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ABSTRACT: How are molecules linked to each other in complex
systems? In a proof-of-concept study, we have developed the
method mol2net (https://zenodo.org/record/7025094) to gen-
erate and analyze the molecular network of complex astrochemical
data (from high-resolution Orbitrap MS1 analysis of
H2O:CH3OH:NH3 interstellar ice analogs) in a data-driven and
unsupervised manner, without any prior knowledge about chemical
reactions. The molecular network is clustered according to the
initial NH3 content and unlocked HCN, NH3, and H2O as spatially
resolved key transformations. In comparison with the PubChem
database, four subsets were annotated: (i) saturated C-backbone
molecules without N, (ii) saturated N-backbone molecules, (iii)
unsaturated C-backbone molecules without N, and (iv) unsatu-
rated N-backbone molecules. These findings were validated with previous results (e.g., identifying the two major graph components
as previously described N-poor and N-rich molecular groups) but with additional information about subclustering, key
transformations, and molecular structures, and thus, the structural characterization of large complex organic molecules in interstellar
ice analogs has been significantly refined.

■ INTRODUCTION
The complexity of chemical systems is based on species’
interaction patterns.1 This leads to emergent collective
systems’ properties such self-organization,2 autocatalysis,3 or
global reactivity,4 properties that are hidden on the level of
individual species.

Astrochemical samples are here of specific relevance, as their
outstanding molecular diversities exceed those of other
chemical samples (e.g., biochemical or environmental
data).5−7 The evolution of organic material, from molecular
clouds toward planetary systems, can be simulated by
laboratory experiments.8 The benefit of such experiments is
two-fold: (i) controlled experimental parameter space and (ii)
in-depth chemical analysis (e.g., high-resolving, high accurate
and sensitive mass spectrometry).6 The resulting high-
dimensional data sets enable to study the complete diversity
of astrochemical organic molecules from a system’s chemistry
perspective.6

The comprehensive and unbiased analysis of complex
chemical systems is a huge challenge and implies constant
development of analytical methodology with innovative
solutions for their data analyses.6,9 Network analysis represents
an excellent tool to analyze complex systems as complete as
possible, in general10 or in (astro)chemical context.6,11 This
approach covers a wide range of chemical applications,
including astrochemistry,12 meteorites,4 prebiotic chemistry,13

origin(s) of Life,14 astrobiology,15 systems chemistry,16

autocatalysis,3 environmental science,17 or biochemistry.18

Networks allow one to visualize19 and further quantify complex
interactions as they unveil systemic patterns instead of
addressing individual reactions only. They thus shed light
into the organization and interconnections of chemical systems
as a whole.20 Even though reaction network analysis has
powerfully demonstrated the characterization of chemical
systems with partially unknown reaction rates,21 current
reaction network methods have two key drawbacks because
of their supervised architecture: (i) individually addressed
reactions (side reactions are ignored) and (ii) reaction rate
dependence on physical environment (e.g., gas-phase vs solid-
state-mediated reactions). In other words, current reaction
network analysis depends on prior knowledge about the
individual reactions.22

In this proof-of-concept study, we developed the method
mol2net24 that has analyzed the interactions of many tens of
thousands of different chemical compounds. We applied data-
driven graph-based network analysis to astrochemical data as
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an example for complex chemical systems. A previously well-
described data set of interstellar ice analogs from high-
resolution Orbitrap MS1 data (without fragmentation
information, no MSn data required) was used23−27 that allowed
for validation of this novel method. This data set represents 15
different H2O:CH3OH:NH3 ice samples (3:1:0.2, 3:1:1, 3:1:5,
and 10:1:1) that are grouped into three categories: (i) NH3
content, (ii) H2O content, and (iii) additional physical
processes (over-irradiation) of the formed residue. The
molecular network was generated by mass difference
matching28−30 of 3270 CHNO molecular formulas (between
199 and 365 amu, atomic mass unit, nodes in the network)
with a set of in silico transformations (edges in the network).
We want to highlight that no prior knowledge about chemical
reactions (e.g., reaction rates) was required. In contrast to the
previous studies,26,27 we have here not only characterized the
compounds independently but we also put emphasis on their
interconnectedness by discussing (i) the clustering of the
molecular network, (ii) the key transformations, (iii) the
subnetworks and PubChem database unlock structural
information, and (iv) the annotation of complex chemical
spaces.

