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Background and objective: In recent years, Artificial Intelligence has had an evident impact on the way 
research addresses challenges in different domains. It has proven to be a huge asset, especially in the 
medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact 
of deep learning and machine learning models in the detection of COVID-19 from medical images. This 
is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in 
this field.
Methods: The main focus of this study is the recent developments of classification and segmentation 
approaches to image-based COVID-19 detection. The study reviews 140 research papers published in 
different academic research databases. These papers have been screened and filtered based on specified 
criteria, to acquire insights prudent to image-based COVID-19 detection.
Results: The methods discussed in this review include different types of imaging modality, predominantly 
X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This 
review seeks to categorize and discuss the different deep learning and machine learning architectures 
employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep 
learning and machine learning architectures that can be proposed for better results towards COVID-19 
detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial 
Intelligence-based COVID-19 detection has been discussed as well.
Conclusion: This work concludes by stipulating the technical and non-technical challenges faced by 
researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence 
techniques.

© 2021 AGBM. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The novel coronavirus, termed COVID-19, is recently declared as an infectious pandemic by the World Health Organization (WHO). This 
has created a state of alarm all over the world. While nations look for ways to contain its spread, COVID-19 remains prevalent with total 
global cases of over 30.6 million, claiming 950,000 lives [1]. With its high rate of spread, most health organizations and hospitals are 
under-prepared to handle the inflow of cases. The SARS-CoV2 virus is reported to spread through small droplets and potentially aerosol, 
with an incubation period of 2-14 days. COVID-19 positive patients can display symptoms like fever, dry cough, body aches, shortness of 
breath, loss of taste and smell, sore throat, and diarrhea [2]. They might be asymptomatic carriers as well. With such easily misinterpreted 
symptoms and the risk of the consequences of a wrong diagnosis, the proper identification of the virus infection is one of the topmost 
priorities for medical organizations.

Artificial Intelligence provides help in tackling the virus outbreak by assisting in clinical decision-making and predictive analysis. The 
use of Deep learning techniques has been at the forefront of accurate prediction and diagnosis of virus-infected cases. Deep learning 
can be used to classify infected and normal patients or perform segmentation of the infectious regions from Chest X-rays and Computed 
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Tomography (CT) scans. These AI diagnostics models could ease the load on healthcare workers allowing them to dedicate time to the 
care of patients and the development of a vaccine.

Early detection of the presence of infection is critical for providing treatment to save lives. Reports show that symptoms can start 
from a simple cold and can develop into life-threatening pneumonia. Though every individual is equally likely to be infected, the severity 
of its effects varies based on the age group. The severity is high for elder age groups and people with pre-existing co-morbidities like 
heart conditions, obesity, diabetes, and respiratory illnesses like asthma. Since the virus spreads through sneeze or cough droplets in the 
air, minimizing contact between individuals helps to curb the virus’s primary mode of transmission. To avoid this spread through close 
contact, countries have imposed lockdown, social distancing, and quarantine restrictions.

The current major mode of diagnosis is the RT-PCR (Reverse Transcription-Polymerase Chain Reaction) testing. It detected the presence 
of the virus based on swab testing or blood samples. RT-PCR can give results in a period of a few hours to 2 days with an accuracy 
interval of 81 - 96%. But these tests cannot identify the severity of the infection and the accuracy of the results depends on the strength 
of the virus strain. And with the large amounts of samples flowing in, the basic differentiation between the coronavirus infections and 
other infections becomes a significant step towards accurate diagnosis.

The use of X-rays and CT scans for the identification of pneumonia proves to be a very useful method of diagnosis. Since the virus 
attacks the respiratory tracts of humans, medical imaging can be used as a diagnostic tool for detecting COVID-19 infection. X-ray and CT 
scan machines are already available at most hospitals, allowing them to assist in the diagnosis without the need to procure testing kits. 
These imaging tests highlight opacities and abscesses which are the identifiable patterns that characterize the viral infection.

Chest X-ray images for positive cases show bilateral diffuse patchy opacities with some bibasilar sparing [3], which can help identify 
and analyze pneumonia, lung aggravation, and developed lymph hubs. CT scans for COVID-19 cases tend to bring out patterned distribu-
tions of opacities (interlobular septal thickening superimposed on ground-glass opacities) [4]. The main goal of identifying these patterns 
and their density is to perform accurate diagnosis, determine the severity of the disease, and guide prognosis.

The use of Artificial Intelligence (AI) techniques for identifying cases of infection and its radiological properties from medical imaging 
like Chest X-ray and CT scans have proven to be effective for accurate diagnosis [5–33]. Many approaches can be taken in Machine Learning 
and Deep Learning to address COVID-19 detection and segmentation tasks. AI-guided medical imaging analysis offers huge potential to 
serve as a primary diagnostic tool for COVID-19 detection [34–41]. Learning deep features that can distinctly capture COVID-19 radiological 
patterns in chest X-ray and CT forms the first step in the diagnosis. The potential of Machine Learning-based predictive mechanisms can 
be realized in the prognostic analysis [42]. Hence many studies harness algorithms like SVMs, Random Forests, to provide the necessary 
insight(s) into the prediction and diagnosis of the coronavirus infection. These automation systems can ease the strain on healthcare 
workers and can take over the filtering process of COVID-19 diagnosis. The early diagnosis of infection can save valuable time, allowing 
treatment to be administered in the preliminary stages of the infection avoiding the consequences of risk.

The consequences of misdiagnosis pose a severe risk, which can even be life-threatening for the infected patient. Automated systems 
face many challenges due to the velocity and volume of data being huge. With the large inflow of cases, the cleaning and processing of 
data become a huge obstacle especially with the need for high-resolution images. These systems must also ensure the prudence of data, as 
cases are influenced by factors like age, gender, and pre-existing conditions. The addition of these cases can potentially impact the quality 
of the results.

Through this work, we aim to achieve the following objectives.

• To discuss the latest trends in the application of AI techniques for COVID-19 detection from medical images.
• to compare and analyze the performance of the recent works in COVID-19 detection and to recognize areas of improvement.
• to highlight the gaps and drawbacks of the reviewed works and identify the potential scope for future research.

2. Research search strategy

In this study, we have referred to research publication databases like ScienceDirectTM, IEEEXploreTM, and Google ScholarTM to seek 
and obtain other studies and publications related to COVID-19 diagnosis from medical imaging. Many articles were sourced from Springer 
and Wiley publications as well. These articles were screened in the context of Artificial intelligence methods which specified the use 
of medical imaging. We examined multiple publications and screened the papers before the actual collection, ensuring no redundancy 
and unreliability in the collection. In the preliminary screening, publications were filtered based on the title and journal publication. 
The subsequent screening was based on the abstract, image modality, and methods applied. Finally, an in-depth analysis of the details 
and implementation aspects of the method employed enabled an informed final screening. These steps resulted in a shortlist of 140 
publications to be included in this review. In this review, we believe to have considered the key contributions of all AI-based research 
publications reported till 2020 for COVID-19 diagnosis from medical imaging. The search process used the keywords like ‘COVID-19’, ‘X-
ray’, ‘Computed Tomography’, ‘Artificial intelligence’, ‘Deep learning’, ‘Machine Learning’, ‘Imaging’, ‘Classification’, ‘Segmentation’, ‘Deep 
Features’, ‘Neural Network’, and ‘Computer-aided diagnostic support system’ to download the relevant publications. A period of 27 days 
was involved to download these 148 publications and perform the screening. Table 1 provides details about the inclusion and exclusion 
criteria. Fig. 1 presents the month-wise split-up of the obtained articles based on the modalities used. The search strategy applied and 
the manuscript filtering process is illustrated in Fig. 2. The comprehensive assessment of the obtained publications involved a search for 
specific details, is illustrated in Table 2 and 3 for notable studies. To the best of our knowledge, this is the first review report consolidating 
the findings of different AI approaches for COVID-19 detection and segmentation based on the chest X-ray/CT imaging modalities.

The review is organized as follows. In Section 2, we present the details of the search strategy employed to collect and filter the research 
articles from different sources. Section 3 highlights the significance of the modalities of medical imaging used for COVID-19 diagnosis. 
Section 4 presents the consolidated review of the methods employed by the different publications, categorized into classification and 
segmentation. Section 5 presents the various datasets that the research works have employed. It also includes the discussion, evaluation 
metrics used by the works, challenges, and future scope, and the limitations of this study. Finally, Section 6 concludes the research 
work describing the significance of image-based AI methods in COVID-19 diagnosis. The quality assessment form utilized to review each 
publication is presented in the appendix.
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Table 1
Inclusion and exclusion criteria.

Factor Inclusion Exclusion

Dataset and research outcome • Studies dealing with CT, X-ray, or combined 
imaging modalities.

• Studies using real-time dataset samples ob-
tained from hospitals/clinical labs.

• Studies detecting the presence of COVID-19, re-
gion of the infection or providing localization 
details.

• Studies describing insights into CT/X-ray mani-
festation of COVID-19 through automation.

• Studies involving animal data.
• Studies that did not involve COVID-19 related 

experiments.
• Studies not involving imaging modalities like X-

ray or CT
• Studies describing treatment protocols/medical 

condition of the patient pre and post COVID-19

Study design and Methodology • Studies involving AI techniques for required 
modality

• Studies involving Deep Learning or Machine 
learning techniques

• Studies involving Classification of COVID-19 im-
ages

• Studies involving segmentation of COVID-19 in-
fection region

• Studies explaining the scientific working of the 
imaging modalities employed in the research 
articles.

• Studies that are related to biochemical research 
on COVID-19 infections

• Studies that are not related to AI methods.
• Studies that consider other infections using the 

required modality.

Fig. 1. Month-wise distribution of published papers split based on imaging modalities.

3. Radiological imaging for Covid-19 detection

Medical imaging plays a crucial role in identifying the diagnosis of COVID-19 infected patients and in determining the prognosis as 
well [43]. This section describes the common COVID-19 findings observed in X-ray and CT.

3.1. Chest X-ray manifestation of COVID-19

Chest X-ray-based COVID-19 diagnosis has shown promising scope and serves as a reliable and quick tool in terms of availability and 
cost [44]. Hospitals can perform Chest X-rays as a swift screening method for patient admission [45,46]. While many medical organizations 
employ CT scans as well, the radiation dose and the sanitization process set an obstacle to efficient diagnosis [47]. In these conditions, 
Chest X-rays become a better alternative with their portability and availability. Due to these advantages, Chest X-rays are used as the 
primary COVID-19 investigation modality in the United Kingdom (UK) [48].

The observable features seen in COVID-19 affected Chest X-rays are commonly manifested as a spectrum of pure ground glass, mixed 
ground glass opacities to consolidation in bilateral peripheral middle and lower lung zones [49]. These alveolar opacities are often found 
with superimposed atelectasis, appearing predominantly in the lower lobe [50]. As the disease progresses beyond the early stage, Chest 
X-rays can display multiple patchy opacities, which eventually, become confluent and severe cases may appear as a “whited out lung” 
[43].

