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ABSTRACT One of the evolutionary forces driving bacterial genome evolution is the acquisition of clusters
of genes through horizontal gene transfer (HGT). These genomic islands may confer adaptive advantages to
the recipient bacteria, such as, the ability to thwart antibiotics, become virulent or hypervirulent, or acquire
novel metabolic traits. Methods for detecting genomic islands either search for markers or features typical
of islands or examine anomaly in oligonucleotide composition against the genome background. The former
tends to underestimate, missing islands that have the markers either lost or degraded, while the latter tends
to overestimate, due to their inability to discriminate compositional atypicality arising because of HGT from
those that are a consequence of other biological factors. We propose here a framework that exploits the
strengths of both these approaches while bypassing the pitfalls of either. Genomic islands lacking markers
are identified by their association with genomic islands with markers. This was made possible by performing
marker enrichment and phyletic pattern analyses within an integrated framework of recursive segmentation
and clustering. The proposed method, IslandCafe, compared favorably with frequently used methods for
genomic island detection on synthetic test datasets and on a test-set of known islands from 15 well-
characterized bacterial species. Furthermore, IslandCafe identified novel islands with imprints of likely
horizontal acquisition.
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Genomic islands (GIs) are clusters of functionally related genes
that are mobilized across organisms through mechanisms other
than vertical inheritance, namely, transformation, conjugation,
transduction, cell fusion, and gene transfer agents (Juhas et al.
2009; Soucy, Huang, & Gogarten 2015). Horizontal gene acquisi-
tions enable microbes to modulate their repertoire of genes. GIs are
an important instrument that plays a major role in the evolution of
microorganisms. GIs may be involved in adaptability, fitness and

competitiveness (Dobrindt et al. 2003; Dobrindt et al. 2004),
and may be important clinically as these can be enriched in
genes that can lead to emergence of new pathogens or antibiotic
resistant strains.

Because of the versatile functions of GIs and their impact on the
evolution of microbes and on the interactions between microbes and
their hosts, significant efforts have g7one into quantification of the
presence of GIs and understanding of their impact on the microbial
evolution (Hacker & Carniel 2001; Juhas et al. 2009; Langille, M. G.,
Hsiao, & Brinkman 2008). GIs have traditionally been deciphered
using wet lab approaches that utilize subtractive hybridization or
suppression subtractive hybridization, or DNA-DNA hybridization,
enabling genome comparison to identify strain specific sequences
(Dobrindt et al. 2004; Winstanley 2002). Another approach called
island probing (Reyrat, Pelicic, Gicquel, & Rappuoli 1998) uses
counterselectable markers (Dobrindt et al. 2004). However, exhaus-
tive quantification of GIs using wet lab techniques is not feasible, in
particular of the GIs that could have integrated into the genomes of
close relatives. Furthermore, this could be time consuming and
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expensive. Whole genome sequencing and comparative genomics,
spurred by the recent advances in sequencing, have enabled high-
throughput genome-wide studies to localize mobile genomic
elements and quantify their influence on microbial evolution. A
number of computational methods that perform either standalone
(single genome) or comparative (multiple genomes) analyses
to identify GIs have been developed in recent years (Che, Wang,
Fazekas, & Chen 2014; de Brito, Maracaja-Coutinho, de Farias,
Batista, & do Rêgo 2016; Ganesan, Rakitianskaia, Davenport,
Tummler, & Reva 2008; Hsiao, W., Wan, Jones, & Brinkman
2003; Langille et al. 2008; Langille, M. G. & Brinkman 2009;
Pundhir, Vijayvargiya, & Kumar 2008; Vernikos & Parkhill 2006;
Waack et al. 2006; Wang, Fazekas, Booth, Liu, & Che 2011; Wei
et al. 2017). Among the most frequently used approaches are those
that search for characteristic markers, such as tRNA genes in the host
genome where GIs may integrate, direct repeats that flank them, inte-
grase genes, transfer genes, phage-related sequences, conjugative ele-
ments, and other mobile genetic elements such as IS elements.
Integration of GI splits the tRNA gene but is regenerated by the island
sequences; GI boundaries could thus be localized by identifying the
regenerated tRNA and its displaced fragment using sequence align-
ment (Hsiao et al. 2003; Reiter, Palm, & Yeats 1989). Further, GIs often
possess genes involved inmobility and integration/recombination, such
as those encoding integrases, transposases, recombinases and excisio-
nases (Doublet et al. 2003; Langille et al. 2010; Osborn & Böltner 2002).
Sequences flanking GIsmay also bear evidence of GI integration. Phage
insertion at tRNA sites often results in direct repeat sequences (Langille
et al. 2010). GIs may also harbor genes involved in pathogenicity and
drug resistance, and may be enriched in genes with yet unknown func-
tions (“hypothetical proteins”) or of phage origin (Langille et al. 2010).
However, this approach gives a conservative estimate of islands, miss-
ing those that integrate at sites other than tRNA or tmRNA genes, or
missing islands deficient inmarkers thatmight have been eliminated by
subsequent evolutionary decay of the islands.

Anotherclassofmethodsexploits theatypical compositional features
of GIs, such as unusual GC content or oligonucleotide composition or
codon usage pattern. These atypical features reflect the compositional
biases of the donors and can thus be identified as distinct signals against
the recipient genome background. These methods often invoke either
bottom-up gene by gene approach, e.g., SIGI-HMM that examines co-
don usage bias, (Waack et al. 2006; Wei et al. 2017) or moving window
approach, e.g., AlienHunter and SeqWord that use oligomer frequen-
cies within a sliding window (Vernikos & Parkhill 2006) and Mean
Shift Genomic Island Predictor (MSGIP) that detects windows of genes
with atypical composition (de Brito et al. 2016). Because of the variable
compositional character of GIs, weakly atypical genes or windows are
often misclassified, which complicates the detection of island bound-
aries. Furthermore, the moving window methods are sensitive to win-
dow size– smaller size increases stochastic fluctuations while larger size
diminishes resolution. These methods are also prone to misclassifying
genes or regions that display anomalous composition for reasons other
than horizontal acquisition.

Tominimize false positives, combinations of these approaches have
also been proposed. IslandPath-Dimob uses presence of mobility genes,
t-RNAinsertionsites, anddinucleotidecompositionalbias topredictGIs
(Hsiao et al. 2003). IslandViewer (Bertelli et al. 2017; Langille & Brink-
man 2009) is an integrated interface that combines the predictions of
different methods including SIGI-HMM and IslandPath-Dimob to
localize GIs with high confidence. GIHunter (Wang et al. 2011) uses
eight GI-associated features including gene density, intergenic distance,
phage genes, tRNA genes, genes encoding integrase or transposase,

highly expressed genes, and the AlienHunter score. These methods
could be highly specific, though at the cost of numerous false negatives.
In contrast, PredictBias (Pundhir et al. 2008), a moving window ap-
proach, is designed to be more sensitive- genomic regions with unusual
codon usage and either atypical GC composition or atypical dinucleo-
tide composition, or regions with an abundance of virulence genes, are
deemed GIs.

Among the comparative genomics or phylogenetic methods, one
approach is to search for genomic regions with limited phylogenetic
distribution, that is, those regions that are absent from the genomes of
close relatives are inferred as GIs. IslandPick (Langille et al. 2008) is an
example of this class of methods. This approach, however, requires
multiple strains of closely related species. Lineage-specific gene loss
may further confound the inference.

It was recently suggested that GIs could be more robustly identified
using a top-down approach that allows examination of genes en masse
(Arvey, Azad, Raval, & Lawrence 2009; Azad, R. K. & Li 2013). The
premise of this approach is simultaneous analysis of GI harbored genes,
both weakly atypical and strongly atypical, in order to decipher the GI
structure more robustly. One such method, MJSD, which is based on a
recursive segmentation procedure, indeed delineated GIs significantly
better than other methods (Arvey et al. 2009). This has spurred devel-
opment of more segmentation based methods, including Zisland Ex-
plorer that uses cumulative GC profile for GI identification (Wei et al.
2017) andGEMINI that utilizes segment context information within an
integrated segmentation and clustering framework to delineate GIs.