■ RESULTS AND DISCUSSION
Clustering of the Molecular Network. Figure 1

illustrates the molecular network of interstellar ice analogs, as
whole and zoom-in pictures. Using a transformation set of {H2,
O, CO, NH3} (named as “minimal set”), 95% of all 3270
molecular formulas could be linked within two graph
components (components 0 and 1, with 2357 nodes/5608
edges and 752 nodes/1431 edges, respectively, Supporting

Figure 1). The two graph components represent two
previously reported distinct N-poor and N-rich molecular
groups (Supporting Figure 4).26,27 Transformations were
chosen in a data-driven and unsupervised manner as informed
from prior distance matrix analysis. Our goal was to keep the
set of transformations as minimal as possible to maximize
interpretation of individual transformations. We have tested six
other transformations {CHN, CH3N, H2O, CO2, CH2O,
CHNO} and found that their step-by-step addition is invariant
with respect to the network topology and addition sequence, as
tested by (i) network clustering, (ii) shape of degree
distributions, and (iii) component frequency (Supporting
Figure 3). Thus, the four transformations from the “minimal
set” explain the complete connectivity of the analyzed greater
than 3000 compounds in the interstellar ice analogs. These
transformations represent potential reactions in interstellar
ices, based on previous laboratory experiments (H2,

31,32 O,33

NH3
34−36).

The molecular network is clustered according to the NH3
content (arrow “NH3 content in ice”, NH3 poor (blue), NH3
medium (green), H2O rich (gray), and NH3 rich (red) Figure
1). The trend from NH3 poor to NH3 rich is intuitive but the
H2O-rich cluster in between highlights the importance of H2O-
mediated organic chemistry inside ices.26,37,38 Molecules in the
over-irradiation cluster (orange, additional irradiation of the
resulting ice residue at 300 K26,27,39,40) are aligned orthogonal
to the “NH3 content gradient”, accompanied by higher DBE
(double bond equivalent) and lower #O (decarboxylation/
formation of unsaturated, aromatic structures26,27). The same
cluster gradient has been observed for component 1 as well
and furthermore substructured in each component. This

Figure 1. Clustering of the molecular network. The molecular network is grouped into two major graph components (components 0 and 1, with
2357 nodes/5608 edges and 752 nodes/1431 edges, respectively) and different clusters (blue, green, gray, and red clusters, illustrated by dashed-
line zones) that are related to the NH3 content in the initial ice. Fifteen different H2O:CH3OH:NH3 ice samples that varied in their initial ice
composition (3:1:0.2, 3:1:1, 3:1:5, and 10:1:1) were used. An additional physical process, namely, over-irradiation (organge cluster), shows
chemical properties that are different to those of cold ice chemistry (at 77 K). Element gradients further organize the network.
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indicates that similar initial reactivities in ices result in two
different types of chemical pathways (components 0 and 1
housing the minimal set H2, O, CO, NH3). The novelty of this
type of clustering is that it is based on species’ interactions and
not on the species’ (isolated) characteristics what result in
highly resolved clustering structures (two gradients/substruc-
tures per graph component).

Element maps represent molecular cartography and further
organize the complex molecular network (Figure 1, Supporting
Figure 4). For both components 0 and 1, hydrogen and carbon
counts (#H, #C) are correlated to each other but orthogonally
correlated to nitrogen counts (#N). Molecules in the NH3-
poor cluster (blue) show higher #C and #H and lower #N,
compared to the NH3-rich cluster (red, competition between
C and N in molecular backbone formation26,27). For
component 0, oxygen counts (#O) and DBE are aligned
orthogonal to #C and #H, with low #O and high DBE at the
bottom (including the over-irradiation cluster). For compo-
nent 1 (high DBE), #O is fairly constant.