Chest X-ray diagnosis provides an 89.0% sensitivity (95% CI, 85.5%-91.8%) as explained by Schiaffino et al. [51]. This draws a significant 
comparison with RT-PCR tests for which Gatti et al. [52] had reported a sensitivity of 61% (95%CI 55–67%). In another study by Stevens
[48], Chest X-ray sensitivity for detecting COVID-19 was reported to be 85% compared to 93% for the initial RT-PCR. Over the course 
of the prognosis, Stephanie et al. found the sensitivity of the Chest X-ray increased over time [53]. It was also found that serial Chest 
X-ray imaging has the potential of reaching the diagnostic accuracy of chest CT [52]. Experiments by Cozzi et al. [54] revealed that 
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Fig. 2. Overview of the search strategy and manuscript filtering process.

the diagnostic performance of Chest X-rays had an overall accuracy (76 %–86 %), with an 89% sensitivity. A 66% sensitivity for more 
experienced radiologists (66%), and 41% for the less experienced radiologists [54].

To put into perspective, as supported by various authors [55–57], the exigency of Chest X-rays in the diagnosis of COVID-19 is bolstered
by certain factors:

(1) the lack of a reliable, time-efficient diagnosis;
(2) possible obstacles faced in the availability of CT scanning machines and difficulties in the fast sanitization of CT rooms;
(3) ease of Chest X-ray performance in isolated rooms in the Emergency Room.

Another factor to consider would be the very high pre-test probability associated with the disease spectrum. This may be skewed due 
to factors like high disease severity and reduction in the presence of non-COVID-19 pneumonia. These factors in turn resulted in better 
bedside performance of diagnosing COVID-19 from Chest X-ray [58].

3.2. Chest CT COVID-19 patterns

The use of chest CT imaging as a potential tool to infer COVID-19 has been demonstrated by several clinical studies. The main factors 
that favor the use of chest CT modality in COVID-19 diagnosis are the high sensitivity and low miss rate [59–64]. CT has registered 
97% sensitivity in a study with 1014 patients in Wuhan, China [59]. CT features were able to identify 75% of the false-negative cases 
that were not reported by PCR test. In a similar experiment, it was reported that a sensitivity of 96.07% for CT-based screening [60]. 
The predominant patterns observed in these studies include Ground-Glass Opacities, consolidation, and septal thickening. CT scans with 
bilateral lung involvement are also indicative of COVID-19, which is reflected in a study conducted on 34 subjects [61]. Other common CT 
manifestations are bilateral patchy shadowing, which was observed in 86.2% of confirmed cases in the experiment by Guan et al. [62]. The 
highest sensitivities of 98% and 97% for CT-based COVID-19 detection were registered in the clinical studies in Shanghai, China [62] and 
Italy [63].

The most prevalent manifestations of COVID-19 on CT are the peripheral and posterior ground-glass opacities with or without consoli-
dation [59,65–69]. In patients showing severe symptoms, septal thickening in the interlobular region and air bronchogram were observed 
[60,67–69]. Aside from these features, crazy paving pattern and reverse halo sign as CT features for detecting COVID-19 [60,66,70]. These 
observations form the preliminary evidence for assessing CT manifestations of COVID-19.

4. AI techniques for COVID-19 detection and infection delineation

This organized review outlines the various AI techniques employed in recent literature for the detection of COVID-19 from medical 
imaging. As an overview, the majority of the literature on AI for COVID-19 detection is in the deep learning domain, although few works 
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have explored the ML methods. The fully automatic deep learning techniques learn the feature extraction directly from the image data. 
CNNs for deep feature representation and classification have shown excellent results in medical image processing and have worked so 
well in the COVID-19 detection task. The knowledge of the prominent features, patterns learnt from data efficiently facilitate diagnostic 
assistance for the clinicians.

Deep neural networks are a learning algorithm that stack multiple neuronal nodes in a layer-wise fashion. They are gradient-based 
learners that tune their parameters in response to reducing the error made by the model towards classification/segmentation. This de-
mands precisely setting up the model training with stratified-class sampling, controlling learning rate over the epochs, and performing 
a hyper-parameter search. The deep learning paradigm has made rapid strides in healthcare automation by offering enormous design 
possibilities that can be customized specifically to the task and dataset at hand. With the computational power of Graphics Processing 
Unit (GPU) and distributed computing models, these deep learning architectures can be trained and tested in a relatively quick time. In 
the scope of COVID-19 detection, some studies have explored a range of CNN methods, ML classifiers on deep features, capsule networks, 
RCNN, etc. This section reviews the different state-of-the-art AI-based methods applied for COVID-19 detection.

4.1. COVID-19 classification from radiographic imaging

In this section, various research methods that perform COVID-19 classification are extensively reviewed. These works have utilized the 
two major imaging modalities (chest X-ray/CT) for the COVID-19 detection task. The key insights revealed in these works are discussed in 
detail.

4.1.1. Chest X-ray based classification
Chest X-ray images are one of the most accessible and widely used imaging modalities in the AI literature for finding COVID-19. 

The X-ray based detection methods can be broadly categorized into one of these categories: 1) Transfer learning approaches [71–106], 
2) customized deep architectures [107–115], 3) capsule networks and sequential CNN [118–124], 4) semi-supervised, GAN approaches 
[125–132], 5) deep feature extraction and image processing techniques [133–138,140–154,209–211], 6) CAD methods [155–157] and 
optimization algorithms [116,117,125,139].

Transfer learning models use the knowledge learnt from previous experience, through modification or addition of customized layers 
to fit the dataset. This arena of research has been predominant in the research on CNN-based COVID-19 findings. Within this category, 
the methods can be further sub-classified into VGG networks, Residual networks, Inception, Xception CNNs, and a mixture of several 
architectures.

Many works have analyzed the effectiveness of a VGG16-based deep Learning model for the identification of pneumonia and COVID-
19. For instance, Civit-Masot et al. proposed a VGG-16 model with a pre-processing stage that performed final classification using the 
confidence parameter obtained after the training [71]. Several other works, including Pandit et al. [72], Manapure et al. [73], Do et al. 
[74], Vaid et al. [75], Heidari et al. [76] modified the VGG16 model with a customized fully connected layers for classification. In another 
study, Makris et al. performed an architectural fine-tuning of several CNN architectures via transfer learning and projected that VGG16 and 
VGG19 models had shown the best results [77]. Alazab et al. also applied the VGG16 model to identify COVID-19 from augmented chest X-
ray data [78]. The data augmentation was achieved through geometric image transformations. In the line of researches utilizing VGG-based 
transfer learning, Panwar et al. proposed a fine-tuning of the pre-trained VGG-16 with custom layers and hyper-parameters [79]. Similarly, 
with the classic approach, Zhu et al. used a VGG16 model trained off the ImageNet dataset, and correlation analysis between AI-predicted 
versus radiologist scores to optimize predictions [80]. In another study by Dansana et al. took the binary classification approach for COVID-
19 pneumonia [81]. The proposed architecture used a fine-tuned VGG-16 and InceptioNet-V2 architecture, after performing pre-processing 
to generate the vectorized feature maps. Using a different combination, Karar et al. used pre-trained CNN architectures in an 11 model 
cascaded configuration, including VGG and ResNet [82]. Barbano et al. applied a transfer learning mechanism using multiple standard CNN 
architectures (VGGnet, ResNet) pre-trained on the chest X-ray pathology datasets. These pre-trained feature extraction networks are then 
fine-tuned on the COVID-19 datasets [83].

Residual learning is a common design paradigm in most of the CNN works, owing to their ability to prevent the vanishing gradient 
problem. Misra et al. presented a multi-channel pre-trained ResNet architecture to facilitate the diagnosis of COVID-19 chest X-rays [84]. 
Three ResNet-based models were then retrained to classify X-rays on a one-against-all basis. Comparing multiple architectures, Jain et al. 
employed a four-phase model that included pre-processing, augmentation, and two-stage transfer learning model [85]. These two stages 
were based on different ResNet architectures; the first stage extracted the viral pneumonia features from other pneumonia and the second 
stage for COVID extraction from other viral pneumonia. In another type of combination, Rahimzadeh et al. proposed a concatenation-
based configuration of transfer learned models [86]. The ResNet50V2 and Xception models extracted deep features, which were then 
concatenated, resulting in better classification from both the feature vectors. Another similar work by Benbrahim et al. applied the pre-
trained ResNet50 and InceptionV3 transfer learning architectures with logistic regression for COVID-19 identification [87]. El-Rashidy et al. 
extended a similar ResNet50 CNN architecture with fully connected layers for X-ray classification [88]. The CNN was trained as a part of a 
remote patient monitoring IoT framework for data acquisition, learning, and cloud storage. Another customization proposed by Punia et al. 
used pre-trained ResNet34 and ResNet50 and included an ADADELTA based learning strategy for the classification of a constructed X-ray 
dataset [89]. Since airspace opacities in the X-ray have been prominently associated with COVID-19, Azemin et al. employed a Resnet 
based CNN to train for the task of finding airspace opacities in chest X-rays [90].

Several other works have compared the performance of multiple transfer learning CNNs. For instance, Minaee et al. presented results 
for four different architectures, including ResNet18, ResNet50, SqueezeNet, and DenseNet-121 on a custom constructed dataset [91]. Many 
works are focused on the inclusion of Inception and Xception networks in performance comparison. Sethi et al. proposed a “recommenda-
tion network” which used four different pre-trained architectures, namely Xception, ResNet50, MobileNet, and Inception V3 [92]. Similarly, 
Khan et al. used four pre-trained deep-learning models (DenseNet121, ResNet50, VGG16, and VGG19) for the diagnosis of X-ray images 
as COVID-19 or normal [93]. Apostolopoulos et al., employed transfer learned VGG19, MobileNet v2, Inception, Xception, and ResNet v2 
models for classifying COVID-19 X-rays [94]. DenseNet was a common inclusion in many transfer learning works. To detect COVID-19 man-
ifestations on X-ray, Blain et al. developed a DenseNet based model for finding alveolar and interstitial opacities in the U-net segmented 
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X-ray lung regions [95]. Similar to that, Elasnaoui et al. performed automatic multi-class classification with transfer learning on seven 
standard CNN models, including the VGG-net, Densenet, Inception-Net, ResNet, and MobileNet [96]. Rahaman et al. provide a performance 
comparison of several transfer learning approaches with standard deep learning models [97]. In a similar approach, Boudrioua et al. mod-
ified the DenseNet121, NASNetLarge, and NASNetMobile with fully connected layers for X-ray classification [98]. Albahli et al. performed 
transfer learning with three architectures - NASNetlarge Inception NetV3, Inception ResNet V2 on an augmented chest X-ray dataset [99]. 
In the line of research works that train with augmented data, Phankokkruad developed CNN models through transfer learning from Xcep-
tion, VGG16, and Inception-Resnet-V2 on an augmented X-ray dataset [100]. Modified ResNet, VGG16, Xception, and Inception networks 
have also been used in the work by Ko et al. for COVID-19 classification [101]. Xception networks for COVID-19 classification have been 
explored in several works. Singh et al. [102], Khan et al. [103], Lujan et al. [104] have designed transfer learning models based on Xception 
net architecture for accurately finding COVID-19 from chest X-rays. Comparably, Horry et al. presented a multi-modal classification model 
that employed a classification pipeline that took augmented input data and was tested on 8 different transfer learning architectures [105]. 
Transfer learning from other architectures, like the DarkNet model, was also tried in the literature. In the case of Ozturk et al., the authors 
utilized a customized DarkNet model with fewer layers and filters, gradually increasing them based on experimental results [106].