Although furtherdevelopmentofmore sensitive, top-downmethods
for GI detection is sorely needed, there are significant challenges that
must be overcome. The segmentation procedure is often followed by an
agglomerative clustering procedure for grouping of compositionally
similar segments (Azad&Li 2013). Thismakes possible identification of
“typical” (the most abundant, potentially vertically inherited or native)
and “atypical” (potentially horizontally acquired or alien) genomes by
virtue of the cluster size, with the largest cluster representing the ge-
nome backbone (i.e., the native genome) while the others representing
the accessory or alien genome. Although this makes possible an un-
biased analysis of a genome, agglomerative clustering of segments is
fraught with risks. Grouping of segments at stricter stringencies may
render clusters that are “pure”, i.e., harboring either native or alien
DNA segments but not both, however, numerous native clusters as well
as alien clusters thus generated could complicate the reconstruction of
the genome structure. Relaxing the stringency may result in undesirable
mergers of clusters. This is particularly true in this case where weakly
typical, native segments may coalesce into one or more clusters that are
deemed distinct from the cluster harboring strongly typical, native seg-
ments; allowing these native clusters to merge by relaxing the stringency
may cause clusters harboring weakly atypical, alien segments to coalesce
with the native clusters. This may also result in undesirable mergers of
clusters representing closely related but distinct donors. On the other
hand, certain class of native segments, e.g., those harboring highly
expressed genes of apparently unusual codon usage, may coalesce into
clusters of their own and may not merge with the backbone cluster even
at relaxed stringencies. One way to circumvent this is to utilize biological
information, such as segment context information, for cluster merger
after generating apparently pure clusters at a stringent clustering thresh-
old (Jani,Mathee, &Azad 2016). Further experiments show that whereas
this may work for some strains, this is not universally applicable for any
choice of threshold (further discussed below).

Deconstruction of segmental structure underlying a genome is
critical to deciphering GIs, as the data from recent studies suggest
(Azad & Li 2013; Wei et al. 2017). Furthermore, for a sensitive and
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robust GI detection, GIs that have lost the identifying features or
markers must also be identified and atypical segments that are compo-
sitionally deviant for reasons other than HGTmust be eliminated from
predictions. The success of such procedures depends on robust group-
ing of genes or segments of similar ancestry or origin. In our survey of
the methods for GI detection, we observed that none of the current
methods has the ability to accomplish this. We therefore embarked on
developing an approach that could utilize biological information spe-
cific to GIs within an integrated framework of segmentation and clus-
tering. We hypothesized that GIs lacking the identifying features or
markers could be identified if analyzed together with GIs enriched in
these markers. Our hypothesis is based on the assumption that not all
GIs originating from a donor taxon would have lost many or most
identifyingmarkers contemporaneously, and if this is true, GIs deficient
in markers could be identified by virtue of their association (i.e., origin)
with GIs enriched in markers. This association could be explored in a
number of ways; here, we infer the association based on similar com-
positional bias shared by GIs originating from a specific donor taxon.
Based on this premise, after obtaining clusters at a stringent threshold,
if a cluster is found enriched in GI specific markers (assessed against
whole genome background), all segments within the cluster, whether
enriched or not inmarkers, are deemedGIs (or, parts of GIs or the alien
genome). On the other hand, if a cluster is not enriched in GI specific
markers, all segments within the cluster are deemed “non-GIs”, pro-
vided genes harbored by these segments do not display aberrant phy-
letic pattern.We tested our hypothesis on synthetic test datasets and on
a comprehensive dataset of known genomic islands from 15 well-char-
acterized bacterial species. Our method, IslandCafe, named after de-
tection of Island by Compositional anomaly and feature enrichment,
compared favorably with frequently used methods for genomic island
detection. In what follows, we further elaborate on our method and the
genomes that were used for assessment, present our results, and con-
clude with a discussion.

MATERIALS AND METHODS

Genome sequences and annotations
The complete genome sequences and annotations of 15 bacteria rep-
resenting a host of taxa, namely, Acinetobacter baumannii AYE
(NC_010410.1), Bartonella tribocorum CIP 105476 (NC_ 010161.1),
Bordetella petrii DSM 12804 (NC_010170.1), Burkholderia cenocepia
J2315 (NC_011000.1, NC_011001.1 and NC_011002.1), Burkholderia
pseudomallei K96243 (NC_006350.1 and NC_006351.1), Clavibacter
michiganensis NCPPB 382 (NC_009480.1), Corynebacterium dipther-
iae NCTC 13129 (NC_002935.2), Escherichia coli CFT073
(NC_004431.1), Mesorhizobium loti MAFF 303099 (NC_002678.2),
Proteus mirabilis HI4320 (NC_010554.1), Pseudomonas aerugi-
nosa LESB58 (NC_011770.1), Salmonella enterica serovar Typhi
CT18 (NC_003198.1), Staphylococcus aureus USA300 FPR3757
(NC_007793.1), Streptococcus equi 4047 (NC_012471.1), andVibrio chol-
eraeO1 biovar eltor str. N16961 (NC_002505.1 and NC_002506.1) were
obtained from NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/genomes/ar-
chive/old_genbank/Bacteria/). These bacteria were previously well-stud-
ied for the presence of genomic islands; genomic island coordinates and
the supporting evidence from these studies are provided in Table S1.

Synthetic genomes
In addition to the aforementioned genomes, synthetic genomes were
constructed for assessment for IslandCafe and othermethods. Burkhol-
deria cenocepacia J2315 was selected as the recipient organism. All
GI prediction methods considered in this study were then applied to

catalog putative GIs in B. cenocepacia J2315s primary chromosome
(chromosome 1). B. cenocepacia J2315 genomic sequences that were
not predicted as GIs by any method were extracted and concatenated.
This provided a conservative backbone (core) genome of B. cenocepacia
J2315. Backbone genomes were obtained similarly for selected donors,
namely Pseudomonas aeruginosa LESB58 and Stenotrophomonas mal-
tophilia D457 (secondary chromosomes, where present, were not con-
sidered for extraction of the backbone genomes). A synthetic genome
was constructed by simulating transfer of segments from the backbone
genomes of donors into the B. cenocepacia J2315 backbone genome.
12 Segments of size 30 Kbp, 50 Kbp, and 80 Kbp were randomly
extracted from the backbone genome of each donor and inserted into
the B. cenocepacia backbone genome; these GIs in a synthetic genome
represented�16% of the original B. cenocepacia J2315 chromosome 1.
Multiple synthetic genome replicates were thus obtained and three test
datasets were then generated by randomly introducing marker genes
from donor genomes in 25%, 50%, and 75% of the GIs in synthetic
genomes, respectively. It is possible that some of the sequences sampled
from donor backbone genomes for insertion might already have one or
more marker genes, so the GIs in the synthetic genome selected for
marker introduction contain at least one marker gene, following in-
sertion of a marker gene (transposase) into each of these GIs.

Current genomic island prediction tools
We assessed IslandCafe against ten frequently used GI prediction
methods, namely, IslandPick (Langille et al. 2008), GIHunter (Che
et al. 2014), IslandPath-Dimob (Hsiao et al. 2003), MSGIP (de Brito
et al. 2016), SIGI-HMM (Waack et al. 2006), Zisland Explorer
(Wei et al. 2017), AlienHunter (Vernikos & Parkhill 2006), PredictBias
(Pundhir et al. 2008), SeqWord (Ganesan et al. 2008), and IslandViewer
(Langille & Brinkman 2009). These include both well-established and
recently developed methods. MSGIP, SIGI-HMM, Zisland Explorer, Ali-
enHunter, and SeqWord search for regions with anomalous codon usage
and/or oligonucleotide composition. IslandPath-Dimob and GIHunter
search for regions harboring GI specific markers and combine this with
compositional signatures to predict GIs. PredictBias bases its prediction
on compositional bias; in addition, it outputs segments that are enriched
in virulence genes. IslandPick identifies putative GIs via sequence com-
parison, and IslandViewer combines predictions by three different meth-
ods, namely, SIGI-HMM, IslandPath-DIMOB, and IslandPick.

