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Abstract: Chrysanthemum indicum is an important ornamental and medicinal plant that is often
difficult to propagate commercially because of its poor germination and low seed viability. This plant
is mostly propagated by cutting, but the rooting is slow and non-uniform. The present investigation
evaluated the regeneration capacity of stem cutting by examining the influence of auxins, growth
medium, temperature, and explant type on adventitious root formation in C. indicum. The auxin-
treated cuttings were planted in different growth substrates under greenhouse conditions. Among
the different auxins tested, indole-3-butyric acid (IBA) more effectively induced roots. The cutting
position of stock plants influenced rooting capacity. Cutting the stock plants from the apical region
enhanced root number and length in the explants. Among the different explant types, apical stem
cuts with 2000 ppm IBA produced a significantly higher number of adventitious roots when grown
in vermiculite and perlite (V + P) at a ratio of 1:1 at 25 ◦C. High-performance liquid chromatography
(HPLC) analysis revealed that protocatechuic acid, gentisic acid, chlorogenic acid, biochanin A,
salicylic acid, caffeic acid, glycitein, and luteolin were the most dominant phenolic compounds present
in C. indicum. These results indicate that IBA treatment promoted the synthesis and accumulation of
phenolic compounds in C. indicum stem cuttings at the time of root formation. The present results
demonstrate that applying auxins is essential for early root initiation and higher rooting success and
thus may be beneficial for vegetative C. indicum propagation.

Keywords: auxins; growth medium; temperature; explant type; adventitious root; Chrysanthemum
indicum

1. Introduction

Chrysanthemum indicum Linné (Asteraceae) is a perennial, aromatic, medicinal plant [1,2]
distributed in Korea, Japan, China [3], Russia, and Europe [4]. Its flowers and buds are
commonly used for traditional tea and to treat eye diseases in Korea and China [5] In
addition to its medicinal value, due to its excellent aroma, these floral parts of the plants
can also be added to rice cakes, as food additives for masking flavors, for making alco-
holic beverages in Korea from ancient times [6]. The flowers bloom in September and
October [1]. C. indicum extract is used as a traditional Chinese herbal medicine to lower
blood pressure and treat nephritis, headaches [7,8], cancer, pneumonia, colitis, sores, fever,
and stomatitis [9,10]. Extracts of this plant were shown to possess certain pharmacological
properties, including inhibiting lens aldose reductase activity and nitric oxide produc-
tion in lipopolysaccharide (LPS)-activated macrophages [2], and antimicrobial [11–13],
antibacterial [14], anti-inflammatory [15,16], analgesic, antipyretic [11], and anticancer
properties [2,5,17]. Furthermore, C. indicum has been shown to possess antioxidant prop-
erties [18,19] neuroprotective effects against oxidative stress [20], and hepatoprotective
effects [21]. It also relieves hypertension and respiratory diseases [22,23].
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One of the main problems encountered by propagation using seeds is the long dor-
mancy, poor viability, and longer maturity attainment times [24]. Factors including the
collection time, types of explants, temperature, plant size, stock plant age, and type of
plant growth regulator (PGR) affect seed germination, causing late emergence or failure
to germinate, reducing uniformity and yield [25–28]. Moreover, Chrysanthemum seeds
have limited viability, short storage time, and a low germination rate. These problems
can be overcome by clonal and mass propagation using superior genotypes. In contrast,
stem cuttings are a principal alternative method for the propagation and production of
high-quality plants [29]. It can maintain the progeny of elite plants with special features
and qualities, resemble the mother plants in all respects [30], and are useful for quicker
establishment and production [31,32].

It is a time-consuming and laborious process to establish the stock plant as the source
of cuttings. Adventitious root formation is the key pre-requisite for successful establishment
of cutting propagation. One of the main problems encountered by C. indicum during its
clonal propagation is the low number of adventitious roots formed per cutting, negatively
affecting plant growth and stability [33]. Exogenous auxin application not only helps
initiate adventitious roots but also enhances the root numbers, improves root quality and
uniformity, and reduces the time required for the rooting process [34–36]. Moreover, auxins
are involved in most aspects of plant development [37], including main root formation
and lateral and adventitious root initiation, by breaking cytokinin-induced root apical
dominance [38]. Various studies have reported the advantages of applying exogenous
rooting hormones and achieving early root emergence, enhanced root numbers and length,
and improved quality and uniformity of rooted cuttings [39,40]. Auxins, such as indole-3-
butyric acid (IBA), indole-3-acetic acid (IAA), and 1-Naphthaleneacetic acid (NAA), are
used in a wide range of plants to promote root growth and induce the root system of
cuttings [41]. Additionally, exogenous treatment with auxins reportedly increases the dry
weight of roots [36], flower diameter [42], shoot length [43], leaf number [44], plant height,
leaf area, and dry weight of shoots [45].