The different clusters show different chemical character-
istics41 (Supporting Figure 5). H/C and N/C ratios increase
from NH3-poor to NH3-rich ices. N/C ratios get very high for
high NH3 content (N/C up to 1.3) that may represent cyclic
secondary amines (in accordance to high H/C and low DBE
for component 0). The major chemical family is CHNO
molecules, next to CHN ones. The number of CHN molecules
slightly increases with higher NH3 content. Molecules in the
over-irradiation cluster show a depletion of CHNO molecules
(relative to CHN ones, in agreement with lower #O).

Key Transformations. Figure 2 illustrates key trans-
formations in the molecular network that connect molecules
along different network clusters, for example, for the transition
from the NH3-poor toward NH3-medium cluster.

Transitions from the NH3-poor cluster to the NH3-medium
cluster are dominated by CHN and CH3N subtractions (that
potentially represent HCN and CH2NH transformations with
backward/forward transformations >1 (Figure 2). The NH3-
medium and H2O-rich clusters are majorly linked by NH3

additions, followed by the addition of H2 (in agreement with
increased H/C and decreased DBE, Figure 2). H2O is added
most for the transition from the H2O-rich cluster toward the
NH3-rich cluster, followed by of NH3 addition. This indicates
that H2O may not only passively contribute to the complex
chemistry in ices38 but acts as an active reagent42−44 or
catalyst.37

Transformation patterns are similar between components 0
and 1, on average, and for cluster−cluster transitions
(Supporting Figure 6). In detail, there are enrichments in H2
(majorly for NH3-poor ices) and CHN as well as depletions in
H2O and CO2 for component 1 (relative to component 0).
Furthermore, the transition from the H2O-rich cluster toward
the NH3-rich cluster in component 1 is governed by CHN
transformations instead of H2O, which indicates a more
prominent role of nitrogen chemistry for component 1
molecules, compared to those of component 0.

Subnetworks and PubChem Database Unlock Struc-
tural Information. Figure 3 shows detailed information about
molecular structures as inferred via two approaches: (i)
splitting the minimal set of transformations and (ii)
comparison to the PubChem database.45 We want to remind
here that structural information has been unlocked from mass
spectrometric MS1 data, without fragmentation information
(no MSn data required) that at has not been reported to date
(to the best of our knowledge).

Subnetworks were generated by splitting the minimal set of
transformations. Each element from {H2, O, CO, NH3}
(“minimal set” of transformations) got iteratively removed to
unveil detailed information about molecular subsets (Figure
3A). The resulting subnetworks consisted of both many small
components and moderate-sized ones (Supporting Figure 7).
This implies that removing each of the four transformations
has a significant effect on the stability of the network (many
small components). However, some local stable molecular
groups remain connected (moderate-sized ones). In a next
step, the key components have been identified based on (i)
size of components and (ii) maximal variation of map

Figure 2. Key transformations. Cluster-specific transitions illustrate potential key transformations: CHN, NH3, and H2O (with directions) along
the NH3 content gradient in the initial ice (NH3-poor → NH3-medium cluster, NH3-medium → H2O-rich cluster and H2O-rich → NH3-rich
cluster).
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parameters (e.g., #H, #C, or DBE). Each of the four groups for
the selected five key components (minimal set - H2, minimal
set - O, minimal Set - CO, minimal set - NH3) consist of 24−
253 molecular formulas and show distinct chemical properties
(Figure 3A, Supporting Figure 8). The “minimal set - H2” and
“minimal set - NH3” subnetworks specifically show compo-
nents that are distinct in #N (e.g., N2 or N10 subsets), whereas
“minimal set - O” and “minimal set - CO” subnetworks have
distinct #C components (e.g., C5 or C16 subsets). Furthermore,
the components also cluster with respect to the original ice
samples (e.g., NH3-enriched component “minimal set - O”).
All four splitted “minimal set” graphs commonly show distinct
#O and in DBE subsets.

