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Abstract: Atypical antipsychotics (AAP) are used in the treatment of severe mental illness. They are
associated with several metabolic side effects including insulin resistance. The skeletal muscle is the
primary tissue responsible for insulin-stimulated glucose uptake. Dysfunction of protein regulation
within the skeletal muscle following treatment with AAPs may play a role in the associated metabolic
side effects. The objective of this study was to measure protein abundance in the skeletal muscle
of patients on long-term AAP or mood stabilizer treatment. Cross-sectional muscle biopsies were
obtained from patients with bipolar disorder and global protein abundance was measured using stable
isotope labeling by amino acid (SILAC) combined with high-performance liquid chromatography-
electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Sixteen patients completed
muscle biopsies and were included in the proteomic analyses. A total of 40 proteins were significantly
different between the AAP group and the mood stabilizer group. In-silico pathway analysis identified
significant enrichment in several pathways including glucose metabolism, cell cycle, apoptosis, and
folate metabolism. Proteome abundance changes also differed based on protein biological processes
and function. In summary, significant differences in proteomic profiles were identified in the skeletal
muscle between patients on AAPs and mood stabilizers. Future work is needed to validate these
findings in prospectively sampled populations.

Keywords: skeletal muscle; antipsychotic; mood stabilizer; proteomic

1. Introduction

The atypical antipsychotics (AAPs) are a medication class whose affinity for dopamine
and serotonin receptors are thought to drive their therapeutic efficacy [1]. AAPs are used
for the treatment of several mental illnesses including schizophrenia, bipolar disorder,
and major depressive disorder. Despite the therapeutic benefits of AAPs, non-compliance
with this class of medication is very high and often a result of side effects [2,3]. The
most prominent side effects of AAPs are metabolic in nature and include weight gain,
insulin resistance and dyslipidemia. Through these side effects, AAPs increase the risk
of metabolic syndrome, diabetes, and cardiovascular disease 1.5–3 times compared to the
general population [4–7]. Although the disorders for which AAPs are used carry a drug-
naive risk of metabolic dysregulation, recent work has pointed to a potentially direct effect
of AAPs on insulin sensitivity [8–10]. The exact molecular mechanism of AAP-induced
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metabolic side effects is not fully known, however several different “omic” areas have been
implicated including genetic, epigenetic, lipidomic, and metabolomic [11–15].

A potential limitation of currently reported studies investigating the mechanisms of
AAP-induced metabolic side effects is the utilization of peripheral samples such as serum
or plasma. These sample sources are clinically accessible and are well-suited for biomarker
development, however, due to their heterogeneous cellular makeup, may not reflect the
primary tissues that underlie AAP-induced metabolic side effects. Metabolic side effects are
likely due to dysregulation in several tissues or organs including the liver, adipose tissue,
and skeletal muscle. The skeletal muscle has been demonstrated to be the primary tissue in
insulin-stimulated glucose uptake and therefore dysregulation within this tissue is thought
to be central to insulin resistance [16,17]. Thus, human skeletal muscle is an ideal candidate
tissue for further investigations into the potential effects of AAPs on this tissue’s molecular
pathways to help explain peripheral AAP side effects (i.e., metabolic side effects).

Proteomics is a field of study that aims to analyze the protein abundance profile
within a given tissue sample or cell. Proteomics utilizes advanced mass spectrometry
approaches to characterize the protein abundance of many proteins within a given sam-
ple. Protein abundance may be particularly important in dictating protein activity and
cellular processes [18]. There have been several studies looking at the effect of mental
illness (e.g., schizophrenia) or AAP use on the proteome of clinically obtained periph-
eral tissues including human serum and plasma and pre-clinical models of the central
nervous system [19–25]. Work in pre-clinical models has identified protein changes in
pathways such as lipid homeostasis, mitogen-activated protein kinases or extracellular
signal-regulated kinases (MAPK/ERK), and electron transport chain pathways [22,23,26].
Levin and colleagues identified serum global proteomic changes that included several
apolipoproteins in the serum of schizophrenia patients compared to controls [24]. Similar
changes in apolipoproteins have also been identified in the cerebrospinal fluid and liver
of patients with schizophrenia [25]. Jaros and colleagues performed two investigations of
serum protein phosphorylation [19,20]. The first study identified concurrent changes in
protein abundance and phosphorylation in a set of antipsychotic-naive subjects compared
to healthy controls. They identified protein abundance differences in 35 proteins and
protein phosphorylation differences in 72 proteins related to acute phase response, lipid
and glucose homeostasis (LXR), and retinoic acid signaling (RXR). Although this study
did not investigate antipsychotic effects, it provided evidence of proteomic changes at
baseline in schizophrenia patients as potential targets for antipsychotic treatment. In a
second investigation, Jaros and colleagues identified differences in 45 protein phosphosites
in serum after the treatment of patients with olanzapine for six weeks. They identified
mixed changes in phosphorylation, of which 26 of the phosphorylated proteins were also
identified in their first study. Within this second study, they found that olanzapine treat-
ment may also influence phosphorylation patterns related to acute phase response and
LXR and RXR signaling, and that it may “correct” some phosphorylation when compared
to healthy controls. Finally, Telford and colleagues investigated the effect of six weeks of
olanzapine treatment of serum protein glycosylation [21]. They identified potential effects
of olanzapine on digalactosylation and disialylation of serum proteins which may play a
role in several critical cellular processes.