Compositional anomaly assessment
Our proposedmethod, IslandCafe, combines compositional anomaly, a
hallmark of GIs, with the functional or structural features that charac-
terize GIs within the framework of a recursive segmentation and
agglomerative clustering procedure. This integrative framework allows
fragmentation of a genome into compositionally homogeneous seg-
ments that are then segregated into clusters reflecting their potentially
shared ancestries (Azad & Li 2013; Jani & Azad 2013). The binary
segmentation process entails division of a genome into two seg-
ments at a position where the compositional difference between
the resulting segments is maximum, provided this difference is
deemed statistically significant. The compositional difference is
quantified using an information-entropy based divergence measure,
namely, Jensen-Shannon divergence generalized within the frame-
work of Markov chain model of order m; defined as (Arvey et al.
2009; Thakur, Azad, & Ramaswamy 2007),

Dm�p1; p2
� ¼ Hm�p1p1 þ p2p2

�
2p1H

m�p1
�
2p2H

m�p2Þ:

Dmðp1; p2) denotes the divergence between two sequence segments
represented by the respective probability distributions p1 and p2, each
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comprising the marginal and conditional (transitional) probability
distributions. Hmð:Þ is the entropy function for Markov source of

order m, defined as, HmðpiÞ ¼ 2
P

w
PðwÞP

x2A
PðxjwÞlog2PðxjwÞ.

PðxjwÞ is the probability for transitioning from oligonucleotide w
to the succeeding nucleotide x,and PðwÞ is the probability of oligo-
nucleotide w of lengthm that defines that order of the Markov model.
pi is the weight factor assigned to pi.

The statistical significance of a value of the divergence measure is
assessed using the probability distribution of this measure in random
sequences, which has been shown to approximate the chi-square
distribution function (Arvey et al. 2009; Grosse et al. 2002),

PðDm #XÞ � x2
vð2Lðln2ÞXÞ; where, v ¼ kmðk2 1Þ is the degrees

of freedom, with alphabet size k = 4 for DNA sequences, and L is the
length of the sequence to be segmented. Probability distribution of the
maximum value of this measure has been shown to approximate chi-
square distribution function with fitting parameters (Arvey et al. 2009;
Grosse et al. 2002; Thakur et al. 2007):

PðDm
max #XÞ � �

x2v ½2Lðln2ÞXb�
�Neff ;

b and Neff are the fitting parameters whose values are estimated by
fitting the above equation to the empirical distributions obtained
via Monte Carlo simulations. The recursion of segmentation is
halted when none of the segments can be divided further. Since hy-
per-segmentation is allowed for precise delineation of GI boundaries,
an agglomerative clustering of similar segments is performed at a
relatively relaxed clustering stringency in two steps (Azad & Li
2013). In the first step, compositionally similar, contiguous segments
are identified and merged, thus restoring the underlying segmental
structure. The second clustering step allows grouping of composition-
ally similar clusters recursively, performed within the same frame-
work of statistical hypothesis testing (Azad & Li 2013). This
procedure, by virtue of its ability to segregate segments of different line-
ages, recovers the backbone (vertically inherited) genome as the largest
cluster (typically with more than half of the genome), whereas smaller
clusters represent the potential donor taxa (Garcia-Vallve, Guzman,
Montero, & Romeu 2003; Lawrence & Ochman 1998). A significant
challenge, however, lies here in classifying the segments by their origins
after the segmental structure of a genome is uncovered (i.e., after the first
clustering step). Often, native segments are grouped into two or more
clusters, with the largest harboring the strongly typical native segments.
The weakly typical native segments tend to form cluster(s) of their own.
Relaxing the statistical threshold to allow merger of these clusters could
also result inmerger of one ormore alien clusters with the native clusters.
Robust merger of clusters is critical to the success of this class of methods
as any cluster-level misclassification renders all segments within the clus-
ter misclassified. By combining this statistical framework with GI specific
marker enrichment and phyletic pattern assessment, we show here that
this problem can be satisfactorily addressed.

Feature enrichment and phyletic pattern analysis
After generating clusters at a stringent clustering threshold within the
statistical hypothesis testing framework,we first performan enrichment
analysis to identify clusters enriched in features or markers that are
typicallyassociatedwithGIs.Weposit thatweakly typical, native clusters
are not enriched in these features, whereas alien clusters, both strongly
atypical andweakly atypical, are enriched. IslandCafe identifiesmarkers
that typically characterize GI (Table S2) by parsing the input genome
annotation file. Given a genome sequence, IslandCafe compilesmarkers
by first employing Prodigal (Hyatt et al. 2010) to predict genes and then

HMMER (Eddy 1998; Finn, Clements, & Eddy 2011) to annotate
markers. A custom Pfam HMM database was created by performing
search for GI markers using keywords such as transposase in the Pfam
database (Finn et al. 2015). The custom database was manually curated
to eliminate any profile HMMs not representing GI markers. This
resulted in a local database of 449 profile HMMs representing marker
gene families (Table S3). Genes from a genome of interest are probed
against this database and those with “hits” in the database with expect
values 0.01 or less (Hsiao et al. 2005) are annotated as marker genes.

Following segmentation and clustering performed for each genome,
parts of the native or backbone genome are first identified by the largest
cluster; the smaller clusters are then examined and processed as follows.
If a cluster is foundenriched inmarkergenes (oneandhalf foldrelative to
the genome), it is deemed an alien cluster. Non-enriched clusters are
deemed alien only if their genes display aberrant phyletic pattern, i.e.,
absence from majority of the close relatives of the genome harboring
the gene of interest. Aberrant phyletic distribution is assessed by align-
ing the sequence of the protein encoded by the gene of interest against
all protein sequences originating from the same taxon as the gene of
interest using BLASTP (Altschul, Gish, Miller, Myers, & Lipman
1990). A custom database of protein sequences for all bacte-
ria at the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/
archive/old_genbank/Bacteria/) was constructed to accomplish
this. If a query protein returns BLAST hits with .70% identity and
query coverage in less than half of the organisms from the same
genus as the organism with the query sequence, the gene encoding the
query protein is deemed phyletically atypical or aberrant. We thus iden-
tify weakly typical, smaller native clusters based on enrichment and
phyletic pattern, that is, those lacking marker enrichment and aberrant
phyletic distribution, andmerge them to the largest cluster harboring the
strongly typical native segments. The remaining clusters, enriched in
markers or displaying atypical gene distribution, are deemed alien. GIs
are identified as contiguous alien segments, 8 Kbp or more in size
(Schmidt & Hensel 2004). An illustrative diagram of the pipeline imple-
mented in IslandCafe is shown in Figure 1.

Performance assessment
Comparative assessment of IslandCafe was performed against ten
frequently used GI prediction methods at both nucleotide-level (i.e.,
ability to identify GI nucleotides) and island-level (i.e., ability to identify
a GI as a single segment or a chain of contiguous segments). In assess-
ing the island-level accuracy, if a method predicts several segments
spanning a known GI, only the largest overlapping segment is consid-
ered. If the largest overlapping segment is more than twice the size of
the corresponding GI, it is not considered a true prediction. The stan-
dard performance metrics, namely, recall (or sensitivity), precision,
average performance, F-measure, performance coefficient, and Mat-
thews correlation coefficient (MCC), as defined below, were used for
performance assessment.

