 1, the energy of single pho-
ton exceeds the potential barrier W, thus the electron emission process is similar to that of over-barrier ioniza-
tion, where the emission current density decreases as frequency increases. When F0 =  5 V/nm, the n-photon 
peaks are smeared for ω < 1; however, the emission current densities for ω > 1approach those of F0 =  1 V/nm, 
indicating the over-barrier absorption. When F0 =  10 V/nm, the emission current density becomes almost inde-
pendent of the laser frequency for ω < 1, since the dominant emission process is the Fowler-Nordheim like field 
emission. When ω > 1, both dc field emission and over-barrier emission would be important, where the domi-
nant process is determined by the strength of the laser field F1. It is important to note that the maximum emission 
current density is always around ω = 1.

Figure 7 shows the effects of the barrier height (or work function) W on the emission current density, for 
EF =  5.53 eV and ħω =  1.55 eV (λ =  800 nm). In general, the emission current density increases as the work func-
tion decreases. When both F0 and F1 are small, there are peaks around W/ħω =  n, corresponding to the resonant 
n-photon absorption. Similar results are obtained by previous numerical calculation24. When F1 increases, the 
oscillating features persist, however, the location of the peaks shifts, due to both channel closing effects as well as 
the optical field tunneling process. Increasing dc bias F0 would reduce the transmission peaks. One may notice 
that the emission current density increases even when W <  ħω, whereas in Fig. 6c, the emission current density 

Figure 5. Sample curves in Fig. 4 at =x 20 (blue), 100 (green), and 200 (red). Solid lines are the emission 
current density (or emission rates), and dashed lines indicate the laser field. For the laser electric field F1 =  1, 5, 
and 10 V/nm, the corresponding laser intensity I =  ε0cF1

2/2 is 1.33 ×  1011, 3.33 ×  1012 and 1.33 ×  1013 W/cm2, 
respectively.
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decreases when ħω /W >  1. The discrepancy arises because the relative value of the Fermi level EF/W (thus the 
normalized electron initial energy) changes when W changes in Fig. 7, but remains the same when the laser fre-
quency changes in Fig. 6c.

It is clear that our exact analytical solution is derived based on the simple potential landscape defined in eq. (1). 
It is important to know the sensitivity of such calculations to the shape of the surface potential. The effects of more 
realistic surface potential have been studied previously, by solving directly the time-dependent Shrodinger 
Equation (TDSE) numerically, for example in refs 1 and 23. In Fig. 8, we compare our analytical calculation using 
potential landscape eq. (1) with the numerical simulations in ref. 23, which is for the more realistic potential 

Figure 6. The effects of laser frequency (or wavelength) on the electron emission current density w . (a) w  
as a function of F1 (and I), for various wavelength λ with different F0. (b) w  as a function of F0, for various λ 
with different F1. (c) w  as a function of laser frequency ω ω= /W , for various combinations of F1 and F0. For 
the laser electric field F1 =  1, 5 and 10 V/nm, the corresponding laser intensity I [W/cm2] =  1.33 ×  1011 ×  (F1[V/
nm])2 is 1.33 ×  1011, 3.33 ×  1012 and 1.33 ×  1013 W/cm2, respectively.

Figure 7. Effects of the barrier height (or work function) W on the emission current density w . For the 
laser electric field F1 =  1, 5, and 10 V/nm, the corresponding laser intensity I [W/cm2] =  1.33 ×  1011 ×  (F1[V/
nm])2 is 1.33 ×  1011, 3.33 ×  1012, and 1.33 ×  1013 W/cm2, respectively.
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landscape outside the metal surface (x >  0), Φ (x,t) =  Φ m(x) +  V0 −  eF0x −  exF1exp(− 2ln2t2/τ2)cosωt, where 
Φ m(x) =  − e2/(16πε0x) is the image charge potential, the last term represents a finite Gaussian laser pulse of pulse 
length τ, and the remaining parameters are defined in eq. (1). In Fig. 8, the following parameters are used23, work 
function W =  5.5 eV, Fermi energy EF =  4.5 eV, laser wavelength is 800 nm, τ =  30 fs (~11 laser cycles), and dc 
electric field F0 =  0.2 V/nm. For the potential profile without Φ m, our analytical results for the emission current 
density w  vs. laser field F1 are in excellent agreement with the numerical simulations. The inset in Fig. 8 shows 
the multiphoton order n as a function of Keldysh parameter γ, by fitting the slope of ∝w F n

1
2 , again, showing 

very good agreement with the numerical simulation. These results serve yet another validation of our exact solu-
tion. More importantly, it indicates that our exact solution using infinite plane wave laser excitation is even appli-
cable to more realistic laser profiles, as long as the pulse length is larger than the wavelength. With the  
inclusion of Φ m, the slope of the multiphoton regime is reduced in general, due to the reduction  
of effective potential barrier near the metal surface. It is easy to estimate that the potential maximum is 
Φ πε= + ( − / ) = +E W e F E W2 16F F effmax

3
0 0  when considering the static potential barrier only (i.e. no 

laser field), where Weff is the effective work function, which is found to be 4.96 eV for the given parameters. 
Similar approach for the effective work function has been adopted to study above-threshold photoemission37. By 
adopting this effective work function in our analytical calculation, we found fairly good agreement with the 
numerical simulation up to F1 ~ 8 V/nm. Thus, by replacing W with Weff, our solution may still be used to estimate 
the electron emission characteristics in the multiphoton regime, even for potential profiles with image charge.