Despite investigations into the effect of AAP use on the serum or plasma proteome and
the known importance of skeletal muscle proteomic regulation in the pathophysiology of
metabolic disease, including insulin resistance, there has only been two targeted proteomics
study investigating the effect of an AAP on the protein abundance and regulation in an
L6 rat muscle cell model [27,28]. To date, proteomic analyses have not been performed on
skeletal muscle of humans treated with AAPs. The aim of this study was to investigate the
effect of AAP treatment compared to mood stabilizer treatment on human skeletal muscle
proteome as a first step to establishing the potential effects of AAPs on skeletal muscle
molecular functions, which can be used in future investigations of AAP-induced metabolic
side effects.
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2. Materials and Methods
2.1. Clinical Population and Assessments

All procedures and protocols were approved by the adult medical institutional review
board of Wayne State University. Potential participants were recruited through public
advertisements and invited to the Wayne State University Clinical Research Services Center
(CRSC) to undergo a screening for inclusion into the study following informed consent.
Patients were included if they met the following criteria: (1) had a diagnosis of bipolar
disorder (I, II, or not otherwise specified) as confirmed by the Mini International Neu-
ropsychiatric Exam conducted by a trained research assistant, (2) on an AAP or mood
stabilizer with no dosage changes >25% for 3 or more months, and (3) between the age of
18–65 years. Although antipsychotics have demonstrated mood stabilizing properties, for
the purposes of this study, the term “mood stabilizer” is used to categorize patients treated
with a guideline medication used for mood stabilization in bipolar disorder other than an
antipsychotic [29]. Three months was chosen as a cutoff for dosage changes to capture a pa-
tient population on a stable and consistent treatment regimen and to minimize the potential
fluid metabolic changes observed early in treatment (e.g., weight gain with antipsychotics,
etc.). Participants were excluded for the following: (1) diabetes (2-h oral glucose tolerance
test with glucose 200 or greater), (2) primary relative with diabetes, (3) unable to refrain
from anticoagulants 7 days before or after biopsy, (4) allergy to lidocaine, or (5) history of
bleeding disorder.

Patients were assessed for vitals and anthropometrics, a standard 75-g, 2-h oral glucose
tolerance test, blood draws for analysis of glucose and insulin, and a fasting muscle biopsy.
Vitals and anthropometrics were measured and included height, weight, blood pressure,
heart rate, and body fat by bioelectric impedance (Biodynamics BIA 450 Bioimpedance
Analyzer, Biodynamics, Shoreline, WA, USA). Blood draws were performed at baseline
and every 30 min during the oral glucose tolerance test. A fasting muscle biopsy was
obtained from the vastus lateralis using the modified bergstrom needle technique. The
muscle tissue was quickly cleaned of blood and connective tissue and immediately frozen
in liquid nitrogen [30]. Biopsies were stored at −84 ◦C until further processing. Glucose was
analyzed by a bedside YSI 2300 Stat Plus Glucose Lactate Analyzer (YSI, Yellow Springs,
OH, USA). Insulin was analyzed with Alpco Insulin Enzyme-linked immunosorbent assay
(ELISA) kits according to manufacturer instructions. The homeostatic model of insulin
resistance (HOMA-IR) was used as an index of insulin resistance [31]. Metabolic syndrome
was defined according to published criteria [32]. Glucose area-under-the-curve (AUC) and
insulin AUC during the OGTT were calculated using the trapezoidal method with Excel
(Seattle, WA, USA) as an additional surrogate of insulin resistance [33].

2.2. Proteomic Abundance Analysis

Muscle biopsies from 8 participants each from the two groups (AAP and mood sta-
bilizer) were homogenized using a Next Advance Bullet Blender (Model BBY5E) in 8 M
urea buffer containing protease inhibitors and phosphatase inhibitors. The lysate was
centrifuged, and the supernatant was moved to a new tube and the protein concentration
was measured by Bradford protein assay. Three mg of proteins from each biopsy and 300 µg
“heavy” Stable Isotope Labeling by Amino Acid (SILAC) labeled protein standards were
mixed. The “heavy” SILAC labeled protein standards were from the stock we prepared
with SILAC incorporation rate >95%, as described in [34]. The protein mixture underwent
reduction (10 mM dithiothreitol (DTT) incubation for 30 min at 55 ◦C) and alkylation
(50 mM iodoacetamide (IAA) incubation for 30 min at room temperature in dark). The
buffer for these protein mixtures was exchanged to 40 mM ammonium bicarbonate using
an Amicon 5 kD spin column, followed by in-solution trypsin digestion using 60 µg trypsin
Protease MS Grade (catalog #PI90058, Fisher scientific, Hampton, NH) for 16 h at 37 ◦C.
After the digestion, the resulting tryptic peptide mixture was passed through an Amicon
10 kD spin column to remove excessive trypsin. The pass throughs containing tryptic
peptides were dried by vacuum centrifugation, which removed ammonium bicarbonate.
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The resulting protein digests were reconstituted with 0.1% TFA in water and analyzed by
high-performance liquid chromatography-electrospray ionization tandem mass spectrom-
etry (HPLC-ESI-MS/MS) for protein abundance, according to the method we published
earlier [35]. In brief, the peptide mixture was separated with a linear gradient of 5–35%
buffer B (0.1% FA in ACN) in 120 min at a flow rate of 300 nL/min on a C18-reversed phase
column (75 µm ID, 40 cm length) packed in-house with ReproSil-Pur C18-AQ 3 µm resin
(Dr. Maisch GmbH) in buffer A (0.1% FA). A nanoflow Dionex Ultimate 3000 UPLC system
was online coupled to a Thermo Finnigan LTQ-Orbitrap Lumos fitted with a nanospray
flex ion source (Thermo Fisher, San Jose, CA, USA).