The comparison with the PubChem database45 has revealed
further insights into molecular structures and compound
classes. We have applied the same workflow for network
generation and analysis for the PubChem data as done for
those of the ice (transformation set of {H2, O, CO,
NH3}“minimal set”, extraction of two largest graph compo-
nents, Figure 3B). We have randomly sampled two PubChem
subsets with 10,000 compounds each and compared their two
major graph components with those of the ice molecular
network, using element maps and transformation frequencies
(Supporting Figure 9). Qualitatively, element maps and
transformation frequencies match between the ice and
PubChem data, but H maps showed significant variation for
the PubChem subset 10,001−20,000. Thus, we continued with
the detailed analysis using the PubChem subset 1−10,000 only
(details about the PubChem data are given in the Supporting
Information). Based on IUPAC names, compound classes have
been defined (details are given in the Supporting Information),
and the network has been color coded accordingly. Figure 3B
illustrates that component 0 is enriched in the number of

amides, esters, and acids, whereas component 1 shows higher
counts in ketones, amines, nitriles, and aromatics. The
enrichment of the number of aromatic compounds, N- and
C-based ones, is in accordance with high DBE values as
observed for the ice data (Supporting Figure 4).

Annotation of Complex Chemical Spaces. All com-
bined results were mapped onto the original molecular
network of interstellar ice analogs (Figure 4). This reveals
spatial clustering and annotation of the network. The two
major graph components were thus organized into different
clusters that show distinct elemental characteristics (e.g., C or
N counts, inferred from splitting the “minimal set” of
transformation) and were assigned with compound class
likelihoods (inferred from PubChem database). We further
show that a gradient in N- vs C-backbone molecules in each
component highlights the competitive two different types of
chemistry, namely, the carbon- and nitrogen-driven ones (in
relation to N/C ratios). Four subsets were identified: (i)
saturated C-backbone molecules without N (e.g., open-chain
compounds; component 0, left), (ii) saturated N-backbone
molecules (e.g., cyclic secondary amines; component 0, right),
(iii) unsaturated C-backbone molecules without N (e.g.,
polycyclic aromatic hydrocarbons, PAHs; component 1,
bottom), and (iv) unsaturated N-backbone molecules (e.g.,
aromatic N-heterocycles; component 1, top). In short,
component 0 represents aliphatic molecules and component
1 unsaturated (potentially aromatic) molecules, with both C-
and N-backbones.

Component 0 represents saturated C-backbone molecules
and saturated N-backbone ones. From left to right, nitrogen-
based chemistry dominates over carbon chemistry, that is
supported by N/C ratios. On the total left, a C-backbone
cluster with C12 unsaturated molecules was identified (DBE =

Figure 3. Subnetworks and PubChem database unlock structural information. (A) Splitted minimal set of transformations. Illustrated molecular
formulas and DBEs represent average numbers (median). (B) Comparison to the PubChem database.45 Similary to the ice molecular network, two
major graph components were identified using the same set of transformations ({H2, O, CO, NH3}, “minimal set” of transformations) for the
PubChem network (details about the PubChem data are given in the Supporting Information), unraveling their compound class characteristics.
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8, N/C = 0), whereas on the right, a N-backbone cluster
represents N7 saturated molecules (DBE = 3, N/C = 2.5).
Component 0 molecules might be specifically enriched in the
number of amides (15%), esters (11%), and acids (9%).

Component 1 shows unsaturated C- and N-backbone
molecules with low #H and #O. N-Based molecules are
enriched from bottom to top. On the bottom, a C-backbone
cluster with N4 unsaturated molecules was identified (DBE =
8, N/C = 0.5), whereas on top, a N-backbone cluster shows
N13 unsaturated molecules (DBE = 8, N/C = 3). Component
1 molecules might be specifically enriched in the number of
ketones (42%), amines (17%), and nitriles (5%), as well as in
CH- (e.g., polycyclic aromatic hydrocarbons, PAHs) and N-
based aromatic compounds (e.g., N-heterocycles) where the
latter were almost absent in component 0.