Customized CNN architectures that are different from existing CNN designs are tailor-made to handle the specific task and the dataset 
at hand. They more often generalize well to the real world and are highly optimized for the specific use case. For instance, Abbas et al. 
presented a cascaded 4-stage deep CNN for the classification [107]. It identified image irregularities in its class boundaries using a class 
decomposition mechanism. With an external classifier, Yoo et al. presented a composition of three binary decision trees, each trained by a 
CNN model [108]. Das et al. used a customized deep CNN model to extract low-level features which were then classified on an Xception 
network [109]. In a feature engineering approach, Turkoglu performed relief feature selection on deep features from pre-trained AlexNet 
CNN for the classification of COVID-19 X-rays [110]. Haque et al. presented a work describing multiple linearly stacked CNN architectures 
with convolutional and pooling layers [111].

The need for efficient and reliable imaging-based COVID-19 diagnosis has driven many authors to pursue novel approaches to address 
a solution. For instance, Karthik et al. proposed a novel distinctive convolutional filter learning paradigm for characteristically identifying 
patterns associated with COVID-19 and other pneumonia on the X-ray [112]. In another approach, Ouchicha et al. presented residual CNN 
with dual convolutional pathways, to extract 16 feature maps from X-rays [113]. In another novel approach, Abdani et al. presented a 
compact architecture based on a custom 14 layer convolutional network that employed spatial pyramid pooling for multi-scale classifica-
tion [114]. With the transfer learning approach, Das et al. proposed a truncated architecture to reduce model complexity and to reduce 
over-fitting [115]. The truncated InceptionV3 based architecture was pre-trained on the ImageNet database and used an adaptive learning 
rate protocol for training. In a similar work to optimize pre-trained InceptionV3, Bridge et al. introduced a Generalized Extreme Value 
distribution-based activation function, to integrate with the Inception model. This led to improvements in the classification performance 
over models with traditional activation methods on unbalanced datasets [116]. The GreyWolf Optimizer (GWO) algorithm was used by 
Goel et al. to optimize the CNN feature extraction and classification components [117].

Several works validate the effectiveness of the Capsule network. To study the performance of the Capsule net configurations, Afshar 
et al. proposed the COVID-CAPS model that was pre-trained on an external X-ray dataset [118]. To further understand its contribution, 
Toraman et al. presented a capsule network-based model that included 5 custom convolutional layers to provide better feature maps [119]. 
Dhaya et al. also experimented on a capsule net CNN that was optimized with weighted cross-entropy loss [120]. Similar to the capsule 
net, Chowdhury et al. proposed a parallel-dilated CNN-based COVID-19 detection system, from enhanced chest X-ray images [121].

Apart from the complex architectures, many researches have employed relatively simpler architectures to achieve an acceptable degree 
of model fitting. In the early dated works, sequential CNN for COVID-19 classification from X-ray was common. For instance, Bakhrani et 
al. [122], Haque et al. [123], and Salman et al. [124] presented a sequential CNN for classifying COVID-19 infected X-rays.

To include the advantages of data augmentation and network optimization, Ucar et al. proposed a Deep Bayes-SqueezeNet based 
COVIDiagnosis-Net [125]. The network was based on the pre-trained SqueezeNet architecture that utilized Bayesian optimization, and 
also employed offline augmentation for a chest X-ray dataset. In another study, Zebin et al. have used multiple pre-trained convolutional 
backbones as a feature extractor with a CycleGAN to increase sample count [126]. Rajaraman et al. proposed a weakly labeled data 
augmentation approach to solve the dearth of COVID-19 chest X-rays for the infection detection task [127]. A CNN trained on pneumonia 
dataset was used to generate labels for augmenting COVID-19 samples. To improve the results with augmentation on a constructed 
dataset, Marques et al. employed customized EfficientNetB4-based layers for binary and multi-class classification experiments [128]. Data 
generation with GAN has been a popular approach in the COVID-19 AI literature. For instance, Waheed et al. proposed a synthetic dataset 
generation method using an Auxiliary Classifier GAN-based model, used with VGG-16 for classification [129]. Sedik et al. proposed to 
train a convolutional GAN model for data augmentation that enhances the learnability of the CNN and Conv-LSTM discriminator models 
for COVID-19 classification [130]. Loey et al. presented an approach that trains a GAN for COVID-19 X-ray data augmentation [131]. The 
augmented X-ray dataset was classified on a CNN that additionally predicts candidate bounding box regions with high infection probability. 
Zulkifley et al. presented DC-GAN in the augmentation of chest X-ray data followed by a lightweight CNN to perform classification on the 
enhanced dataset [132]. The lightweight model design was based on multi-scale spatial pyramid pooling and DenseNet layers.

Some studies focus on rigorous feature extraction for COVID-19 from Chest X-rays. In the case of Abraham et al., the authors utilized 
multi-CNN feature extractors and the combined features used as input to a Bayesian classifier [133]. The multi-CNN was made up of 10 
pre-trained architectures for feature extraction, and the feature selection was done by a Correlation-based Feature Selection (CFS) algorithm 
with Subset Size Forward Selection (SSFS) to determine the optimal feature subsets. A study by Tuncer et al. proposed a novel feature 
generation model with feature extraction by using Residual exemplars local binary patterns, and iterative Relief for feature selection [134]. 
This was verified with 5 different classifiers, being Decision trees, Linear Discriminant, kNN, and SVM. Altan et al. presented a hybrid model 
which employed 2D curvelet transform, with a Chaotic Salp Swarm Algorithm (CSSA) optimized feature matrix, which was based on the 
EfficientNet-B0 model [135]. Noise in the X-ray data can be compensated through pre-processing. Toğaçar et al. proposed a pre-processing 
technique that used Fuzzy color to remove noise, which was then combined with the original dataset using a stacking algorithm [136]. 
This stacked dataset was used with MobileNet and SqueezeNet models and a SVM classifier. In a similar attempt, Vinod et al. discussed 
the use of a pre-trained CNN model and Decision Tree for the fast classification of pre-processed COVID-19 X-ray and CT images [137].
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To investigate the use of other classification algorithms, Islam et al. developed a combination of CNN for complex feature extraction, 
and LSTM as the classifier for the proposed architecture [138]. To combine the results of pre-processing and deep features, Nour et al. 
presented a custom CNN-based feature extraction model coupled with Bayesian optimization, used with offline augmented data[139]. The 
features were then given to various ML-based classifiers like SVM, kNN, and Decision trees. Comparably, Bharati et al. proposed a hybrid 
VGG, data augmentation, and spatial transformer network (STN) pre-processed model, termed as VDSNet [140]. Alqudah et al. applied 
the features extracted from the Advanced Optical Coherence Tomography network (AOCT-net) with ML classifiers as a hybrid transfer 
learning approach [141]. Pereira et al. introduced a hierarchical classification schema for pre-trained CNNs and feature extractors [142]. 
The model considered different feature extraction methods for Early Fusion, Data re-sampling, and a multi-classification approach. To 
draw a comparison between neural network architectures, Varela-Santos et al. utilized feed-forward and CNN models to classify custom 
databases to develop a baseline model for X-ray and CT-based COVID-19 diagnosis [143]. A feature extraction method was also considered, 
namely Texture Features, which included GCLM and BLP methods for the same. In another study, Apostolopoulos et al. used an end-to-end 
trained MobileNet v2 architecture, with a Relief feature selection algorithm and SVM to classify COVID-19 X-rays images [144]. Lopez 
et al. presented a customized CNN approach that used histogram contrast equalized X-ray images were used to train the model [145]. 
In the work by Sahlol et al. the InceptionNet CNN was used to extract deep features, which were refined with the fractional-order 
marine predators’ algorithm for COVID-19 classification [146]. Novitasari et al. presented a COVID-19 detection framework that uses CNN 
for feature extraction, PCA for feature selection, and SVM for classification [147]. Searching for optimal network configurations is an 
important factor in the design aspect of the CNN towards enhancing performance. For instance, Singh et al. proposed a hyper-parameter 
tuned CNN that performs softmax classification for COVID-19 on chest X-rays. The model was fine-tuned with Multi-objective adaptive 
differential evolution [148]. Sekeroglu et al. experimented with customized convolutional network architectures for multiple classification 
criteria, such as COVID-19/normal, COVID-19/pneumonia [149]. In the study conducted by Woźniak et al., a probabilistic neural network 
was used to identify lung carcinomas from X-ray scans [209]. The local variance around the pixels was used to generate possible lung 
nodules, which were then discriminated using a probabilistic neural network. Ke et al. presented a heuristic classification technique to 
identify degenerated tissues and lung diseases from X-ray images [210]. Employing a bio-inspired approach, Woźniak et al. proposed a 
feature-specific configuration of models that search for lung disease features in X-ray images [211]. This configuration is based on heuristic 
models that perform a search with a dedicated fitness function.

Some works have also employed object detection CNNs for COVID-19 detection. Shibly et al. used a Faster RCNN based architecture 
with inherited features from a VGG based network [150]. Saiz et al. applied an SSD model with VGG-16 backbone to generate candidate 
infection region proposals on X-ray and to perform COVID-19 instance classification [151]. Some studies have proposed ensemble-based 
approaches for COVID-19 classification. Chandra et al. presented a majority voting-based classifier that consisted of an ensemble of 5 
different classification algorithms [152]. The model used GLCM and HOG-based feature extractors and supervised classifiers, namely, SVM, 
ANN, kNN, Naive Bayes, and Decision Trees. Ahsan et al. proposed a fused MLP-CNN model to simultaneously fit mixed numerical data and 
imaging data [153]. Rajaraman et al. used a configuration that combined results of iteratively pruned classification models in a stacking 
ensemble [154].

The use of commercial AI software for testing has helped study the models already trained to identify X-ray features. For instance, 
Hwang et al. utilized a deep learning-based CAD system for assisting radiologists in diagnosing COVID-19 [155]. The CAD deep learning 
algorithm was trained to distinguish between normal and X-rays affected by 4 major thoracic diseases, which was exploited by the 
radiologists for COVID-19 analysis. In the same arena of research in CAD-assisted learning, Mohammed et al. proposed a multi-stage CAD 
framework for classifying X-rays [156]. The particle swarm intelligence was applied to get lung region segmentation, from which GCLM 
texture features are extracted and classified on a SVM ensemble. In related work, Murphy et al. explored the CAD commercial software 
pre-trained for detection of tuberculosis from X-ray for the COVID-19 identification task [157]. The AI model was orchestrated as a U-net 
for lung segmentation followed by patch-based ensemble networks for infection classification. The software methods provide a verifiable 
way to comprehend the stage-wise processing of the image towards the classification.