Recall ¼ TP
TP þ FN

Precision ¼ TP
TP þ FP

Average Performance ¼ Recall þ Precison
2

F2measure ¼ 2 � Precision � Recall
Precisionþ Recall
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Performance Coefficient ¼ TP
TP þ FP þ FN

MCC ¼ TP � TN2 FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp

Here TP, TN, FP, FN are the numbers of true positives, true negatives,
false positives, and false negatives respectively.All these performance
metrics have values lying between 0 and 1, which are shown either as
fraction or percentage in the following sections. Together these
metrics quantify the accuracy of a method in identifying GIs or
discriminating GIs from non-GIs. Note that we didn’t consider
Classification Accuracy, defined as (TP+TN)/(TP+TN+FP+FN),
for assessment here, as this is not an appropriate metric for an un-
balanced dataset, which is the case here for both synthetic and
datasets; e.g., real dataset has �91% non-GI nucleotides and only
�9% GI nucleotides. As the number of GI nucleotides is much
smaller (�6.6 Mb across all 15 species) than the nucleotides in the
rest of the genomes (�69.7 Mb), a method that identifies only few or
even no GI nucleotides will have a Classification Accuracy of�90%.
In contrast, the accuracy measures such as Recall and Precision and

their combination, the F-measure, are considered appropriate for
unbalanced datasets.

Data Availability
IslandCafe is an open source collaborative initiative available in the
GitHub repository (https://github.com/mehuljani/IslandCafe). The fol-
lowing data are listed in the supplementary table: Evidence from the
literature supporting presence of GIs in the genomes used for this study
(Table S1), list of genes often associated with GIs (Table S2), list of
PFAM ids used to make database for identifying GI specific features or
marker genes (Table S3), performance of segmentation and clustering
algorithm in identifying GIs in 15 bacterial species at various segmen-
tation and clustering thresholds (Table S4), performance of segmenta-
tion and clustering algorithm after including marker gene enrichment
and phylogenetic modules (Table S5), performance of GI prediction
tools in identifying nucleotides belonging to GIs and identifying GIs in
synthetic B.cenocepacia genome dataset with 25% of all GIs harboring
marker genes (Table S6), performance of genomic island prediction
tools in identifying nucleotides belonging to GIs and identifying GIs
in synthetic B. cenocepacia genome dataset with 50% of all GIs harbor-
ingmarker genes (Table S7), performance of genomic island prediction

Figure 1 Schematic representation of IslandCafe’s protocol for identifying genomic islands. A genome is divided recursively into compositionally
homogeneous segments (“Segmentation”, here each segment is shown by a colored horizontal thick line; the red vertical line indicates position
where the divergence is maximum). “Contiguous clustering” is the first round of agglomerative clustering procedure, which entails identification
and merger of compositionally similar contiguous segments (contiguous similar segments are shown in a circle). “Non-contiguous clustering” is
the second round of agglomerative clustering procedure, which entails recursive grouping of compositionally similar segments, including non-
contiguous similar segments (single lines and groups of lines (circles) of same color are now merged into a single cluster). “Feature enrichment
and phyletic distribution analyses” entails identification of GI specific features in each segment (shown as D on a segment) and identification of
genes with aberrant phyletic distribution (shown as on a segment). “Clustering based on feature enrichment and phyletic distribution” involves
identification and merger of native clusters (blue and orange clusters that are not enriched in GI specific markers or lack genes with aberrant
phyletic distribution) while precluding undesirable mergers of alien clusters. IslandCafe calls any segments or chains of contiguous segments,
8 Kbp or greater, belonging to alien clusters as GIs.
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tools in identifying nucleotides belonging to GIs and identifying GIs in
synthetic B. cenocepacia genome dataset with 75% of all GIs harboring
marker genes (Table S8), performance of genomic island prediction
tools in classifying nucleotides as belonging to GIs and non-GIs for
15 bacterial species (Table S9), performance evaluation of genomic
island prediction tools for identifying islands with at least 75% overlap
between the predicted segment and the corresponding known island in
15 bacterial species (Table S10), performance evaluation of genomic
island prediction tools for identifying islands with at least 95% overlap
between the predicted segment and the corresponding known island in
15 bacterial species (Table S11), performance of GI predictionmethods
in identifying GIs in 15 bacterial species at 50% cutoff of overlap be-
tween the predicted segment and the corresponding known GI (Table
S12), performance of GI predictionmethods (assessed by F-measure) in
identifying GIs in 15 bacterial species at 75% cutoff of overlap between
the predicted segment and the corresponding known GI (Table S13),
performance of GI prediction methods (assessed by F-measure) in
identifying GIs in 15 bacterial species at 95% cutoff of overlap between
the predicted segment and the corresponding known GI (Table S14),
coordinates of GIs predicted by CAFE in the 15 representative genomes
(Table S15), and grouping of GIs lacking marker genes with GIs har-
boring marker genes arising from a donor within a distinct cluster
(Table S16). Supplemental material available at FigShare: https://
doi.org/10.25387/g3.9255608.

RESULTS

Segmentation and clustering in GI detection
An integrated segmentationandclusteringapproachwas showntowork
well in deciphering GIs in bacterial genomes (Azad & Li 2013). Com-
parative assessment with other methods on an artificial chimeric E. coli
genome and a well-understood Salmonella enterica typhiCT18 genome
demonstrated the power of this method in delineating large structures
such as GIs in bacterial genomes (Azad & Li 2013). Here, we assessed
the same approach on a broader dataset, including 15 different species
as listed in Materials section above. Both segmentation and clustering
thresholds were varied. Segmentation threshold (significance level) was
varied from 1E-2 to 1E-20, and similarly, the clustering thresholds were
varied in this range for each segmentation threshold to identify the
optimal setting of the program (Table S4). The highest accuracies on
the combined test set of GIs and non-GIs from all 15 species were 0.55,
0.34, and 0.50 when considering average performance, performance
coefficient, and F-measure respectively as the overall accuracy param-
eter (Table 1). Results for individual genomes show that the optimal
performance was obtained at different threshold settings for these ge-
nomes, which may differ with the optimal threshold setting for the
entire dataset (Table 1). This suggests that a “universal” optimal pa-
rameter setting is difficult to realize within this framework.

We further analyzed these genomes using the current version of this
program that additionally used the segment context information (Jani
et al. 2016) to improve GI detection in Pseudomonas aeruginosa
LESB58. This strain was previously reported to harbor a number of
pathogenicity and resistance islands (Winstanley, C. et al. 2009). As the
genome of Pseudomonas aeruginosa LESB58 is well-characterized, with
at least four GIs experimentally validated, the cluster configurations for
this genome were earlier examined at different threshold settings, from
a stringent setting generating numerous pure clusters to a relaxed set-
ting generating hybrid clusters (harboring both native and alien seg-
ments) in addition to the pure clusters. Simultaneous formation of two
large native clusters was observed, the largest with �62.5% of the
genome harbored strongly typical, native segments and the other with

�24.7% of the genome harbored compositionally ambiguous (weakly
typical) native segments, whereas the third largest cluster with �7.1%
of the genome harbored alien segments. Numerous smaller clusters
were also formed in the process. Attempt to merge the large native
clusters by successively relaxing the clustering stringency results in the
merger of the largest alien cluster with the largest (native) cluster. This
highlights the difficulty in segregating native and alien segments based
on statistical approach alone. Earlier we had proposed utilizing segment
context information to circumvent this limitation (Jani et al. 2016).
This was based on the observation that compositionally ambiguous
native segments are sparsely distributed within the genome. While this
provided a cue to merge native clusters in the LESB58 genome, our
analysis on the broader genome set showed that this approach may not
work for some genomes, specifically when the clusters have too few
segments to allow this statistical analysis. For example, the application
of the recursive segmentation and clustering procedure to the Vibrio
cholerae O1 biovar eltor str. N16961 Chr. 2 (1.07 Mb) genome resulted
in seven clusters, however, the three largest clusters have only 2-3
segments each, precluding a reliable inference based on segment con-
text information.