Polyphenols protect plants from oxidative stress [46] and UV light and prevent cell
death from reactive oxygen species [47]. In addition, phenolic compounds act as auxin
transport inhibitors [48,49]. Moreover, several previous studies have reported the influence
of phenolic compounds on the rooting of cuttings by inhibiting auxin degradation [50,51].
Other studies have reported the important role of polyphenols in the rooting process of
cuttings [52,53]. To our knowledge, the influence of auxins, temperature, and explant type
on polyphenol content and C. indicum adventitious root formation have not been examined.

Therefore, the present study aimed to evaluate the regeneration potential of stem
cuttings, establish the superior clonal stock of C. indicum, and identify the optimum auxin
concentrations to enhance C. indicum rooting frequency. Likewise, this study compared the
rooting response of cuttings at different temperatures and soil types and analyzed the effect
of auxin treatment on the phenolic compounds in C. indicum cuttings and its relationship
with rooting capacity.

2. Results
2.1. Effect of Auxins on Fresh Weight (FW) and Dry Weight (DW) of Roots and Shoots

All the auxin treatments significantly enhanced root FW and DW compared to the
control. Except in some cases, all treatments showed an increasing trend in the FW and DW
of roots with increasing auxin concentrations (Figure 1). Among the auxins, IBA and NAA
at a concentration of 2000 and 1000 ppm, respectively, significantly improved the FW of
roots and shoots compared to other auxin treatments and the control (no exogenous auxins).

Lower auxin concentrations had less influence on shoot FW and DW. An increase or
decrease in NAA concentration from 1000 ppm decreased the FW and DW of roots and
shoots. Maximum improvement in the FW and DW of shoots and roots was observed in
the cutting treated with 2000 ppm IBA (Figure 2).
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2.2. Effect of Temperature on Adventitious Root Number and Root Length in C. indicum

In the present study, temperature appeared to be critical to adventitious root number
and root length in C. indicum (Figure 3). The suitable temperature for rooting was 25 ◦C.
When the cuttings were treated with IBA (2000 ppm) and grown at a soil temperature of
25 ◦C, they developed a higher number of adventitious roots than those grown at 20 ◦C
or 30 ◦C. In the present study, a significantly greater number of adventitious roots were
observed in the 2000 ppm IBA treatment followed by the IBA 1000 ppm treatment at 25 ◦C.
The lowest number of roots was observed in the cuttings treated with IBA 50 ppm at 20 ◦C,
which were not significantly different from the control (in the absence of auxin treatment)
at p < 0.05. A significantly higher number of roots was also observed in the NAA and
IAA treatments at concentrations of 1000 ppm at 25 ◦C. The number of roots recorded at a
temperature of 30 ◦C was significantly lower compared to the root number at 25 ◦C.

In the present study, a significantly greater root length was observed in the 2000 ppm
IBA treatment at 25 ◦C. The lowest number of roots was observed in the cuttings treated
with IBA 50 ppm, which were not significantly different from the control (in the absence of
auxin treatment) at p < 0.05. A significantly higher root length was also observed in the
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IAA treatments at concentrations of 2000 ppm at 25 ◦C. Root length decreased significantly
when the temperature of growth substrates was maintained at 20 ◦C and 30 ◦C compared
to root length at 25 ◦C (Figure 4).
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2.3. Influence of Explant Position and Soil Types on Root Length, Bud Length, and Bud Number

In the present study, explant position (apical, median, and basal parts) significantly
affected the different growth parameters of cuttings eight weeks after their establishment
(Figure 5). Larger root lengths and root numbers were observed in the cutting explants
obtained from the apical and basal regions, respectively (Table 1). The maximal number of
buds was recorded in the cut obtained from the median portion of the stem. The average
number of buds that emerged from the apical cuttings was significantly lower than that
of the other types of cuttings, whereas their bud length was the highest. The position of
the explant showed no distinct effect in terms of the number of leaves, especially between
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apical and basal explants. A similar trend was observed in the case of root length between
median and basal explants.