4.1.2. CT based classification
CT-based approaches have mainly employed a variety of feature extraction schemes and ensembling methods to perform COVID-19 

prediction. In contrary to chest X-ray literature, only some works have taken the transfer learning approach for CT image classification. Of 
these works, Pathak, et al. utilized deep transfer learning on ResNet32 with custom layers, for classifying COVID-19 positive and negative 
CT images [158]. Employing a dual-sampling strategy, Ouyang et al. used the 3D ResNet34 architecture was used as the backbone for the 
classification [159]. In another study, Silva et al. utilized a pre-trained EfficientNet based architecture [160]. The model also employed a 
5-fold evaluation that made use of “Random”, “slices” and “Voting” based scenarios. Hu et al. proposed a strategy for a weakly supervised 
model that performs CT classification with VGG-16 networks [161]. Xu et al. presented a location attention model based on the ResNet18 
model to classify 3d segmented CT images as having COVID-19 pneumonia or not [162]. The effectiveness of residual networks is also 
captured in the work by Ardakani et al., which presented a comparison of 10 standard CNN architectures [163]. ResNet-101 had resulted 
in the highest overall accuracy. Perumal et al. proposed a transfer learning-based model along with Haralick features obtained from the 
enhanced input images [164]. Using the classic approach, Jaiswal et al. applied the ImageNet pre-trained CNN for extracting deep features 
[165]. Mishra et al. explored various Deep CNN-based approaches for detecting the presence of COVID19 from chest CT images [166]. 
A decision fusion-based approach was also proposed, which combined predictions from multiple individual models, to produce a final 
prediction. Tabrizchi et al. presented an approach to use standard ML and DL algorithms for identifying COVID-19 [167]. While MLP, CNN, 
SVM were single point classifiers, ensemble methods like Adaboost and gradient boosted trees were also used in the detection task.

For CT-based COVID-19 detection, there are several studies with feature extraction as their motivation. For instance, Yan et al. presented 
a CNN with a multi-scale spatial pyramid (MSSP) decomposition architecture, which learned feature representations of multi-scale inputs 
that did not require large-scale training data [168]. In combination with a classifier, Shaban et al. proposed a hybrid feature selection 
methodology and introduced the Enhanced kNN [169]. The methodology included both wrapper and filter feature selection methods while 
the enhanced classifier added new heuristics to a traditional kNN classifier. Han et al. applied the deep 3d multi-instance learning model 
to extract features at an instance level. An attention-based pooling of such instance labels is done to derive patient-level classification 
[170]. Similarly, Li et al. utilized a self-supervised approach, which used a modified Rubik’s cube Pro model to extract 3D features and was 
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also used as the backbone for the classification network [171]. Redesigning the previously proposed pre-trained COVID-Net architecture, 
Wang et al. made modifications in terms of the network architecture and cosine annealing learning strategy [172]. They further proposed 
a joint learning scheme to solve the data heterogeneity problem to improve the performance of the model. A similar study by Öztürk et 
al. utilized a 2-stage classification model with a SVM classifier [173]. The data is subjected to shallow augmentation and was subjected 
to different feature extraction algorithms, which was then over-sampling using SMOTE algorithm. Hasan et al. used Q-deformed entropy-
based texture features and deep CNN features to train a Bi-LSTM classifier for COVID-19 detection from CT slices [174]. The combined 
feature set was refined through the statistical ANOVA method.

Some of the works propose to include parameter-tuning configurations that build on the classic CNNs. Pathak et al. proposed a deep 
bidirectional classification model which employs a LSTM network [175]. The Bi-directional LSTM network makes use of a mixture density 
network, in which the hyper-parameters were fine-tuned using a memetic adaptive differential evolution algorithm. In another attempt, 
King et al. used an unsupervised clustering-based approach to identify COVID-19 features from X-ray images [176]. They employed a 
Self-Organizing Feature Map to cluster instances of infections by independently considering each region of the image. Similarly to draw a 
comparison of these networks, Singh et al. proposed a deep CNN architecture for COVID-19 classification using multi-objective differential 
evolution. It is a class of genetic algorithms that offer multiple stages of mutation, crossover, and selection in optimizing the search for 
hyperparameters [177].

Generating candidate regions/bounding boxes for training at a patch level can reinforce classification decisions and also be effectively 
used in localization. Butt et al. presented a classification model which used pre-processing to extract effective pulmonary regions from 
CTs [178]. A 3D CNN model was used to identify multiple candidate image cubes. In another study, Ahuja et al. introduced a three-phase 
detection model including; data augmentation, COVID-19 detection, and abnormality localization [179]. Xiao et al. proposed a multi-
instance learning framework with ResNet CNN [180]. In the work by Bai et al., CT slices with existent lung abnormalities were modeled
on the EfficientNet B4 architecture [181]. The samples were classified into either COVID-19 or other pneumonia classes. The CT slice 
probabilities for a patient are pooled through a fully connected neural network to generate a patient-level prediction.

4.2. COVID-19 regions localization

The literature on COVID-19 detection presents several ways to visualize how the manifested infection features are extracted and ex-
ploited in classification. Localization techniques, like the GRAD-CAM highlight such hotspot regions in the input image. They make the 
results seem more interpretable and useful for the clinician. To this end, several works have utilized the Grad-CAM algorithm for lo-
calization. For instance, Mahmud et al. proposed a custom CovXNet architecture that used GRAD-CAM for localization [182]. The model 
was pre-trained on non-COVID-19 X-rays and employs a stacking algorithm for its optimization by generalizing the extracted features. 
Brunese et al. proposed a three-fold method: first detects healthy or generic disease; second discriminates between generic diseases and 
COVID-19; and third highlights the areas of the COVID-19 disease in the X-ray [183]. The first two methods employed pre-trained VGG-16 
models, and GRAD-CAM to enable visualization. Similarly, Ezzat et al. presented a transfer learned DenseNet121 classification model which 
employed GSA optimization, and GRAD-CAM to visualize the localization regions [184]. Similar work on DenseNet-based classification was 
carried out by Oh et al., in which GRAD-CAM was used to aid better interpretability of the results [185].

ScoreCAM is an improved weighing model over the Grad-CAM. For instance, Fan et al. proposed a DenseNet model for X-ray clas-
sification and the score-CAM method for visualizing the infected regions [186]. Exploiting the concept of attention maps, Tsiknakis 
et al. presented an interpretable AI framework assessed by expert radiologists [187]. The validation of attention maps focuses on the 
diagnostically-relevant image regions.

Such class activation mapping for salient region identification is used for CT scans too. In the case of CT scans, Sharma et al. discussed 
the performance of a commercial classification software on a constructed CT image dataset [188]. A ResNet-based architecture of the 
Microsoft Azure software was used, along with GRAD-CAM for localization. The linear combination of weight and activation graph is used 
in the infection localization analysis. In another work utilizing the DenseNet CNN, Yang et al. trained on the dataset of CT samples with 
COVID-19 manifestations [189]. The CAM feature activations were shown to highlight regions of GGO/consolidation. Considering 2 imaging 
modalities, Panwar et al. took a transfer learning-based approach on the VGG19 model for binary classification and used GRAD-CAM to 
provide visualization [190].

Region localization can also be achieved through training a model to identify candidate regions from a model prediction. Wang et 
al. presented a two-stage feature pyramid CNN model that localizes the infection location with residual attention networks [191]. U-net 
architectures are a common feature in localization tasks. Hurt et al. proposed a U-net based CNN annotated for the task of COVID-19 
localization [192]. The predicted pneumonia probability map is used to infer the regions of interest for the radiologist inspection.

4.3. COVID-19 infection segmentation

This section presents a detailed review of various segmentation approaches to detect COVID-19 from X-ray/CT modalities. The key 
insights and methods described in these works are discussed elaborately.

4.3.1. X-ray based methods
The majority of AI works for COVID-19 identification from X-ray modality have carried out the classification task. There are few works 

on segmenting COVID-19 affected regions in X-ray. This is mainly because X-ray features are not primarily used in the localization and 
quantification of COVID-19 in the clinical setting compared to that of CT. CT manifestations of COVID-19 are relatively well explored 
and their features are predominantly studied for the identification of COVID-19 affected regions. Still, X-rays are a very useful modality 
for analyzing pneumonia of any nature and that has driven some works to apply it for COVID-19 infection segmentation. Most of these 
are optimization algorithms. For instance, Abdel-Basset et al. proposed a meta-heuristic algorithm that integrates Slime Mould Algorithm 
(SMA) with the whale optimization algorithm in order to maximize Kapur’s entropy [193]. The model extracts the regions of interest 
in the X-ray image by applying thresholding schemes. The extracted areas in the image denote ground-glass or consolidative pulmonary 
opacities. These X-ray observations are some of the manifestations associated with COVID-19. The performance of integrated SMA has 
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been evaluated on Chest X-rays and compared with five algorithms: Lshade algorithm, WOA, FireFly algorithm FFA, HHA, and salp swarm. 
In another study by Abdel-Basset et al., a hybrid detection model based on an improved marine predators algorithm (IMPA) was presented, 
along with a ranking-based diversity reduction (RDR) strategy for X-Ray image segmentation [194]. As described in Section 4.2, several 
works have demonstrated attention localization of COVID-19 on X-ray, nonetheless only the aforementioned works were explicitly trained 
for COVID-19 segmentation.

4.3.2. CT based methods
There are a diversity of AI methods that attempt accurate delineation of COVID-19 infected regions from chest CT. These methods 

broadly deal with attention mechanisms, CNN, and ML optimizations.
CNN for medical image segmentation has been employed to solve a range of lung abnormalities segmentations, including Ground 

glass opacities and consolidation. The established proficiency of CNN in segmentation has driven many researches to come up with novel 
deep architectures for the COVID-19 dataset. For instance, in the work by Wang et al., the authors proposed an adaptive self-ensembling 
framework that uses the student-teacher model to perform COVID-19 segmentation [195]. The exponential moving average of the student 
is used as a teacher model to guide the CNN. Additionally, a dice loss formulation was proposed for learning noise-robust features. 
Similarly, Fan et al. presented a segmentation network with a parallel partial decoder to extract the high-level features [196]. The semi-
supervised network used implicit reverse attention and explicit edge-attention to model the boundaries and enhance the representations 
of the images, suitable for limited datasets. In another study, Ni et al. used a deep learning algorithm consisting of lesion detection, 
segmentation, and location-based processing [197]. The quantitative determination performance was made with radiological residents. To 
estimate the location of COVID-19 infected tissues in the CT scan, Hassantabar et al. trained a feedforward CNN that linearly stacks several 
convolutional layers [198]. U-net based architectures are traditionally used as a baseline for measuring model performance on any dataset. 
For the COVID-19 data, Trivizakis et al. trained a U-net segmentation model to perform infection delineation [199]. The lung segmented 
CT slices were segmented on a custom encoder-decoder architecture and classified to COVID-19/pneumonia.