Utilizing feature enrichment and phyletic distribution in
GI detection
Although segmentation and clustering provide a powerful tool for
segregating compositionally similar segments, and in the process iden-
tifying the potential GIs, grouping of compositionally distinct native
clusterswhileprecludingundesirablemergersof alienandnativeclusters
is amajorbottleneck thatmustbe addressed in order to take the state-of-
the-art in GI prediction to new heights. We posit that since it is almost
impossible to accomplish this task by tinkering with the algorithmic
parameters within the hypothesis testing framework, a significant
advance in the field could be possible by utilizing any biological in-
formation that could complement the compositional information
encoded in GIs. We therefore attempted to complement the composi-
tion-based segmentation and clustering with functional or structural
information embodied in GIs and the phyletic distribution of GI
harbored genes. Functional features or markers that are frequently
observed in GIs include genes that are associated with integration/
recombination and transposition, phage metabolism, plasmid, and
insertion (Table S2). While these features have previously been used
to localize GIs, here we use this information for cluster merger, partic-
ularly tomergeweakly typical, native cluster(s)with the strongly typical,
nativecluster.Wepostulate thatalienclusters,particularly the largeones,
are replete with GIs and therefore, are enriched in the aforementioned
features that characterize GIs. On the other hand, the weakly typical
native clusters are expected to be depleted of GI specific features.Weuse
this difference in the enrichment of functional/structural features in the
clusters to identify weakly typical, native clusters and merge them with
the strongly typical, native cluster. This also allows us to eliminate
spurious predictions arising from clusters with genes that are compo-
sitionally atypical for reasons other than HGT. For example, highly
expressed native genes often have an unusual codon usage or compo-
sitionalbiasandare thereforepronetobemisclassifiedasalien.However,
as these clusters are not enriched in GI specific features, the proposed
approach classifies them as native, thus minimizing false positives.

The presence of GI specific features was quantified for each atypical
cluster outputted by the segmentation and clustering algorithm, and if
an atypical cluster was enriched in these features, it was deemed
alien. Substantial performance improvement was observed following
this procedure (Table S5). Further improvement was achieved when
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non-enriched atypical clusters were examined for the distribution of
their genes in close relatives and deemed alien if their genes displayed
aberrant phyletic pattern (Table S5).

Comparative assessment of IslandCafe with other GI
prediction methods

Rationale for comparative assessment at both nucleotide and
island level: Most previous studies evaluated GI prediction tools’ per-
formance based on their ability to classify genes as GI- or non-GI-borne
genes (Che et al. 2014; Wei et al. 2017). However, GIs are clusters of
functionally related genes that are acquired in toto rather than in mul-
tiple horizontal transfers of single genes at a genomic locus. Following
acquisition, a GI may again be mobilized within or across genomes as

an intact unit. It is therefore important that the GI prediction methods
identify islands as single structures. Often, the GI prediction methods
are unable to identify GIs as single, continuous entities; the rather
fragmented predictions could be missing not just the large chunks of
GIs but could also be overestimating the number of GIs in a genome.
On the contrary, some methods predict large structures that may over-
lap with only small portion of known GIs. In order to assess the ability
of method to recover a known GI as a single segment or a chain of
contiguous segments, we considered here, for the GI level assessment,
only the predicted segment (or chain of contiguous segments) with the
largest overlap with the known GI as the true prediction by a method,
provided this prediction satisfies a preset criterion (see below). This
allows a fair assessment of the ability of a method to reconstruct GI
structure within a genome; a reasonably robust method is expected to

n Table 1 Performance of segmentation and clustering algorithm in identifying GI nucleotides in 15 representative genomes. The values
of performance metrics are shown for the optimal threshold setting for each genome and also for the optimal setting for the entire test
dataset (all 15 genomes individually run at same thresholds). Contiguous clustering threshold refers to the significance threshold used in
the first round of agglomerative clustering procedure to identify and merge compositionally similar contiguous segments. Non-contiguous
clustering threshold refers to the significance threshold used in the second round of agglomerative clustering procedure to recursively
group compositionally similar segments, including non-contiguous similar segments

Genome
Segmentation

threshold

Contiguous
clustering
threshold

Non-contiguous
clustering
threshold Recall Precision

Average
Performance

Performance
Coefficient F-measure MCC

Acinetobacter
baumannii AYE

1021 10210 10210 0.60 0.64 0.62 0.45 0.62 0.61

Bartonella
tribocorum CIP
105476

1023 1023 1024 0.75 0.40 0.58 0.35 0.52 0.28

Bordetella petrii
DSM 12804

2�1021 1022 1024 0.99 0.69 0.84 0.69 0.82 0.78

Burkholderia
cenocepia J2315

1021 1027 10210 0.92 0.45 0.68 0.41 0.58 0.60

Burkholderia
pseudomallei
K96243

1022 10210 1026 0.73 0.47 0.60 0.39 0.56 0.55

Clavibacter
michiganensis
NCPPB 382

1023 10210 10210 0.55 0.71 0.63 0.45 0.62 0.61

Corynebacterium
diptheriae NCTC
13129

1023 1024 1025 0.26 0.87 0.57 0.25 0.40 0.45

Escherichia coli
CFT073

1023 10210 1025 0.86 0.71 0.78 0.63 0.77 0.73

Pseudomonas
aeruginosa
LESB58

2�1021 1027 1024 0.91 0.38 0.65 0.37 0.53 0.55

Mesorhizobium loti
MAFF 303099

1021 10210 10210 0.94 0.53 0.73 0.51 0.68 0.67

Staphylococcus
aureus USA 300

1022 1022 1022 0.89 0.16 0.53 0.16 0.28 0.26

Proteus mirabilis
HI4320

1023 10210 1023 0.55 0.60 0.57 0.40 0.57 0.53

Salmonella enterica
Typhi CT18

1021 10210 10210 0.74 0.57 0.65 0.47 0.64 0.61

Streptococcus equi
4047

1022 10210 1026 0.99 0.22 0.61 0.22 0.36 0.35

Vibrio cholerae O1
biovar eltor str.
N16961

1024 1022 1023 0.97 0.85 0.91 0.83 0.91 0.90

All genomes† 1021 10210 1027 0.72 0.39 0.55 0.34 0.50 0.47
†
All genomes means the combined test set of GIs and non-GIs from all 15 species. TP, TN, FP, and FN for the combined set denote the respective aggregate values
from all 15 species. That is, each of these was first obtained for each species and then combined for all 15 species before computing the values of performance
metrics for the combined test set.

Volume 9 October 2019 | Delineation of Genomic Islands | 3279



identify a GI as a single segment (or a chain of contiguous segments)
with substantial overlap with the GI and also comparable in size to the
GI it overlaps with.

We evaluated IslandCafe against other GI prediction tools for
localizing GIs at 50%, 75%, and 95% cutoffs, where an X% cutoff means
thatX%ofaGI shouldbe identifiedwith thepredicted segment (or chain
of contiguous segments) in order for the prediction to be deemed a
success.Thus, theGI levelperformanceassessmentwasaccomplishedby
obtaining the recall of a method as the fraction of known GIs that were
correctly identified as single segments (or chains of contiguous seg-
ments) at X% cutoff, and the precision of a method as the fraction of all
predicted GIs that were true predictions (known GIs) at X% cutoff. The
harmonic mean of these two metrics defined the F-measure that was
used as a single accuracymeasure for GI-level performance assessment.
Note that this evaluation procedure was followed only for GI level
assessment; thenucleotide levelperformanceevaluationwasstilldoneby
assessing whether known GI and non-GI nucleotides were correctly
classified using the assessment measures described in the Materials and
Methods section.While the latter does not attest to amethod’s ability to
decipher the GI structure, it does provide information on the fraction of
a genome that is deemed GIs or parts of GIs by a method. Together,
these two evaluation procedures provide insights into the ability of the
methods to predict GI based accessory genome and the GIs themselves.
As GIs are often acquired in single evolutionary events, GI prediction
also provides an estimate of the horizontal transfer events involving
GIs, an important information that sheds light on evolutionary process-
es shaping bacterial genomes.

Using synthetic genomes for assessment: We first evaluated the GI
prediction methods for their ability to detect GIs in synthetic genomes.
As the evolutionary history of the segments (i.e., island or non-island) is
known in synthetic genomes, these provide a valid dataset for evaluat-
ing GI prediction methods. The donors, P. aeruginosa LESB58 and S.
maltophilia D457, represent the class Gammaproteobacteria, distinct
from the class Betaproteobacteria that the recipient B. cenocepacia
J2315 belongs to. Both the donors and the recipient B. cenocepacia
J2315 used in constructing synthetic genomes were previously observed
cohabiting the lungs of the cystic fibrosis patients (Denton, Todd, Kerr,
Hawkey, & Littlewood 1998; Holden et al. 2009; Winstanley et al.
2009), and could potentially be exchanging DNAs; indeed horizontal
gene transfers among bacteria cohabiting the cystic fibrosis lungs have
previously been reported (Jani et al. 2016). The performance of the GI
prediction methods was assessed on these test data, by averaging over
5 synthetic genome replicates.