A “top 20” data-dependent tandem mass spectrometry approach was utilized to
identify peptides in the samples. In a top 20 scan protocol, a full scan spectrum is acquired
followed by collision-induced dissociation (CID) mass spectra of the 20 most abundant
ions in the survey scan. The survey scan was acquired using the Orbitrap mass analyzer to
obtain high mass accuracy and high mass resolution data, and up to 20 of the most intense
peptides were selected and subjected to fragmentation in the linear ion trap (LTQ). Dynamic
exclusion was set at 30 s. The charge state rejection function was enabled with “unassigned”
and “single” charge states rejected. By knowing the accurate mass and fragmentation
pattern of the peptide, the peptide’s amino acid sequence can be reliably inferred.

Raw MS files were processed using the MaxQuant software, a popular quantitative
proteomics software package [36–38]. The database with forward and reversed Uniprot
human protein sequences was downloaded from www.uniprot.org (accessed on 9 June
2021) Standard settings in the MaxQuant were applied. Parent mass tolerance was 5 p.p.m.,
and fragment mass tolerance was 0.5 Da. Two missing trypsin cleavage sites were allowed.
Oxidized methionine (M), phosphorylation (STY), and acetylation (protein N-term) were
allowed as a variable modification. The false discovery rate (FDR) for both proteins
and peptides (with minimum 6 amino acids) was set to 0.01. Only proteins identified
with minimum of 2 unique peptides and with FDR for both proteins and peptides ≤0.01
were considered.

To minimize the experimental variation during sample preparation and HPLC-ESI-
MS/MS data acquisition, we developed and validated a modified Super-SILAC approach
(we now call it Universal-SILAC), in which SILAC labeled protein lysates were spiked-in
to each experimental sample and were used as a universal standard for quantification
purpose [34,39]. The normalized peak area for non-labeled peptides was calculated by
normalizing the peak area of a peptide (PAi) against the sum of the peak area of the
isotope-labeled peptide, which were identified in the same sample [34,39]. Please note that
traditional SILAC/spike-in Super-SILAC requires both light peptides and corresponding
heavy-labeled peptides to be identified for quantification. Unfortunately, identification
of only the light or heavy-labeled peptide is a phenomenon commonly observed in tradi-
tional SILAC/Super-SILAC experiments, which leads to fewer quantifiable peptides [40].
Our Universal-SILAC approach does not require both light peptides and corresponding
heavy-labeled peptides to be identified for quantification, therefore it provides more quan-
titative information than the traditional SILAC/Super-SILAC quantification. Please see our
publication [34,39] for more details. The Universal-SILAC strategy can be easily applied to
proteome quantification [34]:

Norm : i =
PAi

Sum of the peak area for the labeled proteins identified in the same sample

These normalized intensities were used for statistical analysis of protein abundance
differences between groups (i.e., AAP versus mood stabilizer).

2.3. Statistical Analysis

Continuous variables are reported as means ± standard error (s.e.) and categorical
variables are reported as percentages. Clinical and demographic variables were analyzed
between groups by independent student’s t-test, chi-square test, or fisher’s exact test, where

www.uniprot.org


Brain Sci. 2022, 12, 259 5 of 17

appropriate. Fasting insulin, HOMA-IR, and insulin AUC were analyzed by Mann Whitney
due to their deviation from normality. A p < 0.05 was considered statistically significant for
these tests.

In the proteomic analyses, although many proteins were identified, a series of filters
were applied to narrow the number of proteins that were used in comparisons between
groups to minimize false positives: (1) Identified in ≥4 biopsies out of the 8 AAP or 8 mood
stabilizer biopsies; (2) with a fold change greater than 1.5 (i.e., 1.5-fold increase) or less than
0.67 (i.e., 1.5-fold decrease) between the AAP and mood stabilizer biopsies. Independent
t-tests were performed to assess effects of AAP and mood stabilizers on protein abundance
and p < 0.01 was considered statistically significant for this. If a protein was only identified
in AAP or a mood stabilizer for at least half of the time (i.e., ≥4 samples), this protein was
considered significantly different by default.

2.4. Bioinformatics/Pathway Analysis

For an in-silico pathway and bioinformatics analysis, significantly different proteins
based on the analysis criteria described above were entered into Ingenuity Pathway Analy-
sis Software (Qiagen, Germantown, MD, USA) by entering the corresponding gene name
to the identified protein. The canonical pathway module was performed to analyze signifi-
cantly enriched pathways based on the entered data. The top-performing pathways that
were significant (defined as a false discovery rate (FDR) ≤ 0.1) are presented in the results.
The molecule module was used to derive a list of molecules associated with canonical
pathways and to present a qualitative analysis of protein location and annotated function
that had increased or decreased protein abundance.