In comparison to previous studies by Fresneau et al. (based
on average values for atomic parameters)26 and Gautier et al.
(based on ternary diagrams of atomic-ratios),27 the here
presented network analysis sets emphasis species’ interactions,
and both confirm but also refine current knowledge. The
previously reported two distinct molecular groups were
validated, but the network analysis significantly refined their
characterizations because of enhanced resolution of the
molecular space (multidimensional representation) that
enabled the spatial differentiation between NH3-medium and
NH3-poor/NH3-rich ices (H2O:CH3OH:NH3 = 3:1:1 from
H2O:CH3OH:NH3 = 3:1:0.2/3:1:5). Whereas Fresneau et
al.26 and Gautier et al.27 described them as “carbon- and
nitrogen-enriched distributions”, we show here that the
discriminant parameter is unsaturation (DBE, and not C or
N). While Fresneau et al.26 reported similar overall #O, the
network’s high molecular resolution enabled differentiation in
#O for saturated compounds, whereas unsaturated molecules
showed similar #O (Supporting Figure 4). Additionally,
Fresneau et al.26 and Gautier et al.27 have reported that

H2O- and NH3-rich ices (H2O:CH3OH:NH3 = 10:1:1 and
3:1:5, respectively) show similar degrees in N incorporation,
but the network analysis unlocked variation (Supporting
Figure 4). Whereas Gautier et al.27 reported that NH3-rich
ices “lead to a group of unsaturated molecules in the final
residue, while H2O rich ices lead to saturated ones”, but
networks show that there are both saturated and unsaturated
molecules for both NH3- and H2O-rich ices.

Conclusions. In a proof-of-concept study, we have
analyzed the network of complex astrochemical data (from
high-resolution Orbitrap MS1 analysis of H2O:CH3OH:NH3
interstellar ice analogs). The molecular network is clustered
according to the initial NH3 content and unlocked HCN, NH3,
and H2O as spatially resolved key transformations. In
comparison with the PubChem database, four subsets were
structurally annotated. This method was validated with
previous results by Fresneau et al.26 and Gautier et al.27

Current knowledge was confirmed but also refined (e.g.,
characterization of two distinct molecular groups).

The implications of the presented network analysis are not
specific to astrochemistry but manifold for complex chemical
systems, including (i) the characterization of nondetected
species in any sample, (ii) the comprehensive elucidation of
chemical reactivity (e.g., radical vs thermal chemistry), or (iii)
studying of emergence behavior. For astrochemistry, these
findings provide the very first insights about transformation
patterns and structures of large complex organic molecules in
interstellar ice analogs (>200 amu, those of prebiotic interest).
To date, information about large molecules’ chemistries is
hidden to traditional chemical models46−49 as detailed
information on their individual reaction rates and mechanisms
is missing. Even though the here newly described graph-based
network analysis does not directly address mechanistic insights,
it acts as a screening tool to unveil all possible transformation
pathways that can now be further investigated by upcoming

Figure 4. Annotation of complex chemical spaces. All combined results were mapped onto the original molecular network of interstellar ice analogs.
The colors are related to the different splitted minimal sets of transformations (gray, minimal set; dark golden, minimal set - H2; olive, minimal set -
O; black, minimal set - CO; brown-red, minimal set - NH3). Pie charts are derived from PubChem data.
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targeted experimental and/or computational studies. Further-
more, the identified transformation patterns might be
generalized that would allow the characterization of non-
detected species as well. This has strong implications for
astrochemistry to probe the chemistries of large complex
organic molecules that would otherwise be hidden to
observations.

■ DATA SET AND METHODS
Data Set of Interstellar Ice Analogs. This data set

represents 15 different H2O:CH3OH:NH3 ice samples
(3:1:0.2, blue, 3 replicates; 3:1:1, green, 3 replicates; 3:1:5,
red, 2 replicates; 10:1:1, gray, replicates/over-irradiation,
orange, 3 replicates). Ice deposition/irradiation time was 48
h except for the “3:1:1 16 h” ice with a deposition/irradiation
time of 16 h. All details about the experiments and their high
resolution Orbitrap mass spectrometric analysis have been
described by Fresneau et al.26 and Gautier et al.27 Data will be
made available on request.