Classification of GI and non-GI nucleotides in synthetic genomes:
IslandCafe outperformed other methods by 23–93% in F-measure,

17–94% in Average Performance, and 34–88% in Performance Coeffi-
cient on the dataset with 25% marker gene GIs (Table 2, Figure 2A
and Table S6), and similarly on the dataset with 50% marker gene GIs
(by 14–96% in F-measure, Figure 2B, Table S7) and on the dataset with
75% marker gene GIs (by 9–94% in F-measure, Figure 2C, Table S8).
IslandCafe’s MCC was also significantly higher, e.g., 0.93 vs. 0.70 of the
next best performing method AlienHunter on the dataset with
25% marker gene GIs (Table 2). In general, the performance of
marker based methods improved with increasing number of GIs
with markers; IslandPath-Dimob’s and IslandViewer’s F-measure
for identifying GI nucleotides increased from 0.41 and 0.69 (25%
GIs with marker genes) to 0.81 and 0.85 (75% GIs with marker
genes) respectively (Figure 2, Table S6-S8). As expected, the perfor-
mance of the methods based solely on composition did not vary
significantly with changes in marker abundance; among these meth-
ods, AlienHunter attained the highest nucleotide level F-measure
of 0.70 (Figure 2, Tables S6-S8). IslandCafe could attain high sen-
sitivity and specificity, thus outperforming other methods in iden-
tifying GI nucleotides in all synthetic datasets with nucleotide-level
F-measure values of 0.93, 0.96 and 0.94 for 25%, 50%, and 75% of
GIs with marker genes respectively (Figure 2, Tables S6-S8).

Identification of GI in synthetic genomes: At island level, IslandCafe
outperformed other methods at all cutoffs on the dataset with 25%
marker geneGIs, bettering IslandViewer and IslandPath-Dimob by 54–
65% and 20–31% respectively in F-measure (Figure 2A, Table S6).
IslandCafe displayed better performance on the dataset with 50%
marker gene GIs as well, outperforming IslandViewer and Island-
Path-Dimob by 41–49% and 4–12% respectively in F-measure (Figure
2B, Table S7). On the dataset with 75% marker gene GIs, while Island-
Cafe outperformed all methods at the 50% cutoff, it was outperformed
by IslandPath-Dimob by 5% in F-measure at the 75% and 95% cutoffs
(Figure 2C, Table S8). Notably, in all cases, whereas IslandCafe bal-
anced the Recall and Precision very well, other methods produced large
differences between Recall and Precision (Table S6-S8).

Using real genomes for assessment: To assess the performance of
IslandCafe and other GI prediction tools on genuine genomes, we used
our compiled dataset of knownGIs; theseGIs have previously been used
for assessment of GI prediction tools (Jani et al. 2016; Soares et al. 2016;
Wei et al. 2017). Although Zisland Explorer (Wei et al. 2017) was
assessed on Cronobacter sakazakii ATCC BAA-894 as well, we did
not include it due to the lack of supporting evidence for the reported
GIs. This test dataset has a total of 138 GIs, 109 of which harbor
markers. As with synthetic genomes, each method was evaluated for
its ability to identify GI nucleotides and the GIs themselves as single
segments or chains of contiguous segments.

n Table 2 Comparative assessment of genomic island prediction methods in classifying GI and non-GI nucleotides in a synthetic
Burkholderia cenocepia genome having 25% GIs with marker genes. The values of the performance metrics were obtained by
averaging over 5 synthetic genome replicates. Highest value for each performance metric is shown shaded

GI Prediction tool Recall Precision Average Performance Performance Coefficient F-measure MCC

IslandCafe 0.88 0.99 0.94 0.88 0.93 0.92
AlienHunter 0.99 0.55 0.77 0.54 0.70 0.67
IslandViewer 0.59 0.84 0.72 0.53 0.69 0.66
SIGIHMM 0.37 0.99 0.68 0.37 0.54 0.57
DIMOB 0.27 0.95 0.61 0.26 0.41 0.46
Zisland Explorer 0.03 0.12 0.08 0.03 0.05 20.03
IslandPick 0.02 0.18 0.10 0.02 0.04 0.01
MSGIP 0.00 0.00 0.00 0.00 0.00 0.00
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Classification of GI and non-GI nucleotides in real genomes:
IslandCafe balanced sensitivity and specificitywell (Recall andPrecision
respectively in Table 3) in identifying the GI borne nucleotides, thus
outperforming othermethods by up to 49% in F-measure, up to 48% in
Average performance, and up to 40% in Performance Coefficient (Ta-
ble 3, Figure 3). Both IslandCafe and IslandViewer performed compa-
rably, with the former slightly outperforming the latter (by �1–3% in
overall accuracy assessment) (Table 3). IslandCafe, however, outper-
formed IslandPath-Dimob by larger margins (by �2–7% in overall
accuracy assessment, Table 3). GIHunter was found to be most sensi-
tive, identifying�87% of GI nucleotides, however it had a precision of
only 45%. On the other hand, IslandPath-Dimob had the highest pre-
cision of 67%, however, it could identify only 53% of the GI nucleotides.

Zisland Explorer and IslandViewer balanced sensitivity and precision
(as indicated by small difference between Recall and Precision values),
however, both Recall and Precision values were relatively lower for
ZislandExplorer (45% and 56% respectively, compared to 71% and
61% by IslandCafe, Table 3).

The comparative genomics approach, as in IslandPick, did not
perform as well as the composition based approaches, including Island-
Cafe (Table 3). The performance of this class of methods is contingent
upon the genomes selected for comparison and the availability of
closely related genomes. Though IslandPath-Dimob that relies on the
presence of mobility genes was most precise, it is, however, prone to
miss true GIs (e.g., those that may have lost the mobility genes), and
therefore suffers from relatively low sensitivity. High sensitivity of

Figure 2 Assessment of genomic island prediction tools on synthetic Burkholderia cenocepia genomes. F- measure values (Y-axis; averaged over
5 synthetic genome replicates) are shown for different GI prediction methods and datasets when markers are artificially introduced into A) 25%, B)
50%, and C) 75% of all GIs in the genomes, for nucleotide level, and for island level at different overlap cutoffs (numbers in parenthesis on the
X-axis; Z% cutoff means that Z% of a known GI should be identified with the predicted segment (or chain of contiguous segments) in order for the
prediction to be deemed a success; see text for further details). Segmentation, contiguous clustering and non-contiguous clustering were
performed at thresholds 10210, 10213, and 10213 respectively. Methods based on composition, phylogenetics, and marker gene detection are
shown with diagonal brick fill in bars. Bars with a dotted fill show methods using both composition and presence of marker genes for identifying
GIs. Methods relying only on sequence composition are shown with upward diagonal lines, and method based only on sequence comparison
(IslandPick) is shown with grid.

n Table 3 Comparative assessment of genomic island prediction methods in classifying GI and non-GI nucleotides in 15 representative
bacterial genomes. Highest value for each performance metric is shown shaded

GI Prediction tool Recall Precision Average Performance Performance Coefficient F-measure MCC

IslandCafe 0.71 0.61 0.66 0.49 0.66 0.62
IslandViewer 0.72 0.59 0.65 0.48 0.65 0.59
IslandPath-Dimob 0.53 0.67 0.60 0.42 0.59 0.55
GIHunter 0.87 0.45 0.66 0.42 0.59 0.57
AlienHunter 0.74 0.42 0.58 0.37 0.54 0.50
Zisland Explorer 0.45 0.56 0.51 0.34 0.50 0.46
Seqword 0.35 0.50 0.42 0.26 0.41 0.36
PredictBias 0.81 0.23 0.52 0.22 0.36 0.33
SIGI-HMM 0.24 0.57 0.40 0.20 0.33 0.32
IslandPick 0.19 0.50 0.35 0.16 0.28 0.25
MSGIP 0.23 0.14 0.18 0.09 0.17 0.07
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GIHunter can be attributed to the large size of its predicted GIs (average
size of GIs predicted by GIHunter is 58.2 Kbp compared to 44.9 Kbp by
IslandCafe). PredictBias predicted 1268GIs, highest among allmethods
(compare with IslandCafe’s 172) and therefore, as expected, has rela-
tively high recall but low precision (Table 3).