3. Results
3.1. Description of Clinical Population

A total of 16 patients completed the study to be included in the proteomic analysis
(Table 1). Fifty percent of the sample were currently treated with AAPs (mean chlorpro-
mazine equivalent dose ± s.e. = 323 ± 44.7) that included quetiapine (n = 3), risperidone
(n = 2), olanzapine (n = 2), and asenapine (n = 1). The remainder were on mood stabi-
lizers including lamotrigine (n = 4; mean dose = 212.5 mg/day), lithium (n = 3; mean
dose = 650 mg/day), and valproic acid (n = 1; 1000 mg/day). Within the AAP group, all
were diagnosed with bipolar disorder I except one patient with bipolar disorder II, and
within the mood stabilizer group all were diagnosed with bipolar disorder I except two
patients with bipolar disorder II. The treatment groups did not significantly differ in any
demographic or clinical variable. The AAP group had qualitatively higher levels of fasting
and insulin AUC, which is an expected effect of AAP treatment; however, this was not
statistically significant [10,41]. The AAP group had one patient meeting metabolic syn-
drome criteria, while the mood stabilizer group had two. Together, this suggests the groups
were comparable on most measured variables except for drug treatment as intended in the
study design.

Table 1. Description of Clinical Sample Population. Values presented as mean ± s.e. with range
(min, max) or percent. Average length on treatment refers to antipsychotic or mood stabilizer.
BMI = Body Mass Index; * reflects the number of months that have elapsed since the medication was
first prescribed.

Atypical
Antipsychotic (n = 8)

Mood Stabilizer
(n = 8) p-Value

Age (years) 45.5 ± 5.1 (26, 61) 43.3 ± 3.6 (30, 58) 0.7

Race (% Caucasian/%
African American) 50.0/37.5 75.0/12.5 0.3

Sex (% female) 37.5 50 0.6
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Table 1. Cont.

Atypical
Antipsychotic (n = 8)

Mood Stabilizer
(n = 8) p-Value

BMI (mg/kg2) 29.7 ± 2.4 (19.6, 41.7) 31.0 ± 1.4 (25.6, 35.5) 0.6

Body fat % 34.4 ± 2.3 (27.3, 43.8) 34.6 ± 2.0 (27.0, 42.9) 0.9

Fasting Glucose
(mg/dL) 91.3 ± 3.4 (75.3, 102) 93.5 ± 3.1 (84, 109) 0.8

Fasting Insulin
(uU/mL) 25.7 ± 12.3 (5.4, 103.3) 12.9 ± 1.7 (7.5, 22.9) 0.4

HOMA-IR 6.5 ± 3.3 (1.2, 27.9) 2.9 ± 0.4 (1.5, 5.1) 0.5

Glucose AUC 15,850.4 ± 560.0
(13,884.8, 17,905.5)

17,088 ± 1336.1
(11,187.0, 21,712.5) 0.4

Insulin AUC 8505.8 ± 2386.3
(2863.5, 23,309.0)

5612.2 ± 742.5 (2597.1,
8699.6) 0.4

Duration of Current
Antipsychotic or
Mood Stabilizer

Therapy (months) *

94.1 ± 28.8 (3, 228) 58.6 ± 21.6 (6, 180) 0.3

Years Since First Psy-
chopharmacologic

Treatment
23.1 ± 3.9 (7, 37) 19.1 ± 3.2 (6, 33) 0.4

3.2. Protein Abundance Analyses

HPLC-ESI-MS/MS analysis indicated that 1110 proteins were identified with a min-
imum of two unique peptides and with an FDR for both proteins and peptides ≤0.01.
As described in the Methods section, a series of filters were used to narrow the number
of proteins that were used in comparisons between groups to minimize false positives:
(1) Identified in ≥4 biopsies out of the eight AAP or eight mood stabilizer biopsies, and
469 proteins met this criterion; (2) with a fold change greater than 1.5 (i.e., 1.5-fold increase)
or less than 0.67 (i.e., 1.5-fold decrease) between the AAP and mood stabilizer biopsies,
and 168 proteins met this criterion. Thus, 168 independent t-tests were performed to
assess effects of AAP and mood stabilizer on protein abundance. In total, 34 out of the
168 proteins were significantly different (p < 0.01) between the AAP and mood stabilizer
groups (Table 2).

In addition, if a protein was identified only in one group (AAP or mood stabilizer)
and was present in at least half of the samples in that group (≥4 biopsies), we assumed the
protein in the other group was too low to be detected, and those proteins were considered
to have higher abundance in the detected group by default. Six proteins satisfied this
criterion. As a result, in total, the protein abundance for 40 (34 + 6 = 40) proteins were
significantly different between AAP and mood stabilizer groups



Brain Sci. 2022, 12, 259 7 of 17

Table 2. The 40 proteins with significant differences between AAP and mood stabilizer groups. Data
are given as fold changes (mean ± s.e.). Cutoff for significance was set at p < 0.01 or if a protein was
not detected in one group but detected in one group and present in at least half of samples of the
other group. The mean of the normalized PA for each protein in the AAP biopsy samples was set to
1.00, and the fold changes were relative to AAP. ND; not detected. #, only detected in a minimum of
4 out of the 8 AAP muscle samples or 4 out of the 8 MS muscle samples.