Another line of research has been in the image thresholding algorithms to learn COVID-19 segmentation. For instance, as a way of 
improving the Marine Predators Algorithm (MPA) for thresholding-based segmentation, Elaziz et al. proposed an improved moth-flame 
optimized MPA for segmenting COVID-19 regions from CT [200]. Mishra et al. implemented a Kapur/Otsu image thresholding based 
pneumonia segmentation, which is optimized with Cuckoo-Search-Algorithm (CSA) [201].

CAD-assisted diagnosis has provided meaningful interpretations of infected hotspot regions in the clinical diagnosis of COVID-19. Grassi 
et al. presented research in which radiologists carried out a computer-aided analysis of lung abnormalities (lung parenchyma volume, 
GGO, and consolidations) with three commercial AI software 1) Thoracic VCAR, 2) Myrian, Intrasense and 3) InferRead, InferVision [202]. 
The computer-aided pneumonia quantification was made towards assessing COVID-19 traces on the CT scan.

4.4. COVID-19 risk assessment and prognosis

Risk analysis of COVID-19 takes a critical role in early medication and to decide the course of the follow-up treatment. Some of the 
works have explored ways to provide an indication of the severity of the virus infection to aid clinical prognosis. For instance, Cohen et al. 
trained a DenseNet model on a regression task to predict the extent of lung involvement and degree of opacity in the COVID-19 affected 
chest X-rays [203]. The architecture consisted of CNN layers for feature extraction followed by fully connected layers for performing target 
predictions. In another work to assess the pulmonary disease severity of COVID-19, Li et al. developed a convolutional Siamese network 
algorithm that learns from chest X-rays [204]. The DenseNet121 was modeled as a Siamese network and was pre-trained with a weakly 
labeled CheXpert dataset. The CNN learning was transferred onto a smaller COVID-19 training dataset for pulmonary risk assessment. In 
the line of works that exploit clinical factors, Iwendi et al. developed a random forest classifier on patient health records, symptoms, 
age, gender to predict the influence of COVID-19 [205]. The node split criteria enable finding the critical features that affect COVID-19 
prediction. Ng et al. also presented a multi-variable logistic regression-based risk prediction model that considered factors like patient 
sex, age, symptoms, blood test results, and CXR findings [206]. Similarly, Liang et al. proposed a deep learning-based survival model 
that can predict the risk of COVID-19 patients developing critical illness based on clinical characteristics at admission [207]. The study 
constructed a three-layer feed-forward neural network for survival modeling which was then combined with a Deep learning survival Cox 
model. Zhang et al. presented a risk factor analysis using Kaplan-Meier curves that take CT segmented lung lesion areas and the clinical 
parameters as input to categorize patients into high/low-risk groups [208]. The CT segmentation was performed to identify five types of 
lesions, including consolidation (CL), ground-glass opacity (GGO), pulmonary and pleural effusion. Research in severity assessment and 
criticality prediction are the next steps in the automation for administering COVID-19 treatment protocols.

5. Discussion

This work carries out a comprehensive study of the various AI approaches in the literature for detecting COVID-19 from different 
imaging modalities. To the best of our knowledge, this is the first work presenting a modality-wise review of AI methods specifically for 
COVID-19 classification and segmentation.

5.1. Datasets for COVID-19 detection and infection delineation

In this section, the different CT and X-ray datasets used in the research literature for COVID-19 classification and segmentation have 
been described. For the classification task, a large number of researches have utilized one or more of the open-source datasets while 
some of them have trained on private datasets collected at hospitals and clinical labs. Table 4 presents a summary of the various openly 
available datasets on the web for COVID-19 detection. In the infection segmentation task, most of the datasets used in the works are held 
privately, while some of them are publicly accessible. Table 5 gives a compilation of such freely usable segmentation datasets.
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Table 2
A comprehensive view of some notable methods for COVID-19 classification.

S.no Source Modality Methodology Implementation libraries Validation Target classes 
(pneumonia/COVID-19/normal)

1 Khan et al. [103] X-ray CNN Keras, Tensorflow 4-fold 
cross-validation

COVID-19/Normal/Bacterial 
Pneumonia/Pneumonia viral

2 Karthik et al. [112] X-ray CNN PyTorch 5-fold 
cross-validation

Viral pneumonia/ Bacterial 
pneumonia/COVID-19/Normal

3 Goel et al. [117] X-ray CNN MATLAB 2020a 10-fold 
cross-validation

COVID-19/Normal/Pneumonia

4 Chowdhury et al. [121] X-ray CNN Keras, Tensorflow 80%:10%:10% COVID-19/Normal/Viral 
Pneumonia

5 Ucar et al. [125] X-ray CNN MATLAB 3687 training, 462 
validation, 459 
testing

COVID-19/Normal/Pneumonia

6 Marques et al. [128] X-ray CNN Keras 10-fold 
cross-validation

Normal/Pneumonia/COVID-19

7 Waheed et al. [129] X-ray CNN Keras 932 training, 192 
testing

COVID-19/Normal

8 Abraham et al. [133] X-ray CNN MATLAB 2020a 10 fold 
cross-validation

COVID-19/Non-COVID-19

9 Altan et al. [135] X-ray CNN MATLAB 2019b 80%:20% COVID-19/Normal/Viral 
Pneumonia

10 Toğaçar et al. [136] X-ray CNN MATLAB 2019b 5 fold 
cross-validation

Normal/Pneumonia/COVID-19

11 Islam et al. [138] X-ray CNN Keras,TensorFlow 5-fold 
cross-validation

Normal/COVID-19/Pneumonia

12 Nour et al. [139] X-ray CNN MATLAB (2019a) 70%:30% COVID-19/Normal/Viral 
Pneumonia

13 Shibly et al. [150] X-ray CNN TensorFlow 10 fold 
cross-validation

COVID-19/Non-COVID-19

14 Chandra et al. [152] X-ray Vote based Classifier MATLAB R2018a 10 fold 
cross-validation 
setup

Pneumonia/COVID-19

15 Ouyang. [159] CT CNN PyTorch 5-fold 
cross-validation

COVID-19/Community-Acquired 
Pneumonia (CAP)

16 Wang et al. [172] CT CNN PyTorch 4-fold 
cross-validation

COVID-19/Non-COVID-19

17 Pathak et al. [175] CT LSTM MATLAB 2018b 20-fold 
cross-validation

COVID-19 (+)/COVID-19 
(-)/Pneumonia

18 King et al. [176] X-ray SOFM Python, OpenCV 80%, 20% testing Normal/COVID-19
19 Singh et al. [177] CT CNN MATLAB 2019a 20-fold 

cross-validation
COVID-19 (+)/COVID-19 (-)

20 Ahuja et al. [179] CT CNN MATLAB 2019a 70%:30% COVID-19 (+)/COVID-19 (-)
21 Oh et al. [185] X-ray CNN MATLAB 2015a 70%:10%:20% 

testing
Normal/Bacterial/TB/COVID-19 
and Viral

Table 3
A comprehensive summary of few notable COVID-19 segmentation methods.

S.no Source Modality Methodology Testing dataset size

1 Abdel-Basset et al. [194] X-ray Improved Marine predators algorithm 9 X-ray images
2 Wang et al. [195] CT Adaptive self-ensembling CNN 130 CT scans
3 Fan et al. [196] CT Attention CNN 50 CT images
4 Hassantabar et al. [198] CT CNN 104 CT images
5 Elaziz et al. [200] CT Marine predators algorithm 21 CT images
6 Zhang et al. [208] CT Transfer learning CNN 939 CT slice images

5.2. Evaluation metrics for COVID-19 classification and segmentation

Different evaluation metrics were commonly used by researchers to measure the performance of the proposed models and techniques. 
For studies taking the classification approach, Accuracy (ACC), Specificity (SPE), Sensitivity (SEN), Precision (PRE) F1 Score (F1) are fre-
quently used.

5.2.1. Accuracy (ACC)
Accuracy is the fraction of correctly identified predictions, as given by Eq. (1). It measures the overall performance of the model on the 

test set.

ACC = T P + T N

T P + T N + F P + F N
(1)

where T P = true positive, T N = true negative, F P = false positive, F N = false negative.
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Table 4
Publicly available Imaging Datasets for the COVID-19 detection.

S. No Modality Description No of Samples Link to Dataset

1 X-ray COVID-chest X-ray-dataset (Accessed 
26 Oct 2020)

584 COVID-19 https://github .com /ieee8023 /covid -chestxray-dataset

2 CT SARS-COV-2 CT-scan, A large dataset 
of real patients CT scans for SARS 
CoV-2 identification

1252 COVID-19, 
1230 normal

https://www.kaggle .com /plameneduardo /sarscov2 -ctscan -dataset

3 X-ray Kaggle’s COVID-19 Radiography 
Database

219- COVID-19, 
1341- normal, 
1345 viral pneumonia

https://
www.kaggle .com /tawsifurrahman /covid19 -radiography-database

4 X-ray Covid-19 X rays, Dadario AMV. 78 COVID-19 https://www.kaggle .com /dsv /1019469
5 X-ray COVIDx dataset 13,975 COVID-19 https://arxiv.org /abs /2003 .09871
6 X-ray Chest x-ray images (pneumonia) 4265 COVID-19 

1575 Normal
https://www.kaggle .com /paultimothymooney /chest -xray-pneumonia

7 CT COVID-CT-Dataset: a CT scan dataset 
about COVID-19

349 COVID-19 
463 Normal

http://arxiv.org /abs /2003 .13865

8 X-ray COVID-19 chest X-ray (Accessed 30 
Oct 2020)

55 COVID-19 https://github .com /agchung /Figure1 -COVID -chestxray-dataset

9 X-ray Radiopaedia (Accessed 30 Oct 2020) 98 COVID-19 samples https://radiopaedia .org /articles /covid -19 -3 ?lang =us
10 CT The cancer imaging archive 

(TCIA)(Accessed 26 Oct 2020)
650 3d CT scans https://wiki .cancerimagingarchive .net /display /Public /CT +Images +in +

COVID -19 #70227107171ba531fc374829b21d3647e95f532c
11 X-ray E.H.C. Muhammad, et al. COVID-19 

radiology database. Can AI help 
screen viral COVID-19 pneumonia?, 
2020

23 COVID-19 (+), 
1485 Viral pneumonia, 
1579 Normal

https://arxiv.org /abs /2003 .13145

12 X-ray Italian society of medical and 
interventional radiology.

115 COVID-19 (+) https://www.sirm .org /category /senza -categoria /covid -19/

13 CT COVID-19 and common pneumonia 
chest CT dataset

412 Non-COVID-19 
pneumonia, 
412 COVID-19
pneumonia

https://data .mendeley.com /datasets /3y55vgckg6 /1

14 X-ray Actualmed COVID-19 chest X-ray 
dataset, 2020

239 COVID-19 https://github .com /agchung /Actualmed -COVID -chestxray-dataset

15 X-ray Praveen. Corona Hack: Chest 
X-Ray-Dataset.

58 COVID-19 
1576 Normal
4276 Pneumonia

https://www.kaggle .com /praveengovi /coronahack-chest -xraydataset

16 X-ray TWITTER COVID-19 CXR DATASET 134 COVID-19 https://twitter.com /ChestImaging

Table 5
Open access COVID-19 Segmentation datasets.