The cuttings obtained from apical explants were basally treated with 2000 ppm IBA
and grown in different types of growth substrates. In the present study, the growth medium
significantly affected the different growth parameters of cuttings eight weeks after their
establishment (Table 1). When we compared the type of growth substrate (vermiculite
and perlite, Santro, and sandy loam soil) in the rooting medium of cuttings, the apical
cuttings planted in the vermiculite and perlite (V + P) at a ratio of 1:1 and Santro showed
better rooting parameters compared to sandy soil, indicating that cutting position and
substrate type significantly influence root initiation and the rooting system, respectively.
Other growing parameters, such as average root number and bud lengths, were higher
in the cuttings grown in Santro. However, growth substrate type had no significant effect
on leaf number in plants, especially between vermiculite and perlite (V + P) and Santro.
Leafy stem cuttings had a higher average number of roots, root length, leaves number, bud
length, and number of buds compared to leafless cuttings (Table 2).
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Table 1. The effect of stem cutting position and growth substrates on root number, root length, leaf
number, bud length, and bud number in C. indicum.

Characteristics Number of
Roots

Root Length
(cm)

Number of
Leaves

Number of
Buds

Bud Length
(cm)

Stem cutting
position

Apical 9.33 ± 0.47 c 19.33 ± 1.25 a 10.00 ± 1.63 a 2.33 ± 0.47 c 8.66 ± 0.94 b

Median 9.00 ± 0.81 c 16.00 ± 1.63 b 8.33 ± 1.24 b 5.33 ± 0.47 a 4.33 ± 1.24 c

Basal 11.00 ± 0.82 b 16.00 ± 0.82 b 10.33 ± 1.25 a 4.00 ± 0.82 b 1.27 ± 0.17 d
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Table 1. Cont.

Characteristics Number of
Roots

Root Length
(cm)

Number of
Leaves

Number of
Buds

Bud Length
(cm)

Substrates

V + P 9.33 ± 0.47 c 18.6 ± 1.63 a 6.97 ± 2.49 c 4.50 ± 1.63 b 4.67 ± 2.49 c

Santro 13.00 ± 2.16 a 15.00 ± 0.82 b 6.67 ± 1.89 c 2.33 ± 0.47 c 13.33 ± 3.39 a

Sandy Loam Soil 5.00 ± 1.10 d 8.00 ± 1.20 c 8.00 ± 1.50 b 4.00 ± 0.06 b 2.00 ± 0.02 d

Within a column, the mean followed by the same letter did not differ significantly according to Duncan’s multiple
comparison tests (p < 0.05).

Table 2. The effect of leafy and non-leafy explants on root number, root length, leaf number, bud
length, and bud number in C. indicum.

Characteristics Number of Root Root Length (cm) Number of Leaves Number of Buds Bud Length (cm)

Leafy cutting 12.00 ± 1.63 a 20.00 ± 1.63 a 6.67 ± 0.94 a 3.00 ± 0.82 a 8.00 ± 0.82 a

Non-leafy cutting 9.50 ± 0.81 b 18.00 ± 0.81 b 5.33 ± 1.25 b 2.67 ± 0.47 b 2.33 ± 0.47 b

Within a column, the mean followed by the same letter did not differ significantly according to Duncan’s multiple
comparison tests (p < 0.05).

2.4. Influence of Growth Regulators on Chlorophyll Content

Cuttings showed a wide variation in total chlorophyll content (Figure 6). Chlorophyll
levels increased in the auxins treated cuttings compared to control plants. However, there
was no clear trend in the chlorophyll content of the treated leaves with increasing auxin
concentration. Among all the treatments, higher levels of chlorophyll were observed in
the cuttings treated with 50 ppm IBA. An IBA content higher than 50 ppm decreased the
chlorophyll content of the cuttings. However, no significant difference was observed in the
total chlorophyll content in cuttings treated with 50 ppm and 1000 NAA ppm.
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2.5. Effect of Auxin Types and Concentration on Total Phenol Content (TPC) and Total Flavonoid
Content (TFC)

TPC and TFC increased in the auxin-treated cuttings (Figures 7 and 8). The TPC re-
mained at the maximum value after treatment with 100 ppm NAA. A further increase or de-
crease in NAA lowered TPC compared to other auxin treatments and control plants. Higher
IBA concentrations decreased TPC in a concentration-dependent manner. However, there
was no clear trend in TPC content in the treated cuttings at different IAA concentrations.
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TFC increased and peaked in the NAA treatment at a concentration of 100 ppm, while
it significantly decreased at higher NAA concentrations. All the IAA concentrations in-
creased the TFC in a concentration-dependent manner. Similarly, higher IBA concentrations
produced a lower TFC in the cuttings in a concentration-dependent manner.
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2.6. Phenolic Compounds