Gene Name Protein Name AAP MS p-Value

ADSSL1 Adenylosuccinate synthetase isozyme 1 1.00 ± 0.07 0.61 ± 0.05 0.0004

ALDH9A1 4-trimethylaminobutyraldehyde
dehydrogenase 1.00 ± 0.18 3.54 ± 0.34 0.0001

ANXA1 Annexin A1 1.00 ± 0.10 0.47 ± 0.09 0.0012

ANXA11 Annexin A11 1.00 ± 0.15 0.33 ± 0.15 0.0073

ANXA5 Annexin A5 1.00 ± 0.10 0.62 ± 0.08 0.0091

ATP5D ATP synthase subunit delta, mitochondrial 1.00 ± 0.10 2.02 ± 0.30 0.0098

BTBD10 BTB/POZ domain-containing protein 10 1.00 ± 0.24 1.87 ± 0.06 0.0084

C1QBP
Complement component 1 Q

subcomponent-binding protein,
mitochondrial

1.00 ± 0.14 0.50 ± 0.06 0.0038

CAPNS1 Calpain small subunit 1 1.00 ± 0.13 1.64 ± 0.15 0.0042

CKAP4 Cytoskeleton-associated protein 4 ND 1.00 ± 0.15 <0.01 #

COL6A1 Collagen alpha-1(VI) chain ND 1.00 ± 0.25 <0.01 #

COL6A3 Collagen alpha-3(VI) chain 1.00 ± 0.25 ND <0.01 #

DDX1 ATP-dependent RNA helicase DDX1 1.00 ± 0.09 0.57 ± 0.06 0.0032

ECHS1 Enoyl-CoA hydratase, mitochondrial 1.00 ± 0.23 0.36 ± 0.05 0.0009

EEF2 Elongation factor 2 1.00 ± 0.11 0.63 ± 0.06 0.0088

FABP3 Fatty acid-binding protein 1.00 ± 0.14 1.71 ± 0.23 0.0088

FERMT2 Fermitin family homolog 2 1.00 ± 0.16 ND <0.01 #

FHL1 Four and a half LIM domains protein 1 1.00 ± 0.08 1.66 ± 0.14 0.0012

GDI1 Rab GDP dissociation inhibitor alpha 1.00 ± 0.05 0.42 ± 0.03 0.0017

HNRNPDL Heterogeneous nuclear ribonucleoprotein
D-like ND 1.00 ± 0.24 <0.01 #

HSPA6/7 Heat shock 70 kDa protein 6/7 1.00 ± 0.08 1.66 ± 0.18 0.0034

KPNB1 Importin subunit beta-1 1.00 ± 0.17 0.46 ± 0.06 0.0052

LMNA Lamin-A/C 1.00 ± 0.07 1.88 ± 0.27 0.0077

MTHFD1 Methylenetetrahydrofolate dehydrogenase 1.00 ± 0.13 0.32 ± 0.04 0.0003

MYH3 Myosin-3 1.00 ± 0.31 5.41 ± 1.07 0.0017

NME1/2 Nucleoside diphosphate kinase A/B 1.00 ± 0.21 2.81 ± 0.52 0.0035

PARK7 Protein deglycase DJ-1 1.00 ± 0.08 0.61 ± 0.09 0.0045

PDIA6 Protein disulfide-isomerase A6 1.00 ± 0.10 0.53 ± 0.08 0.0050

PLCL1 Phosphoinositide phospholipase C 1.00 ± 0.08 1.59 ± 0.20 0.0074

PLIN4 Perilipin-4 1.00 ± 0.10 2.50 ± 0.46 0.0016

PRDX1 Peroxiredoxin-1 1.00 ± 0.13 1.57 ± 0.14 0.0099

PRDX2 Peroxiredoxin-2 1.00 ± 0.09 1.59 ± 0.12 0.0020

RPL13 60S ribosomal protein L13 ND 1.00 ± 0.13 <0.01 #
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Table 2. Cont.

Gene Name Protein Name AAP MS p-Value

RPN2 Dolichyl-diphosphooligosaccharide–protein
glycosyltransferase subunit 2 1.00 ± 0.27 0.10 ± 0.02 0.0075

RPSA 40S ribosomal protein SA 1.00 ± 0.09 0.49 ± 0.04 0.0001

SRL Sarcalumenin 1.00 ± 0.09 0.60 ± 0.05 0.0025

YWHAG 14-3-3 protein gamma 1.00 ± 0.15 0.46 ± 0.09 0.0058

YWHAH 14-3-3 protein eta 1.00 ± 0.15 0.43 ± 0.07 0.0031

YWHAQ 14-3-3 protein theta 1.00 ± 0.18 0.41 ± 0.04 0.0044

YWHAZ 14-3-3 protein zeta/delta 1.00 ± 0.19 0.40 ± 0.08 0.0030

3.3. Bioinformatics/Pathway Analysis

Protein function and location for significant proteins identified from our analysis
(Table 2) are shown in Figure 1. Overall, most proteins were found in the cytoplasm
followed by the nucleus for either increased or decreased proteins in the AAP group. The
most common function for the identified proteins was enzyme in the increased abundance
and “other” for the decreased abundance. Of note, identified proteins from our abundance
analysis saw an enrichment in transcription and translation regulators in the proteins with
increased abundance, which was not observed in the proteins with decreased abundance
in the AAP group.
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lation 
0.0001 YWHAQ, YWHAG, YWHAH, YWHAZ 