S. No Modality Description No of Samples Link to Dataset

1 CT COVID-19 CT Segmentation 
Dataset (Apr 2020)

100 COVID-19 2D CT slices https://medicalsegmentation.com/covid19/

2 CT COVID-19 CT Lung and 
Infection Segmentation 
Dataset (Apr 2020)

20 COVID-19 3D CT scans https://zenodo.org/record/3757476#.X5PdFS8RqJ8

3 CT MosMed COVID-19 CT Scans 1100 studies with 50 COVID-19 
annotated CT scans

https://mosmed.ai/en/

5.2.2. Specificity (SPE)
Specificity measures the proportion of negative class samples that were correctly identified, as presented in Eq. (2).

SPE = T N

T N + F P
(2)

5.2.3. Sensitivity (SEN) / Recall (REC)
Sensitivity/Recall measures the proportion of positive class samples that were correctly identified, which is given in Eq. (3).

SEN = T P

T P + F N
(3)

5.2.4. Precision (PRE)
Precision gives the rate of the truly classified positive images among the classes, which is expressed in Eq. (4).

PRE = T P

T P + F P
(4)

5.2.5. F1 score (F1)
F1 is a joint score of Precision and Recall, expressed as a harmonic mean of these metrics. It is given in Eq. (5).

F 1 = 2 × PRE × REC
(5)
REC + PRE
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For segmentation-based studies, along with Accuracy, F1-score, Precision, and Sensitivity, other evaluation metrics were utilized too. 
These are Jaccard Similarity Index (JI), Peak Signal to Noise Ratio (PSNR), Structured Similarity Index Metric (SSIM), Universal Quality Index 
(UQI), Dice similarity coefficient (DSC), Relative Volume Error (RVE), and Hausdorff Distance (HD95).

5.2.6. Jaccard similarity index (JI)
IOU or Jaccard Index is determined as the area of overlap between the prediction and actual ground truth, divided by the area of union 

between the prediction and ground truth. Eq. (6) illustrates this.

JI = IG ∩ I R

IG ∪ I R
(6)

where IG = Ground Truth Image, andI R = Predicted Segmentation map.

5.2.7. Peak signal to noise ratio (PSNR)
PSNR is used to measure the segmented image’s quality compared with the original image, expressed in Eq. (7).

PSNR = 10log10(
2552

MSE
) (7)

5.2.8. Structured similarity index metric (SSIM)
SSIM is used to measure the similarity, contrast distortion, and brightness between the original and the segmented feature. This is 

given in Eq. (8).

SSIM (O , S) = (2μO μS + a) (2σOS + b)

(μ2
O + μ2

S + a)(σ 2
O + σ 2

S + b)
(8)

where μO is the average intensities of the original image, while μS indicates the average intensities of the segmented image. σO , σS are 
the standard deviations of the original and segmented images, respectively. σOS is the covariance between the two images. a, b is equal to 
0.001 and 0.003, respectively.

5.2.9. Universal quality index (UQI)
UQI is an indicator similar to SSIM. As mentioned in Eq. (9), the index is used in measuring the quality of the segmented image based 

on the similarity structure between the two images rather than the error rate.

UQI (O , S) = (4μO μSσOS)

(μ2
O + μ2

S)(σ
2
O + σ 2

S )
(9)

5.2.10. Dice similarity coefficient (DSC)
DSC measures the overlapping volume between two segmentations, as seen in Eq. (10).

DSC = 2 | A ∩ B |
| A | ± | B | (10)

where A and B denote the voxel sets for segmentation and ground truth respectively.

5.2.11. Relative volume error (RVE)
RVE, given in Eq. (11), is used to compare automatic segmentation results to the manually traced ground truth.

RVE = abs(|A| − |B|)
| B | (11)

5.2.12. Hausdorff distance (HD)
HD, as illustrated in Eq. (12) and (13), measures the maximum distance separating the volumes of two surface points and illustrates 

the outliers obtained in the segmentation. HD95 is similar to HD, but instead takes the 95th percentile instead of the maximum value in 
Eq. (12).

HD′ (S A,S B
) = maxi∈S A min j∈S B ||i − j||2 (12)

HD
(

S A,S B
) = max

(
HD′ (S A,S B

)
,HD′ (S B, S A

))
(13)

5.3. Analysis of existing works

This section discusses salient performance trends of the different AI methods for COVID-19 detection and segmentation. These trends 
include the algorithms and systems that were employed in notable recent studies and an analysis of their performance in terms of various 
metrics.

Table 6 provides a consolidation of the state-of-the-art works for the classification of COVID-19 from X-ray and CT. The table high-
lights the top research papers from different model types. We developed a taxonomy of the classification methods and bucketed the 
research works into the following categories: Deep Transfer Learning, Ensemble CNN, Capsule Networks, Feature Selection techniques, 
Semi-supervised/GAN models, RCNN, Optimization Algorithms, CAD, Hybrid CNN, Sequential CNN, Evolutionary Algorithms. From Table 6, 
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Table 6
Analysis of results presented by few notable COVID-19 classification methods.

S.no Source AI Model Accuracy Sensitivity Specificity Precision F1 score AUC

1 Altan et al. [135] Swarm Optimization 99.69 99.44 99.81 99.62 99.53 -
2 Islam et al. [138] Hybrid CNN 99.4 99.3 99.2 - 98.9 99.9
3 Ahuja et al. [179] Deep Transfer learning – Fixed feature extractor 99.4 100 98.6 99 99.5 99.65
4 Toğaçar et al. [136] Social Mimic Optimization 99.34 99.32 99.37 99.66 99.49 -
5 Ucar et al. [125] Bayesian Optimization 99.18 99.13 - 99.48 99.3 -
6 Apostolopoulos et al. [144] Deep Transfer learning – Training from scratch 99.18 97.36 99.42 97.36 97.36 -
7 Nour et al. [139] Hybrid CNN 98.97 89.39 99.75 - 96.72 -
8 Haque et al. [111] Ensemble CNN – Stacking 98.3 100 96.61 96.72 98.3 98.3
9 Ouyang. [159] Attention CNN 98.1 99.4 87.3 - 94.7 98.7
10 Ozturk et al. [106] Deep Transfer learning – Fine-tuning 98.08 95.13 95.3 98.03 96.51 -
11 Karthik et al. [112] Shuffled Residual CNN 97.94 97.54 - 96.34 96.9 98.39
12 Goel et al. [117] Capsule net CNN 97.78 97.75 96.25 92.88 95.25 -
13 Jain et al. [85] Deep Transfer learning – Fixed feature extractor 97.77 97.14 - 97.14 97.14 -
14 Abraham et al. [133] Feature Selection 97.4359 98.6 - 98.6 98.6 91.1
15 Narayan Das et al. [109] Deep Transfer learning – Fixed feature extractor 97.4068 97.0921 97.2973 - 96.9697 -
16 Shibly et al. [150] RCNN 97.36 97.65 95.48 99 98.46 -
17 Marques et al. [128] Deep Transfer learning – Fixed feature extractor 96.7 96.69 - 97.59 97.11 -
18 Chowdhury et al. [121] Capsule net CNN 96.58 91.3 - 95.45 93.33 -
19 Vaid et al. [75] Deep Transfer learning – Fixed feature extractor 96.3 97.1 - 91.7 94.3 -
20 Pathak et al. [175] Hybrid CNN 96.1983 96.2295 96.1667 - 96.1667 96.2295
21 Alqudah et al. [141] Hybrid CNN 95.2 93.3 100 100 96.53 -
22 Waheed et al. [129] Generative Adversarial Networks 95 90 - 96 92.9 -
23 Duran-Lopez et al. [145] Class Activation Maps 94.43 92.53 96.33 93.76 93.14 98.8
24 Misra et al. [84] Ensemble CNN – Stacking 93.9 100 - 89.6 94.5 -
25 Abbas et al [107] Deep Transfer learning – Fixed feature extractor 93.1 87.09 100 - - -
26 Sethi et al. [92] Deep Transfer learning – Fine-tuning 93 78 - 97 86 -
27 Woźniak et al. [209] Neural Network 92 95 89.7 95.23 95.11 -
28 Chandra et al. [152] Ensemble – Majority Voting 91.329 96.512 86.207 87.368 91.713 91.4
29 Dansana et al. [81] Ensemble CNN – Probability averaging 91 94 - 100 97 -
30 Luján-García et al. [104] Deep Transfer learning – Fine tuning 91 87 - 92 88 98
31 Wang et al. [172] Hybrid CNN 90.83 85.89 - 95.75 90.87 96.24
32 Singh et al. [177] Multi-objective Differential Evolution Optimization 90.22 98.4 89.2 89.8 93.9 -
33 Khan et al. [103] Deep Transfer learning – Fixed feature extractor 89.6 89.92 96.4 90 89.8 -
34 Panwar et al. [79] Deep Transfer learning – Fixed feature extractor 88.10 97.62 78.57 82 89.13 -
35 Oh et al. [185] Grad-CAM localization 84.8 80.1 94.8 78.8 79.3 -

Table 7
Analysis of results presented by notable COVID-19 segmentation methods.

S.no Source Method PSNR SSIM UQI DSC RVE HD Accuracy Sensitivity Specificity Precision JI

1 Trivizakis et 
al. [199]

Transfer Learning 
– Fine-tuning

99.6 91.1 92 87.5

2 Satapathy et 
al. [201]

Otsu Thresholding - - - 90.32 - - 97.62 - - - 83.18

3 Wang et al. 
[195]

Teacher-Student 
CNN

- - - 80.29 17.72 18.72 - - - - -

4 Fan et al. 
[196]

Attention CNN - - - 57.9 - - - 87 97.4 50 -

5 Abdel-Basset 
et al. [194]

Marine Predators 
Optimization

33.26 0.98 0.98 - - - - - - - -

6 Ni et al. [197] 3D U-Net CNN - - - - - - 85 97 61 - -
7 Hassantabar 

et al. [198]
CNN - - - - - - 83.84 - - - 40.00

8 Elaziz et al. 
[200]

Marine Predators 
Thresholding

25.43 0.81 - - - - - - - - -

although few techniques offer the highest results, the variance in performance metrics between different methodologies is very less. For 
instance, the studies on optimization algorithms and CNN transfer learning have reported similar results, in terms of f1-score, sensitivity, 
accuracy. Thus, a test of statistical significance is needed to identify which sets of algorithms are better when compared to the rest. Be-
sides, though transfer learning-based works in overwhelming majority, concepts like attention mechanism, ensembling, hybrid multi-stage 
CNN are gaining huge traction in recent works.

Similarly, Table 7 summarizes the top research works that perform the infection segmentation from CT/X-ray. As discussed in Sec-
tion 5.2, for segmentation, metrics including Dice metric, Jaccard Index, and PSNR yield insights into the effectiveness of these methods. 
The range of methods used in segmentation can be grouped into Optimization algorithms, U-net CNN, Attention CNN, Ensemble CNN, 
Thresholding Algorithms, and CAD techniques. It could be inferred from the results that, thresholding techniques presented in Elaziz et 
al. [200], Satapathy et al. [201] have been able to efficiently capture the intensity range of the COVID-19 infection, in the same levels 
as the other CNN models. Hyper-parameter fine-tuning and optimizations of current CNN architectures have significantly led to better 
generalization on the COVID-19 dataset.