Method: Molecular Network Generation and Anal-
ysis. The algorithmic workflow of the method mol2net24 is
organized as follows (Figure 5): (1) input, (2) identify
transformations, and (3) network analysis (using NetworkX).
(1) Input: Theoretical masses of prior assigned 3270 unique
molecular formulas were used for network generation, as
performed via Python.50 (2) Identify transformations:
Theoretical masses (nodes in the network) were connected
by edges (transformations) if their mass differences match with
the theoretical mass differences of the transformations (e.g., for
the “minimal set” of transformations, used as basis in this
study): {ΔH2, ΔO, ΔCO, ΔNH3}, with ΔH2 = 2.01565 amu,
ΔO = 15.994915 amu, ΔCO = 27.994915 amu, and ΔNH3 =
17.026549 amu, with amu = atomic mass unit. Trans-
formations were chosen in a data-driven and unsupervised
manner as informed from prior distance matrix analysis. Our
goal was to keep the set of transformations as minimal as
possible to maximize interpretation of individual trans-
formations. We have tested six other transformations {CHN,
CH3N, H2O, CO2, CH2O, CHNO} and found that their step-
by-step addition is invariant with respect to the network
topology and addition sequence, as tested by (i) network
clustering, (ii) shape of degree distributions, and (iii)
component frequency (Supporting Figure 3). The term
“clustering” is used here as a result of the color-coded network
layout (by sample) that represents compound interactions and
should not be mismatched by traditional, statistical clustering

techniques. (3) Network analysis (using NetworkX): Molec-
ular network analysis was performed via Python,50 and
specifically, NetworkX51 was used for graph computations
a n d n e t w o r k l a y o u t s ( g r a p h v i z _ l a y o u t ,
“nx.nx_pydot.graphviz_layout(G)”). The following parameters
were majorly addressed: filtered graph components, shape of
degree distributions, network statistics, key transformation
patterns, and plotted network. All computations were
performed on a stand-alone computer. The Python code of
mol2net is available on Zenodo and GitHub.24

PubChem Database. The PubChem database was down-
loaded via the Python package pubchempy (https://
pubchempy.readthedocs.io/en/latest/). We have filtered the
downloaded data for the same chemical elements (CHNO)
and mass range (199 and 365 amu) as present in the ice data
set. Two subsets with 10,000 compounds each were randomly
sampled (1−10,000 and 10,001−20,000; details about CID
identifiers are given in the Supporting Information).
Compound classes have been defined by data mining their
IUPAC name endings as following: CH_aromatics =
c lasses . s t r .endswith( ‘benzene ’) , CH_aromat ics =
classes.str.endswith(‘naphthalene’), CH_aromatics =
classes.str.endswith(‘pyrene’), Acids = classes.str.endswith-
(‘acid’), Alcohols = classes.str.endswith(‘ol’), Ketones =
classes.str.endswith(‘one’), Esters = classes.str.endswith-
(‘oate’), Esters = classes.str.endswith(‘acetate’), Amides =
classes.str.endswith(‘amide’), Amides = classes.str.endswith-
(‘carbamate’), Nitriles = classes.str.endswith(‘nitrile’), Amines
= classes.str.endswith(‘amine’), N_cyclic_aliphatics = class-
e s . s t r . e nd sw i t h ( ‘ p i p e r i d i n e ’ ) , N_a roma t i c s =
c lasses . s t r .endswi th( ‘ imidazole ’) , N_aromat ics =
c lasses . s t r . endswi th( ‘qu ino l ine ’) , N_aromat ics =
c l a s s e s . s t r . end sw i th( ‘ t r i a z i ne ’ ) , N_a roma t i c s =
c l a s s e s . s t r . e n d sw i t h ( ‘ i n do l e ’ ) , N_a r oma t i c s =
classes.str.endswith(‘piperazine’), and N_aromatics =
classes.str.endswith(‘oxazole’). Based on qualitative element
map comparison, detailed analyses were performed with the
PubChem subset 1−10,000 only.

Data and Code Availability. The Python code of mol2net
used in this study is available on Zenodo and GitHub.24 Data
will be made available on request.
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Figure 5. Schematic algorithmic workflow of the method mol2net:24 (1) input, (2) identify transformations, and (3) network analysis (using
NetworkX).
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