14-3-3-mediated Signaling 0.0002 YWHAQ, YWHAG, YWHAH, YWHAZ, PLCL1 
ERK5 Signaling 0.0003 YWHAQ, YWHAG, YWHAH, YWHAZ 

Myc Mediated Apoptosis Signaling 0.0003 YWHAQ, YWHAG, YWHAH, YWHAZ 
HIPPO signaling 0.0003 YWHAQ, YWHAG, YWHAH, YWHAZ 
IGF-1 Signaling 0.001 YWHAQ, YWHAG, YWHAH, YWHAZ 

Figure 1. Pie chart representation of protein location and function for identified protein abundance
differences between patients on atypical antipsychotics (AAP) and mood stabilizers. This figure
depicts the location and function (as determined by the Molecule Module of Ingenuity Pathway
Analysis Software) of protein abundancies that were determined to be significantly different in the
skeletal muscle of AAP-treated subjects versus mood stabilizer-treated subjects. The top half of
the panel depicts protein location (a,b) and the bottom half of the panel shows the distribution
of annotated function for each identified protein (c,d). The increased abundance and decreased
abundance refer to increases or decreases in the AAP group relative to the mood stabilizer group.
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In-silico pathway analysis of significantly altered protein abundance sites revealed
an enrichment of 107 pathways, with 21 below an FDR p of 0.1. The most significant
enrichment was in p70S6K signaling and cell cycle pathways. A list of the top pathways is
presented in Table 3.

Table 3. Enriched pathways based on the 40 proteins with a significant difference between AAP and
mood stabilizers using Ingenuity Pathway Analysis.

Ingenuity Canonical Pathways FDR
q-Value Proteins Assigned to a Pathway

p70S6K Signaling 0.000028 YWHAQ, YWHAG, YWHAH,
EEF2, YWHAZ, PLCL1

Cell Cycle: G2/M DNA Damage
Checkpoint Regulation 0.0001 YWHAQ, YWHAG, YWHAH,

YWHAZ

14-3-3-mediated Signaling 0.0002 YWHAQ, YWHAG, YWHAH,
YWHAZ, PLCL1

ERK5 Signaling 0.0003 YWHAQ, YWHAG, YWHAH,
YWHAZ

Myc Mediated Apoptosis
Signaling 0.0003 YWHAQ, YWHAG, YWHAH,

YWHAZ

HIPPO signaling 0.0003 YWHAQ, YWHAG, YWHAH,
YWHAZ

IGF-1 Signaling 0.001 YWHAQ, YWHAG, YWHAH,
YWHAZ

PI3K/AKT Signaling 0.001 YWHAQ, YWHAG, YWHAH,
YWHAZ

ERK/MAPK Signaling 0.007 YWHAQ, YWHAG, YWHAH,
YWHAZ

Protein Kinase A Signaling 0.008 YWHAQ, YWHAG, YWHAH,
YWHAZ, PLCL1

L-carnitine Biosynthesis 0.05 ALDH9A1

Diphthamide Biosynthesis 0.05 EEF2

Tetrahydrofolate Salvage from
5,10-methenyltetrahydrofolate 0.07 MTHFD1

Folate Polyglutamylation 0.07 MTHFD1

Apoptosis Signaling 0.1 CAPNS1, LMNA

Histidine Degradation III 0.1 MTHFD1

Folate Transformations I 0.1 MTHFD1

Calcium Transport I 0.1 ANXA5

Purine Nucleotides De Novo
Biosynthesis II 0.1 ADSSL1

4. Discussion

The proteomic abundance analyses described here identified 40 proteins that either
increased (22) or decreased (18) in the skeletal muscle of AAP compared to mood stabilizer-
treated patients. To our knowledge, this is the first proteomic investigation of the effects
of AAPs on the skeletal muscle, a tissue that could potentially play a role in the side
effects of AAPs. Most proteomic studies on antipsychotic or mood stabilizer use have been
performed in the blood (see introduction for review of such studies) and have identified a
wide array of proteins (hundreds) and their subsequent pathways that may be influenced by
treatment. When comparing the findings here to those studies, there appears to be distinct
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candidate pathways that are identified for future investigation, however, many of these
proteomic studies had differing study designs (beyond blood-based proteomics) that make
comparisons difficult. Future work will need to understand what proteomic signatures
in the skeletal muscle are reflected in the clinically accessible blood for potential utility in
directing treatment. As we discuss below, some of the main results of this proteomics study
are supported by other studies in the literature, suggesting an overlap in findings between
blood and skeletal muscle when considering a particular protein or pathway.