Table 8 captures statistical trends of the recent methodologies by grouping them based on the learning objective and the modality. The 
major COVID-19 AI topics reviewed in this study include classification, segmentation, region localization, and risk assessment from medical 
images. The radiological modalities included in the study are X-ray and CT scans. Table 8 also gives the mean and standard deviation of 
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Table 8
Statistics of existing works with respect to the objective, modality, and method used.

Objective Modality Method Number of works Average Accuracy Standard deviation 
of Accuracy

Classification X-ray Deep Transfer learning 40 91.56 8.60
Ensemble CNN 8 94.81 2.75
Capsule Networks 4 93.62 6.34
Feature Selection 9 94.14 8.35
Semi-supervised / GAN models 6 95.30 3.47
RCNN 1 97.36 0
Optimization Algorithms 6 93.77 9.30
Hybrid CNN 8 93.93 8.65
Sequential CNN 3 98.30 1.23
CAD 3 85.46 11.04

CT Deep Transfer Learning 11 91.98 5.43
Evolutionary Algorithms 2 94.79 1.97
Feature Selection 5 94.60 5.33
Hybrid CNN 5 87.33 6.23

Segmentation X-ray Optimization Algorithms 2 87.74 9.69
CT U-Net CNN 3 86.64 3.90

Attention CNN 1 73.90 0
Ensemble CNN 1 80.29 0
Thresholding Algorithms 2 95.02 3.67
CAD 1 67.00 0

Region Localization X-ray CAM Algorithms 6 91.78 8.77
Object detection models 2 98.71 1.21

CT CAM Algorithms 3 94.18 2.86

Risk Assessment and Prognosis X-ray Deep Transfer Learning 2 86.50 12.02
CT Kaplan-Meier model 1 92.49 0
Clinical Data Supervised ML models 3 91.50 2.32

Total 140

the accuracy metric registered for these method categories. Given that some categories have a large number of papers and some have 
lesser papers, it is important to robustly validate the efficacy of these approaches using statistical significance tests. When comparing the 
approaches, several factors such as dataset source, size, complexity, optimization criterion, train-test setup are involved. At a high level, 
for a type of method, averaging the accuracies reported by the papers in that group directly reflects on the group’s performance as a 
whole. Thus, in our hypothesis testing experiments, the accuracy score is considered to represent each research paper (observation) in the 
method category (sample set).

The hypotheses of this review are three-fold. First, though a diverse range of deep learning models is learnt for the task for COVID-19 
diagnosis and infection segmentation, the difference in their efficacy measured on a certain set of metrics only varies by a small margin. 
Second, there can be multiple best-performing methods, going by the statistical significance. Lastly, since the usefulness of the current 
methods is established for the major detection/segmentation tasks, the future research direction lies in the exploration of these models 
for less traversed areas such as severity assessment and weakly supervised localization.

We use the two-sample t-test on pairs of AI methods for comparing their performance. Statistical hypothesis tests are used to quantify 
the likelihood of metric values, assuming that the models were drawn from the same population. When this assumption (null hypothesis) 
is rejected, there is a significant difference in the metrics between the two groups. For a two-sample Student’s t-test, we assume that the 
metrics recorded by the model are independent of each other, and the two independent AI method groups are randomly sampled from 
two normal populations.

Let x1, x2 denote the mean accuracy of the two AI methods M1, M2 with n1, n2 number of research works respectively. Let s1, s2

be the standard deviation of the accuracies registered on the sample sets M1, M2. Then, the pooled standard deviationsp , which is a 
combined estimate of the overall deviation between the groups is given by Eq. (14).

sp =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
(14)

The combined estimate adjusts for the size of the two groups. Then, the t-statistic can be calculated as shown in Eq. (15).

t = x1 − x2

sp

√
1

n1
+ 1

n2

(15)

Then the p-value of the t-statistic needs to be computed, using the degree of freedom = n1 + n2 − 2. For a significance level α = 0.05, 
if the p-value is smaller than 5%, then the null hypothesis is rejected, which would mean that the models perform differently. If not, the 
null hypothesis that the models’ performance is equivalent does not fail.

For each pair of methods pertaining to a task-modality bucket listed in Table 8, the T-test was applied. That is, all AI methods only 
within the learning objective and modality category will be compared and not across a different task or a modality. This was to ensure 
that there is a fair comparison of AI methods only with respect to other methods performing the same learning task on the same kind of 
data. Fig. 3 shows the t-statistics registered for AI methods concerning four types of task-modalities from Table 8.

From Fig. 3, these four combinations of task-modality have at least more than one kind of AI method to perform comparison. For the 
other task-cum-modality categories listed in Table 8, the research works are only from a single AI method. The t-statistic values computed 
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Fig. 3. T-statistic of the observed accuracy values between pairs of AI methods bucketed by the combination of task and modality.

for a pair of AI methods as per Eq. (15) can be converted into a p-value taking into account the degrees of freedom. Fig. 4 presents the 
p-value tables for the four problem types. The p-value is the probability of obtaining a test accuracy value as extreme as the observed 
results, assuming the null hypothesis is true.

Fig. 4 validates the first hypothesis that the difference between the type of AI models that perform the same task on similar data 
is not statistically significant. For a significance level of 5%, the p-value is greater than this threshold in most of the pairwise method 
comparisons. Thus, the null hypothesis that the performance of the methods is similar cannot be rejected. As an example, for X-ray 
classification, the CAD performs very similarly to all other methods except the ensemble CNN. In other cases, the comparisons between 
the methods have not differed significantly. So, the first hypothesis has been validated with convincing evidence from the t-test.

Secondly, to identify the best-performing models, we inspect the p-value to pick clusters of methods that are highly correlated to 
each other. From the heatmap visualization for X-ray classification, the following highly accurate methods perform similarly - Capsule 
networks, Ensemble CNN, Feature selection, GAN, Hybrid CNN, and Optimization Algorithms. In the same manner, from the p-value matrix 
in Fig. 4 for COVID-19 CT classification, the Evolutionary Algorithms and Feature Selection form a cluster that has high mean accuracy. For 
CT segmentation, Thresholding techniques and U-net CNN have 28% and 17.5% better accuracy compared to the correlated cluster formed 
by Attention CNN, CAD, Ensemble CNN. Therefore, they are the better approach. Weak region localization is better achieved using object 
detection algorithms which are 7.55% more than CAM algorithms.

The future research direction in this field would be exploring the current techniques and radiological data for predicting more complex 
versions of classification/segmentation, such as the criticality assessment at the patient level, for different lung regions, etc. A fusion 
of these techniques can be developed to address different tasks in a unified framework. A radiological timeline trend of the COVID-
19 progression from sets of patients can be analyzed to reveal the radiological features responsible for complications at every stage. 
Section 5.5 elaborately discusses the future implications of the current methods.
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Fig. 4. P-value of the t-test performed between pairs of AI methods for different combinations of task and modality.

5.4. Country/continent wise analysis of COVID-19 works

To gain insights into which countries are actively engaged in the health informatics for COVID-19, two kinds of analysis were performed. 
In the first study, we identify continents/countries that are actively contributing to the creation of COVID-19 clinical datasets. The second 
analytics reveals countries that are currently working with the best AI results.

Fig. 5 presents the bar plot showing the number of unique datasets published by different regions of the world. These unique datasets 
ranged from manually collected datasets to aggregates of other open-source datasets. A few cases of super-aggregates were found as 
well. Every instance of data used from a particular region was noted and consolidated. This consolidation can be seen in Fig. 5. It can 
be observed that a majority of instances sourced data from the North American and Asian regions, followed by European samples as 
well. Within Asia, countries like India, China, Bangladesh are actively engaged in sourcing clinical data, reports from public hospitals. In 
North America, the USA, Canada, Mexico are leading data providers. Poland, Italy, UK, Germany are the biggest contributors from Europe. 
Although few in number, Russia has created high-quality segmentation databases for lung infection delineation, criticality assessment, and 
prognosis.

The second analysis attempts a performance comparison of published works from each country. The accuracy metrics reported in the 
research works were aggregated to form a country-wise boxplot distribution. The box plot shown in Fig. 6, gives the minimum, maximum, 
median, and quartile accuracy scores registered in the research by various countries. It can be seen that out of 25 countries reviewed, 13 
countries have median accuracy of over 95%.
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Fig. 5. Observed count of datasets from regions across the world.

Fig. 6. Country-wise Analysis of model performance.

5.5. Challenges in COVID-19 detection and future trends

There are several challenges faced in automatic COVID-19 detection from radiological imaging. This section provides a compilation of 
all such influencing factors in the literature.

5.5.1. Availability of sufficient dataset
Owing to the recency of the COVID-19 pandemic, imaging databases are being constantly updated with clinical data gathered from 

hospitals and testing labs. There is a lack of benchmarked large-scale datasets for robustly validating the performance of the methods 
proposed in AI research. Many works have presented the model results on an inadequate number of test-set samples, which might not 
generalize to real-world data. Furthermore, for the COVID-19 segmentation task, a large number of works have used privately acquired 
data, making it difficult to compare with newer methods. Lack of expert annotations for CT is another major challenge faced in building 
segmentation datasets. To counter that, several weakly supervised approaches, data augmentation techniques have been proposed in the 
literature. However, the substantial need for labeled, annotated datasets is critical to develop robust learning algorithms and establish 
benchmarks. Besides, the varying conditions, time duration under which these images are obtained, have to be consistent with the ra-
diological observations of when the infection gets highlighted in the CT/X-ray. X-ray samples taken during the very early stage might 
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not reveal the manifestation of the virus, which might not be useful in training the model. Moreover, the large heterogeneity of samples 
collected from different scanners has to be intensity normalized to prevent any operations bias from interfering in the training.

5.5.2. Challenges in applied deep learning
The development of AI techniques for COVID-19 identification has been largely in the transfer learning approach. The standard CNN 

architectures that were pre-trained for a different task had to be customized for the COVID-19 dataset through altering specific layers 
and extensive hyperparameter tuning. While few works have applied such optimizations, several other works directly compared the 
performances of the standard deep learning models. To achieve the best results on the medical imaging dataset, transfer learning models 
have to be trained from scratch.

Also, given the limited size of the available training dataset, it is important to design strategies that avoid model overfitting. Some 
works have trained GAN for data augmentation while several other types of research have applied image affine transformations. Since 
CNN have large discriminative power, in transfer learning from large CNN like the Inception-V3, ResNet50, suitable training optimizations 
(like regularization, optimal stopping) are needed to address the issue of generalizability. Moreover, large models like the Capsule-net 
require sophisticated computing hardware resources to train and take time to predict.