Summary
In summary, we have presented an exact solution to laser induced strong-field electron emission from a metal 
surface under dc bias. We analytically solve the time-dependent Schrödinger equation with both a single fre-
quency oscillating field F1cosωt and a static electric field F0. The solution takes the general form of the superposi-
tion of electron plane waves with ladder-state energies (channels) separated by the photon energy ω  coupled to 
the electron’s initial energy. It is found that increasing the dc bias F0 would increase the electron emission, by 
opening up more channels, including the processes such as multiphoton absorption, optical tunneling, multipho-
ton emission, and field emission. When F0 is small, clear transition from the multiphoton absorption regime to 
the optical field emission regime is shown. When F0 is large, multiple processes contribute to the electron emis-
sion. In the limit of F0 →  0, the solution approaches that of Yalunin et al.20, for the special case of F0 =  0. In the 
limit of large F0, the solution recovers the Fowler-Nordhiem dc field emission. The time-dependent emission 
current reveals that intense current modulation may be possible even with a low intensity laser, by merely increas-
ing the applied dc bias. The effects of laser frequency and metal work function are also examined in detail. It is 
found that for given values of electric fields, F0 and F1, the maximum electron emission current density always 
occurs around the laser frequency ħω/W =  1. The emission current decreases with the laser frequency when 
ħω/W >  1. All electron emission mechanisms are captured in a single formulation, demonstrating transition from 
n-photon process to optical and field tunneling.

Our theoretical results exhibit good coincidence with previous experimental measurements on: measured 
kinetic energy spectra of the photoelectrons, for the transition from multiphoton regime to the strong field 
regime17; shifts on peak of energy spectra28,29,37; the scaling of voltage- and laser power-dependent measured 
electron flux2; and periodic variation (at the laser period) of the electron yield due to the carrier-envelope phase 
(CEP) effects17. Thus, our exact analytical solution provides an efficient tool to analyze the complicated nonlinear 
dynamics of laser induced electron emission. It offers plausible interpretation of experimental results, and guid-
ance of future experimental design.

Figure 8. Comparison of our exact solution in this paper, eq. (9) with the numerical simulation in ref. 23, 
for two cases with and without image charge potential Φm. The inset shows the multiphoton order n as a  
function of Keldysh parameter γ. The laser intensity is related to the laser electric field as I [W/cm2]  
=  1.33 ×  1011 ×  (F1[V/nm])2.
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While our results are derived for continuous-wave excitation, they are shown to provide a good approximation 
to time-varying or pulsed fields (Fig. 8), as long as the optical frequency is much larger than the bandwidth of the 
driving field4,20. A slowly varying envelope approximation, then allows a straightforward extension of our results 
to pulsed excitation, as stressed in ref. 20.

In this formulation, we have made the following assumptions: 1) the electrons are emitted from a single energy 
level at the Fermi level; 2) the surfaces of the electrodes are flat and the problem is assumed one-dimensional; 
3) the image charge potential is not directly included to make the analytical treatment possible. The effects of 
electrode geometry40,41, space charge6,36,42,43, nature of the ion lattice of the electrodes, thermal redistribution, and 
short pulse illumination may be considered in future studies.

Methods
Following Truscott33, the time dependent potential for x ≥  0 may be written as Φ( , ) = ( ) − ( )x t V x xf t , with 
( ) = −V x V eF x0 0 , and ω( ) =f t eF tcos1 . Thus, eq. (2) may be transformed to the coordinate system ξ , t, where 
ξ = − ( )x q t ,  the displacement ∫( ) = ( / ) ( )′ ′q t m p t dt1 t ,  and ∫( ) = ( )′ ′p t f t dtt ,  by assuming that 
ψ φ ξ χ( , ) = ( , ) ( , )x t t x t , with ∫χ( , ) = 


− / + ( )/ − ( / ) ( ) 


′ ′x t iEt ixp t i m p t dtexp 2 t 2   . We have,
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with ξ ξ( , ) = − ( + ( ))U t V eF q t0 0 . By separation of variables, eq. (13) can be easily solved to give

φ ξ ξ
ω

ω( , ) = ( )









,

( )
t g e F F

i m
texp sin
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3

where ξ η η( ) = ( − ) − ( − )g Ai iBi  is the solution of the “static” equation31,32 ξ ξ−( / )∂ ( )/∂ +m g22 2 2
ξ ξ( − − ) ( ) =V E eF g 00 0 , where η ξ= ( / ) ( − )/ +

/emF E V eF2 [ ]0
2 1 3

0 0 . From ψ φ ξ χ( , ) = ( , ) ( , )x t t x t , we 
obtain eq. (3), which is the exact solution to eq. (2), upon using ε ω ω= + − /E n e F m42

1
2 2.
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