4.1. Pathway Analysis

The in-silico bioinformatics and pathway analyses of the significantly changed proteins
revealed several canonical pathways that were potentially associated with AAP treatment
when compared to mood stabilizer treatment. The identified pathways included various
signaling pathways, several folate-related pathways, and glucose-related pathways. The
top proteomic pathway, p70S6K signaling, is downstream of phosphoinositide-3-kinase
(PI3K) and has been demonstrated to be involved in insulin sensitivity, particularly within
metabolic tissues such as skeletal muscle and adipose tissue [42–44]. Additionally, the
canonical pathway analysis also found that four skeletal muscle pathways related to
the PI3K and glucose metabolism pathways were influenced by AAP treatment. These
pathways included the insulin-like growth factor 1 (IGF-1) signaling (an activator of the
protein kinase (AKT) pathway) [45], the PI3K/AKT signaling pathway itself [46], 14-3-3-
mediated signaling (binds to proteins found in AKT pathway) [47], and HIPPO pathway
signaling (works alongside the 14-3-3 pathway) [48]. As the skeletal muscle is the primary
tissue involved in insulin-stimulated glucose uptake, the potential effects on these various
glucose metabolism pathways could aid in describing the direct effects of AAPs on insulin
sensitivity [10]. As previously described, work in L6 muscle models has demonstrated that
olanzapine may cause dysregulation in the PI3K/AKT and glycogen synthesis pathways,
and our group has identified epigenetic dysregulation of the AKT pathway in the skeletal
muscle [27,28,49]. The pathway analysis results from this study are the first to suggest that
there may be protein dysregulation occurring within these related pathways of the skeletal
muscle in-vivo. The pathophysiology of insulin resistance and the role of skeletal muscle
molecular mechanisms continues to be an active area of research in the field of diabetes
and endocrinology. It is not known if the insulin resistance caused by AAPs is facilitated
by similar or distinct mechanisms. An in-depth examination of the proteomic abundance,
regulation, and interactions of the PI3K/AKT pathway and other glucose metabolism
pathways is needed to better understand the potential skeletal muscle mechanisms of
AAP-induced insulin resistance.

PI3K/AKT is also involved in telomerase signaling, a primary consideration of the
identified “Cell Cycle: G2/M DNA Damage Checkpoint Regulation” pathway, which
suggests a role for AAPs on genetic integrity and function. Telomeres, repetitive ribonucle-
oprotein complexes on the end of chromosomes, are pivotal to chromosome protection and
cell division [50]. Compromised telomeres have been linked to many different exposures
(e.g., environmental, etc.) and disease states, thus the role of telomeres in the mechanisms
of medication efficacy or side effects is potentially large [51–55]. Additionally, several
pathways related to cell survival and apoptosis were also identified, which should be
considered in the overall view of cellular stability. In support of a potential role of telomere
signaling and integrity in psychopharmacologic mechanisms, work has shown effects of
both AAPs and mood stabilizers on telomere integrity and treatment outcomes [56–59].
Considering these past findings and our findings here, further research into telomeres and
AAP treatment in a tissue-specific manner may be warranted.

Folate metabolism was also implicated from our pathway analysis with the identifica-
tion of enrichment in the pathways of (1) diphthamide biosynthesis, (2) tetrahydrofolate
salvage from 5,10-methenyltetrahydrofolate, (3) folate polyglutamylation, (4) histidine
degradation III, (5) folate transformations I and (6) purine nucleotides de novo biosynthesis
II. The dipthamide biosynthesis pathway utilizes s-adenosyl methionine (SAM, a product
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of the folate pathway) for synthesis of dipthamide and may have a role in translation regu-
lation [60]. The tetrhydrofolate salvage and folate polyglutamylation pathways provide
additional folate sources and prepare better folate substrates, respectively, providing neces-
sary fuel for the cycle and its associated reactions. The histidine degradation pathway feeds
into both glutamate degradation and folate pathways. The folate transformations I path-
way includes the various general folate transformations within the main folate pathway
itself, while the purine nucleotides de novo biosynthesis II pathway utilizes 10-formyl-
tetrahydrofolate twice to make tetrahydrofolic acid in the production of purines. Together,
these pathways involve the activation of folate for use in the body in various reactions
and act as a primary source of methyl donors (as seen in the purine pathway). Of note, a
line of work has looked at folate metabolism in relation to AAP treatment, including both
efficacy and side effects, and found that specific genetic variation of key folate enzyme may
be associated with AAP outcomes and further related to changes in gene function [61–64].
The findings here add to this body of work by being the first to demonstrate associations
with these pathways with AAP treatment in human skeletal muscle.

4.2. Proteomic Changes Depend on Protein Location and Function

The changes in proteomic profiles differed based on annotated location and function
of the protein. Approximately 65–75% of proteins that had either increased or decreased
abundance were located within the cytoplasm, suggesting a relatively large effect of med-
ication treatment on the regulation of these proteins. Twenty percent of proteins with
either increased or decreased abundance were found in the nucleus, while approximately
5% of each group were found in the endoplasmic reticulum. Increased abundance had
~9% of proteins in the plasma membrane while no proteins were found in this location for
decreased abundance.

Protein function identified some key differences between proteins with increased
and decreased abundance. For example, proteins with decreased abundance had 6.3% of
proteins categorized as peptidases while proteins with increased abundance had none in
this category. Similarly, 9.1% of increased proteins were found to be transcription and trans-
lation regulators. Future work could utilize these findings to understand the entire range
(e.g., systems biology) of molecular associations and effects on AAP treatment response.