The lack of proper benchmarked COVID-19 data has prompted the researches to utilize related datasets for building the AI model. 
For example, several works have trained AI to detect COVID-19 related lung diseases, like viral pneumonia. Some works fit AI models to 
identify lung abnormalities such as airspace opacities, alveolar and interstitial opacities, which are signs of COVID-19 [90], [95]. While 
these X-ray features can suggest COVID-19, the vice-versa needn’t be true. Knowing the applicability of these generic X-ray features 
towards COVID-19 detection under appropriate conditions would justify training the model to find these X-ray patterns.

5.5.3. Research on predicting risk of COVID-19, follow-up treatment, and prognosis
Research on risk assessment of the COVID-19 infected patient has been a less explored arena in the medical imaging perspective. 

While most of the works have used CT/X-ray images to detect the virus or propose infection region segmentation, very few works have 
demonstrated the severity of the infection. Using radiographs to learn a regression model of the patient criticality can help prioritize the 
serious cases on a first-serve basis. AI for prognosis from clinical data can guide doctors in knowing the degree to which the patient is 
suffering from pneumonia, mainly alert if the patient needs immediate care. With a huge inflow of cases and running out of hospital 
beds, such AI mechanisms would also enable grouping patients by the likely course of treatment or medication. This helps to avoid 
complications in critical patients by tending to them first.

In addition to performing classification, the class-activation maps generated from the intermediate layers provide a useful indication 
of the infection hotspots in the radiological image. Such infected regions visualization is key for understanding CNN focus areas even for 
the CNN trained on the classification task. While the GRAD-CAM, Score-CAM, guided backpropagation techniques are widely used in many 
works, newer researches on refining these algorithms in the context of X-ray/CT will enable more accurate localization.

5.5.4. Future trends
The COVID-19 detection, localization, and segmentation from imaging modality is an active research area in AI-assisted clinical diagnosis 

and it offers huge scope for driving innovations in the radiology domain. Currently, the X-ray/CT features for different kinds of lung 
abnormalities and pulmonary diseases are well documented through several clinical studies. The COVID-19 being very recent doesn’t have 
such well-defined prescriptions for human-level interpretations. Though GGO and consolidation are used as a generic reference in many 
COVID-19 studies, with data mining and AI, the micro-level latent patterns specific to COVID-19 can be precisely revealed. AI-assisted 
pattern mining should help the radiologist/clinician develop guidelines for analyzing the image from a biomedical perspective and decide 
prognosis. Also, future works should attempt to track the progression of these subtle, distinct COVID-19 X-ray/CT manifestations across 
time, so that the patient medical condition and the evidence from the radiograph can be correlated for drawing clear directions in medical 
studies. The upcoming researches would largely be along the lines of directly assisting the doctor in medication through explainable AI.

Further, there exists a great demand for generating high-resolution radiographs to solve data augmentation. Generative adversarial 
networks are a promising research direction for accomplishing that. Since such high-resolution COVID-19 images are generated from the 
same data distribution, they can facilitate building AI models, even though they might not directly come from the clinical setting. Another 
prominent line of research is in the patient severity assessment and prognosis which are a critical part of the clinical use case. Future AI 
work should majorly focus on fusion approaches that employ multiple data representations (genome sequences, medical images, variables 
involved in medical analysis) to regress the patient criticality score.

5.6. Limitations of this study

The following are some of the limitations of this review.

• This review has only considered AI works that have used radiological imaging data for prediction. In a different research space, several 
works have employed Genome sequence data, patient medical conditions, previous health records for predicting chances of COVID-
19. While those factors might influence the probability of the person being infected, imaging is the principal modality that provides 
unbiased evidence for COVID-19, regardless of patient age or other factors.

• The review has taken considerable effort and time to compile diverse researches and draw key insights from them. In the article 
searching process though, a certain set of keywords have been used to curate articles. Some works might have been missed due to 
incomplete/partial keyword matching.

• This study does not focus on describing imaging features that decide the symptoms/course of treatment for the infected patient. The 
review is mainly concerned with testing if an individual has COVID-19 or not.
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6. Conclusion

The COVID-19 outbreak has created a sense of perturbation all over the world. In a silver lining, this agitation can present as motivation 
for advancements and research in Artificial Intelligence, to assist medical workers to tackle the pandemic. While the advantages it brings 
are quite clear, it is a fact that Artificial Intelligence models can never replace doctors and radiological experts. Nevertheless, Computer-
aided techniques for the analysis of medical images have grown significantly in recent times, contributing to medical research and clinical 
applications. Recent studies have proven the reliability of image-based COVID-19 diagnosis, through deep learning and machine learning 
architectures. This research intended to review the recent achievements and progress of these architectures in the classification and seg-
mentation of the manifestation of a COVID-19 infection, through the modalities undertaken. Albeit these improvements, some limitations 
have persevered, allowing scope for more developments as well. With the urgency this pandemic brings, mankind depends on scientific 
revolution for an answer. And if the medical doctors and radiological experts also play a part in the conception and building of the 
framework for artificial intelligence models, breakthroughs can materialize faster. Though deep learning and machine learning has yielded 
significant results in the medical domain, their potential is immense for other image-based classification and segmentation tasks. This 
potential is currently inhibited by its large consumption of time and resources, high implementation costs, etc. Classification and segmen-
tation algorithms suffer another obstacle, being insufficient and unbalanced data, which leads to overfitting and unreliable predictions. 
Further advancements and novelties devised to overcome these limitations, can contribute significantly to breakthroughs in the field of 
biomedical image processing.
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Appendix. Evaluation form for review

Preliminary scrutiny and filtering

S. No Question Yes No Other (NR/CD)

1 √ Is the article a bone fide and original publication, proposing a novel artificial intelli-
gence method for COVID-19 detection based on medical imaging?

2 Objectives of the research√ Is the work a deep learning, or machine learning, specific approach for COVID-19 detection?√ Are the sole datasets used in the studies X-ray or CT images?√ Is there a clear explanation of the approach taken by the research?√ Are the inferences of the study having clarity and are comprehensible?√ Is the numerical reports and results presented by the study precise and significant?

If the answer for question 2 is ‘no’, further scrutiny is omitted.
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Secondary scrutiny and filtering: Based on datasets and methods

S. No Question Yes No Other (NR/CD)

1 Research Methodology√ Is there substance to support the motivation of the study in the form of a ‘Related 
Works/Literature Survey’ section?√ Are all the defined sections of the study presented clearly?

2 Datasets employed√ Is there a proper citation of the sources and the important features of the dataset used?√ Is the dataset considered from that of a unique and categorized population?√ Is the sample size and labels clearly mentioned for this research?√ Has the validation system of the methods employed been explained clearly?

3 Performance and implementation analysis√ Is the basic structure of the methodology employed laid out clearly?√ Are the implementation features required and utilized for the method provided in de-
tail?√ Are reviewed comparisons drawn between the proposal of the publication and the 
methods reported in their literature?√ Are the metrics employed for the model validation in relation the same ideology of the 
problem definition?

4 Key findings:√ Are there limitations against the problem statement reported in the article?√ Is there a constructive and notable conclusion presented in the paper?

Tertiary scrutiny and filtering: Based on architecture and training-validation

S. No Question Yes No Other (NR/CD)

1 Utilized architecture√ Is the proposed method involving deep learning architectures like CNN, FCN, FFNN, etc.?√ Is the proposed method involving machine learning architectures like SOFM, etc.?√ Is the proposed method involving any hybrid or ensemble based architectures?

2 Training-Validation methods√ Are the batch size and training details of the proposed work mentioned?√ Is there any use of pre-processing presented with the proposed method?√ Are all the hyper-parameters and network configurations of the proposed method listed out?√ Has the study clearly reported all results, based on the defined performance metrics?

(NR: Not Reported and CD: Cannot Determine)

Conclusion of evaluation form: Accept Reject Seek Further details

Comments:
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[211] Woźniak M, Połap D. Bio-inspired methods modeled for respiratory disease detection from medical images. Swarm Evol Comput 2018;41:69–96.
510

https://doi.org/10.21203/rs.3.rs-40148/v1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib854D6FAE5EE42911677C739EE1734486s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib854D6FAE5EE42911677C739EE1734486s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibE2C0BE24560D78C5E599C2A9C9D0BBD2s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib274AD4786C3ABCA69FA097B85867D9A4s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib274AD4786C3ABCA69FA097B85867D9A4s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibEAE27D77CA20DB309E056E3D2DCD7D69s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibEAE27D77CA20DB309E056E3D2DCD7D69s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib7EABE3A1649FFA2B3FF8C02EBFD5659Fs1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib7EABE3A1649FFA2B3FF8C02EBFD5659Fs1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib69ADC1E107F7F7D035D7BAF04342E1CAs1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib091D584FCED301B442654DD8C23B3FC9s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib091D584FCED301B442654DD8C23B3FC9s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibB1D10E7BAFA4421218A51B1E1F1B0BA2s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibB1D10E7BAFA4421218A51B1E1F1B0BA2s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib6F3EF77AC0E3619E98159E9B6FEBF557s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bib6F3EF77AC0E3619E98159E9B6FEBF557s1
http://refhub.elsevier.com/S1959-0318(21)00095-6/bibEB163727917CBBA1EEA208541A643E74s1

	AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Dir...
	1 Introduction
	2 Research search strategy
	3 Radiological imaging for Covid-19 detection
	3.1 Chest X-ray manifestation of COVID-19
	3.2 Chest CT COVID-19 patterns

	4 AI techniques for COVID-19 detection and infection delineation
	4.1 COVID-19 classification from radiographic imaging
	4.1.1 Chest X-ray based classification
	4.1.2 CT based classification

	4.2 COVID-19 regions localization
	4.3 COVID-19 infection segmentation
	4.3.1 X-ray based methods
	4.3.2 CT based methods

	4.4 COVID-19 risk assessment and prognosis

	5 Discussion
	5.1 Datasets for COVID-19 detection and infection delineation
	5.2 Evaluation metrics for COVID-19 classification and segmentation
	5.2.1 Accuracy (ACC)
	5.2.2 Specificity (SPE)
	5.2.3 Sensitivity (SEN) / Recall (REC)
	5.2.4 Precision (PRE)
	5.2.5 F1 score (F1)
	5.2.6 Jaccard similarity index (JI)
	5.2.7 Peak signal to noise ratio (PSNR)
	5.2.8 Structured similarity index metric (SSIM)
	5.2.9 Universal quality index (UQI)
	5.2.10 Dice similarity coefficient (DSC)
	5.2.11 Relative volume error (RVE)
	5.2.12 Hausdorff distance (HD)

	5.3 Analysis of existing works
	5.4 Country/continent wise analysis of COVID-19 works
	5.5 Challenges in COVID-19 detection and future trends
	5.5.1 Availability of sufficient dataset
	5.5.2 Challenges in applied deep learning
	5.5.3 Research on predicting risk of COVID-19, follow-up treatment, and prognosis
	5.5.4 Future trends

	5.6 Limitations of this study

	6 Conclusion
	CRediT authorship contribution statement
	Human and animal rights
	Informed consent and patient details
	Funding
	Authors’ contributions
	Declaration of competing interest
	Appendix Evaluation form for review
	References