Although IslandCafe and IslandViewer performed well in bal-
ancing the sensitivity and precision on an aggregated dataset com-
prised of genomes from 15 species, yielding higher overall accuracy,
the performance of GI prediction tools may however vary on indi-
vidual genomes or chromosomes. The performance of amethodmay
depend on a number of factors, such as, compositional variability
including variations in GC-content, availability of closely related
genomes, size and amount ofGIs in a genome, andperhaps howwell a
genome is annotated. IslandCafe performed well in identifying
nucleotides belonging to GIs in Vibrio cholerae, Streptococcus equi
and Bordetella petrii (F-measure and MCC. 0.7) (Table S9). It also
performed better than other methods on Mesorhizhobium loti
(highest values for all accuracy metrics). All GI prediction methods
had difficulty finding GI nucleotides in Salmonella enterica (highest
F-measure value was 0.56 by ZislandExplorer) and Corynebacte-
rium diptheriae (highest F-measure value was 0.6 by IslandPath-
Dimob; Table S9). These results highlight the complementary
strengths of GI prediction methods. Overall, IslandCafe outper-
formed other GI prediction methods in identifying nucleotides of
the known GIs. Furthermore, IslandCafe displayed highest, perfor-
mance coefficient, F-measure, and MCC for three genomes, more
than any other methods.

Identification of GIs in real genomes: At island level, highest accuracy
was attained by IslandCafe for all cutoffs. At the 50% cutoff, IslandCafe
outperformed other methods by up to 46% in F-measure (Figure 3 and
Table 4). IslandCafe was also most precise, outperforming other meth-
ods by up to 42% in Precision. IslandCafe outperformed the next best
performingmethod IslandPath-Dimob by 11% in F-measure, bettering
both Recall and Precision by 10% and 11% respectively. At 60% Recall,
IslandViewer was most sensitive, outperforming IslandCafe by �1%,
however, its Precision was only 19% compared to 47% of IslandCafe. Of
the 442 predictions by IslandViewer, 83 were known GIs at the 50%
cutoff. In contrast, of the 172 predictions by IslandCafe, 81 were known
GIs. Zisland Explorer predicted fewer GIs than IslandCafe, however, it
could identify only 43 knowns GIs (Table 4). IslandCafe outperformed
other methods at the 75% and 95% cutoffs as well, with the highest
F-measure (Figure 3, Tables S10 and S11), outperforming the next best
methods IslandPath-Dimob by 13% andGIHunter by 10% for 75% and
95% cutoffs respectively. At both 75% and 95% cutoffs, IslandCafe was
again the most precise method, while PredictBias and IslandViewer
were most sensitive (Figure 3, Table S10 and S11).

We also assessed the performance ofGI prediction tools in localizing
GIs in each genome. IslandCafe displayed highest F-measure for six
genomes at 50% overlap cutoff as well as at 75% cutoff (Tables S12 and
13), more than any other methods. IslandCafe also had the highest
averageF-measure(pergenome)at50%and75%cutoffs (TablesS12and
S13). At 95% cutoff, IslandCafe had the highest F-measure for three
genomes and the highest F-measure per genome (Table S14). At
this cutoff, IslandViewer had the highest F-measure for six genomes

Figure 3 Assessment of genomic island prediction tools in identifying GI nucleotides and GIs in 15 representative bacterial genomes. F-measure
values for nucleotide level and island level performance assessment are shown on the Y-axis for different GI prediction methods. Island level
F-measure values are shown for different overlap cutoffs (numbers in parenthesis on the X-axis; Z% cutoff means that Z% of a known GI should be
identified with the predicted segment (or chain of contiguous segments) in order for the prediction to be deemed a success; see text for further
details). Segmentation, contiguous clustering, and non-contiguous clustering were performed at thresholds 2�1021, 1025, and 1023 respectively.
Methods based on composition, phylogenetics, and marker gene detection are shown with diagonal brick fill in bars. Bars with a dotted fill show
methods using both composition and presence of marker genes for identifying GIs. Methods relying only on sequence composition are shown
with upward diagonal lines, and method based only on sequence comparison (IslandPick) is shown with grid.
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(Table S14). At the island level, IslandCafe thus had highest values of
F-measure for up to six genomes out of fifteen, and the highest overall
accuracy. Comparative assessment of IslandCafe’s performance at both
nucleotide and island levels highlights its strength in identifying GIs as
contiguous elements.

Results from the nucleotide and island level assessment demonstrate
the overall superior performance of IslandCafe over other methods.
Although IslandCafe outperformed IslandViewer slightly in iden-
tifying nucleotides of known GIs in real genomes, its performance
in identifying known GIs as single segments was substantially
better than that of IslandViewer. IslandCafe compared favorably
with IslandPath-Dimob as well at both nucleotide and island levels
(note that both these programs require the presence of markers
in their predictions). Considering that some programs such as
IslandViewer take a rather holistic approach by combining several
GI predictionmethods to raise the accuracy bar, we show here there
is still scope for substantial improvement in standalone statisti-
cal methods by utilizing biological information to augment their
power of discrimination. Notably, our analysis revealed the com-
plementary strengths of different methods, which is further elab-
orated in the Discussion section below.

Analysis of novel genomic islands
We examined GIs predicted by IslandCafe that do not overlap with
known GIs. IslandCafe identified 72 novel GIs in 15 bacteria we
studied (Table S15). These islands display atypical composition and
were identified within clusters that were either marker-enriched or
displayed unusual phyletic pattern, providing multiple lines of
evidence in support of their possible horizontal acquisition. Of
the 72 novel GIs identified by IslandCafe, 20 have marker
genes such as transposase, integrase or phage related genes (Table
S15). The compositional, phylogenetic and marker analyses
performed by IslandCafe suggest that these “false positives” are
likely true positives, and accuracy rendered by IslandCafe is likely
much higher. This may apply to other methods as well, particu-
larly those that rely on multiple lines of evidence. However, as
revealed in this study, almost all existing methods have difficulty
recovering the GI structure (see island level accuracies in Figures 2
and 3, Table 4 and, Tables S10 and S11). With a relatively much
better performance in island recovery, IslandCafe offers new op-
portunities for researchers to investigate the novel GIs, perhaps
alongside novel predictions by other promising methods such as
IslandPath-Dimob.

DISCUSSION
Although top-down, recursive segmentation is a powerful tool for
genome analysis, adapting this approach to delineate GIs necessitates
parameter optimization, robust cluster merger, and elimination of
spurious predictions. In this study, we show that the combining diverse
evidence helps in minimizing the sensitivity of parametric methods on
parameter setting. Significance thresholds that result in optimal perfor-
mance of the segmentation and clustering often vary between bacterial
taxa, however, by incorporating GI specific feature enrichment and
phyletic distribution analyses within this framework, we identified
parameters that were globally applicable on a diverse set of bacterial
species in delineating GIs with high accuracy (segmentation threshold:
2∙1021, contiguous clustering threshold: 1025, and non-contiguous
clustering threshold:1023). Thus suggests that once clusters are reliably
populated within a broad range of stringent thresholds, feature enrich-
ment and phyletic distribution analyses suffice to group native clusters
of apparently variable composition and thus enable robust detection of
GIs. This could reflect on overall performance as is apparent in Island-
Cafe’s higher single accuracy metric values in identifying known GIs
from 15 representative genomes in comparison to segmentation-clus-
tering; the values for nucleotide-level Average Performance, Perfor-
mance Coefficient, F-measure, and MCC were 0.66, 0.49, 0.66, and
0.62 respectively for the former, while 0.55, 0.34, 0.50, and 0.47 re-
spectively for the latter (Tables 1 and 3). In genome-wise comparison
as well, segmentation-clustering at genome specific optimal parameter
setting could not perform better than IslandCafe at its single, universal
parametric setting on a majority of genomes (Table 1 and Table S8).
Although genome specific optimal parameter setting is hard to realize
for yet uncharacterized genomes and the quest will always be for a
universal parameter setting (the “default setting”) that yields the best
overall performance, future efforts could focus on organism or species
specific parameter setting where feasible to further enhance the perfor-
mance and take the GI prediction to even greater heights.