4.3. Individual Protein Abundance Differences between Treatment Groups

Many individual protein differences were identified in this study, and a few have
relevance to AAPs or mood stabilizers. Several proteins showed decreased abundance in
patients on AAPs versus mood stabilizers. For example, adenosine triphosphate (ATP)
synthase subunit delta (ATP5D) is a subunit of mitochondrial ATP synthase, which plays
a key role in ATP synthesis and the oxidative phosphorylation metabolic pathway, and
regulating mitochondrial function was lower in the muscle of AAP-treated patients [65].
Given the known role of fatty acids and glucose for oxidative phosphorylation, there
have been several investigations into this pathway and the effects of antipsychotics across
various tissues [66–68]. Similarly, oxidative phosphorylation may play a role in the effects
of mood stabilizers as well [69–71].

In addition to ATP5D, our data identified other proteins of interest with lower abun-
dance in the AAP group, such as four and a half LIM domains protein 1 (FHL1), fatty
acid-binding protein 3 (FABP3), heat shock 70 kDa protein 6/7 (HSPA6/7), and myosin-3
(MYH3). FHL1 and MYH3 have been shown to have decreased RNA levels in skeletal
muscle following the infusion of olanzapine in rat models [72]. FABP3 gene expression
may also be influenced by antipsychotics, lithium, and valproic acid [73]. Furthermore,
HSPA6/7 are chaperone proteins of the heat shock family, which may enhance metabolic
profiles in skeletal muscle and serve as a defense system against insulin resistance and
T2D [74]. O-(3-piperidino-2-hydroxy-1-propyl)nicotinic amidoxime (BGP-15), an insulin
sensitizer drug candidate shown to increase heat shock protein expression, can prevent
metabolic side effects of AAP in-vivo [75]. Although this is not an exhaustive discussion of
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the individual protein changes and their relevance to AAP and mood stabilizer treatment,
it demonstrates that the results have both novel and literature-supporting elements.

4.4. Limitations

Although this is the first study to examine skeletal muscle proteomic abundance in
patients treated with AAPs compared to mood stabilizers, a few limitations should be
considered. First, this was a cross-sectional study with a limited sample size, however,
proteomic examination of the biopsied skeletal muscle from a clinical population with
mental illness has not been previously done and we were still able to identify significant
differences. Second, all “omic” type investigations involve multiple statistical tests, raising
the issue of potential false positives. This study employed a combination of fold change
and lowered p-value threshold to account for this. The false discovery rate (FDR) has
emerged as a powerful method to correct for multiple statistical comparisons, which offers
an excellent balance between false positives and false negatives. FDR is defined as [76–78]:

FDR =
# of false positive features

# of significant features

Among the 34 significant proteins (excluding non-detected proteins) in this study
with p < 0.01, there could be 1.68 false positives (168 ∗ 0.01 = 168). Thus, the FDR is
0.049 (1.68/34 = 0.049) for this study, which is within a generally accepted range for FDR
cutoffs. Nonetheless, follow-up studies in additional cohorts of prospectively treated
patients should be pursued to validate the findings from this study. Within our study,
we measured abundance using an untargeted approach. However, the ability to measure
relative quantitative proteomic abundance changes by an unbiased fashion in patients only
differing based on pharmacologic treatment is important and offers hypothesis generation
for future studies, as discussed above. Individual AAP and mood stabilizer medications
were not uniform within each group and this heterogeneity could lead to differences
in pharmacokinetic and side effect profiles that must be considered when interpreting
the results here. Future work could utilize the findings here and focus skeletal muscle
proteomic analyses on the most metabolically adverse AAPs, such as olanzapine, in a
prospective format. Our groups were mostly similar in terms of demographics and clinical
characteristics. The AAP group did have qualitatively higher values of glucose AUC,
insulin AUC, and HOMA-IR compared to the mood stabilizer group, however, these
differences were not statistically significant which would have been hypothesized based on
the known effects of AAPs on insulin resistance. This lack of difference could be from a
small sample size. The HOMA-IR values in both groups are elevated when compared to
suggested cutoffs in general population studies, which could be due to a combination of
high body weight and treatment with medications known to influence HOMA-IR [79–81].
One HOMA-IR value could be considered an outlier in the AAP group (27.9). Although all
patients had blood drawn in a fasting condition, this value is greater than two standard
deviations from the mean. Nevertheless, the differences were not significant between
the groups for HOMA-IR (p = 0.5), and with removal of this probable outlier the group
difference remains non-significant (p = 0.7); the group means remain higher compared to
most proposed cutoffs. Some studies with AAPs in obese patients have identified high
HOMA-IR values, and HOMA-IR appears correlated to weight [82–84]. Nevertheless, this
high HOMA-IR value should be a consideration when interpreting the proteomic findings
here. A potential benefit could be that this allows us to better determine the skeletal muscle
proteomic changes with AAP treatment while reducing the possibility that skeletal muscle
insulin resistance itself was the cause of proteomic changes. This provides rationale for
future prospective work analyzing proteomic changes before and after AAP treatment.

5. Conclusions

This study reported, for the first time, differences in skeletal muscle proteome be-
tween patients treated with AAPs versus mood stabilizers. Pathway analysis identified
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significantly influenced pathways related to glucose metabolism, folate metabolism, and
apoptosis. Future work in prospectively sampled populations is needed to validate these
findings and begin to identify pathways as possible targets to reduce the morbidity and
mortality associated with AAP-induced insulin resistance and other metabolic side effects.
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