Since compositional disparity is a strong indicator of recent HGT
(Vernikos & Parkhill 2006), a host of methods exploiting the compo-
sitional or codon usage biases have been developed to localize alien
genes orGIs (de Brito et al. 2016; Jani et al. 2016;Waack et al. 2006;Wei
et al. 2017). Methods or visualizations tools that search for signals, such
as, the remnants of GI integration in the recipient genome andmarkers
or features associated with GIs have also been developed (Hsiao et al.
2003; Pundhir et al. 2008). Attempts have also been made to combine
the sensitive compositional approach with the conservative signal sen-
sor approach (Langille & Brinkman 2009). Our approach to detect GIs

n Table 4 Performance assessment of genomic island prediction methods in identifying GIs in 15 bacterial species at the 50% overlap
cutoff. At this cutoff, 50% or more of a known GI should be identified with the predicted segment (or chain of contiguous segments) in
order for the prediction to be deemed a success (see Tables S9 and S10 for 75% and 95% overlap cutoffs respectively, and the text for
further details). Highest value for each performance metric is shown shaded

GI Prediction tool Recall Precision F-measure Number of GIs Identified Number of GIs Predicted

IslandCafe 0.59 0.47 0.52 81 172
IslandPath-Dimob 0.49 0.36 0.41 67 187
GIHunter 0.43 0.27 0.34 60 220
Zisland Explorer 0.31 0.30 0.31 43 143
IslandViewer 0.60 0.19 0.29 83 442
Seqword 0.22 0.19 0.21 31 159
AlienHunter 0.51 0.08 0.14 70 847
MSGIP 0.18 0.10 0.13 25 242
PredictBias 0.57 0.06 0.11 78 1268
SIGI-HMM 0.13 0.06 0.09 18 285
IslandPick 0.09 0.05 0.06 13 276
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via clustering and enrichment stands out among the current methods
in its ability to perform unbiased detection of GIs through grouping of
genomic segments of similar origin based on composition and enrich-
ment. GIs that are weakly atypical or those that lack identifyingmarkers
are difficult to identify; clustering allows their identification via associ-
ation with GIs from the same source. Marker-deficient GIs are prone to
be missed by the conventional approaches. These GIs could group with
marker-enriched GIs originating from a donor source within our pro-
posed framework, and therefore, could be identified based on associa-
tion. Marker-deficient GIs from a source, if allowed to be grouped and
analyzed together, as in IslandCafe, may even display significantly
greater enrichment than the native clusters. The predicted segments
with only one or two markers are likely to be missed by conventional
methods that base their predictions on abundance, unlike IslandCafe
that bases its inference on grouping and enrichment. An example is
shown in Table S16, where 20 segments (annotated GI 1 – GI 20) from
the backbone genomes of three donors, namely, D. thermolithotro-
phum, F. nucleatum, andM. agalactiaewere inserted into the backbone
genome of A. baumannii. D. thermolithotrophum and F. nucleatum
contributed 7 GIs each, while M. agalactiae contributed 6 GIs; half of
these GIs lacked any markers. Application of optimized IslandCafe to
this synthetic A. baumannii genome with 20 GIs revealed a robust
grouping of GIs from a donor source, both with and without markers.
All seven GIs from D. thermolithotrophum were assigned to a single
cluster (Cluster ID 2, Table S16). The two F. nucleatum clusters (Cluster
IDs 6 and 7) were also not contaminated with GIs from other sources.
All 6 GIs from M. agalactiae were assigned to a single cluster (Cluster
ID 8). This demonstrates the ability of IslandCafe to identify marker
devoid GIs via their association with GIs with markers through a pipe-
line of segmentation, clustering, and enrichment.

We further emphasize the augmentation of generic attributes of this
pipeline through incorporation of a phylogeneticmodule in posteriority
to enable identification ofmarker deficientGI clusters. By incorporating
both enrichment andphylogeneticmoduleswithin an integrated frame-
work of segmentation and clustering, we have strived to develop an
approach that can work well on just sequenced, yet uncharacterized
genomes. Though segmentation and clustering identify the native
genomewell, yet in several clusters, with some very small. These smaller
native clusters show atypical composition for reasons other than HGT,
however, these clustersare likelynot enriched inGI specific features and/
or lack unusual phyletic pattern. Therefore, IslandCafe takes a two-
pronged approach (enrichment and phyletic distribution) to address
this. First, it attempts to minimize false positives by allowing merger of
non-enriched clusters into the largest (native) cluster and in parallel, it
attempts to minimize false negatives by ensuring that those non-
enriched clusters that display unusual phyletic pattern are not merged.
This augments the precision substantially,without a significant decrease
in recall, resulting in significant improvement in overall accuracy (e.g.,
F-measure). The power of IslandCafe thus lies in its ability to precisely
delineate GIs due to the segmentation approach, identify GIs devoid of
markers by their association with marker-enriched GIs (in clusters),
and identify GIs displaying unusual phyletic pattern by association
again (in clusters).Whereas many predicted GIs are expected to display
atypical composition and marker enrichment or unusual phyletic pat-
tern, some with only atypical composition could also be identified
because of association, deciphered via clustering. IslandCafe, in princi-
ple, is thus more precise than segmentation and clustering approach,
while retaining the generic attributes of this approach. Our results in-
deed support this (compare IslandCafe’s Recall and Precision of 0.71
and 0.61 with the respective 0.72 and 0.39 by Segmentation and Clus-
tering; Tables 1 and 3).

As differentmethods often test different hypotheses, thismay lead to
non-converging predictions from these programs. Reconciliation of
divergent sets of predictions is a challenge, however, this also indicates
that no single method alone can address this problem and a holistic
approach that combines the complementary strengths of different
methods must be explored. We suggest to the readers, based on our
comparative analysis, to collate the predictions from IslandCafe and
IslandViewer intoasingleset for theirgenomeof interest.Bothprograms
base their predictions onmultiple lines of evidence thereby reducing the
likelihood of generating false positives. As they clearly showed comple-
mentarity by outperforming each other substantially on different sets of
genomes (Tables S9, S12-S14), union of their predictions could sub-
stantially augment the sensitivity with only marginal or negligible
additions of false positives. We further recommend, based on Island-
Cafe’s demonstrated ability to more efficiently recover the GI structure
(Figures 2 and 3), that IslandCafe’s predictions be relied upon where
there are disagreements between the two programs on the structures of
the predicted GIs. In summary, we demonstrated the robustness and
universality of the simple approach implemented in IslandCafe by
assessing on synthetic test datasets and on a set of well-understood
genomes sampled from different bacterial lineages. Overall, IslandCafe
was found to be most accurate among the GI prediction methods,
however, none of the methods could outperform all others on all ge-
nomes considered in this study. Our results reveal the complementarity
of different approaches and suggest usage of compositional, phyloge-
netic, and functional or structural features in concert to comprehen-
sively catalog GIs. We show here that enriching a statistical framework
with biological information is a step forward inmore robust delineation
of GIs. Such frameworks will become even more relevant as more in-
formation encoded within genomes is deciphered and utilized within
these frameworks. Future efforts could also focus on developing in-
tegrative approaches by exploiting the complementarity of different
methods, which enables boosting the sensitivity without compromising
the specificity (see, for example, Azad & Lawrence 2005).
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