Protocatechuic acid, gentisic acid, chlorogenic acid, biochanin A, salicylic acid, caffeic
acid, and glycitein were the most dominant phenolic compounds present in C. indicum
(Figures S1 and S2). Except for IBA, lower auxin concentrations reduced the total phenolic
compound content (Tables S2 and 3). Phenolic compounds such as chlorogenic acid,
biochanin, and salicylic acid were recorded higher in lower concentrations of IBA (50 PPM).
Treatment with 2000 ppm IAA resulted in the highest elevation in total phenolic compounds
(24,847.40 µg/g), whereas 100 ppm IAA showed the lowest total phenolic compound
concentration (891.40 µg/g) relative to the control plants (6521.30 µg/g).
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Table 3. Distribution of total phenolic compounds in C. indicum treated with different concentrations of auxins.

Treatment
GA Pro Gen p-Hy Chl p-C FA Bio Hom Sal Van CA Vit Gly Api Lut L-Phe TPC

(µg/g)

Control LOD 162.2 9.2 26.1 5763 LOQ ND 371.0 LOD 131.8 ND 57.7 ND LOQ ND LOQ LOD 6521
NAA50 LOQ 525.0 24.7 LOD 336 ND ND 137.3 LOQ 385.0 ND 119.7 ND 355.3 91.2 19.8 LOD 1994

NAA 100 LOQ 464.0 28.2 LOD 2672 ND ND 13.4 LOD 626.0 ND 53.2 ND LOQ ND 57.2 LOD 3914
NAA 1000 LOD 375.4 18.8 ND 19,691 ND ND 87.5 LOQ 287.6 ND 78.6 ND LOQ ND 74.9 ND 20,614
NAA 2000 LOQ 338.3 16.8 LOQ 18,223 ND ND 975.3 LOQ 278.8 ND 11.3 ND LOQ LOD 46.4 LOD 19,890

1AA50 LOQ 219.6 21.2 55.0 186 LOQ ND 84.7 ND 246.5 ND 77.7 ND LOQ ND LOD LOQ 891
1AA100 LOQ 337.3 28.4 89.5 134 ND ND 178.7 LOQ 614.7 LOD 47.3 ND LOQ 27.7 37.2 LOQ 1494

1AA1000 LOD 375.3 23.6 74.1 20,095 LOQ ND 544.7 LOD 443.3 ND 19.0 ND LOQ 73.6 19.0 LOD 21,667
1AA2000 LOD 498.8 25.9 77.0 22,715 LOQ ND 1288.0 LOD 149.5 ND 134.9 ND LOQ LOQ 58.3 LOQ 24,947

1BA50 75.3 175.5 23.4 LOQ 2678 ND ND 1364.8 LOQ 459.2 ND 12.1 LOQ LOQ 153.2 31.3 ND 4973
1BA100 LOQ 233.3 15.8 LOQ 5566 ND ND 329.6 LOQ 195.4 ND 29.7 ND LOQ ND 15.4 LOD 6385

1BA1000 ND 234.0 19.7 LOQ 1256 ND ND 487.3 LOD 293.3 ND 68.6 ND LOQ ND 99.5 LOQ 2459
1BA2000 LOD 183.3 15.3 LOQ 9515 LOQ ND 852.5 LOQ 426.3 ND 751.5 ND 185.2 ND LOQ LOQ 11,229

Abbreviation: GA, gallic acid; Pro, protocatechuic acid; Gen, gentisic acid; p-Hy, p-Hydroxybenzoic acid; Chl, chlorogenic acid; p-C, p-coumaric acid; FA, ferulic acid; Bio, biochanin;
Hom, homogentisic acid; Sal, salicylic acid; VA, vanillic acid; CA, caffeic acid; Vit, vitexin; Gly, glycitein; Api, apigenin; Lut, luteolin; L-Phe, L-Phenylalanine; TPC, total phenolic
compounds; ND, not detected; LOD, limit of detection; LOQ, limit of quantification.
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2.7. Principal Component Analysis (PCA) Root System Parameters in C. indicum.

PCA for 13 growth parameters was performed to visually interpret and examine the
association between different growth parameters (Figure 9). The first two components
explained approximately 52% of the variance. Principal component (PC) 1 accounted for
27.09% of the total variation and seemed to be associated with growth parameters, such as
shoot FW, root FW, bud length, and chlorophyll content at 25 ◦C. PC2 accounted for 24.27%
of the total variation and was characterized by a higher leaf number, root length, and root
number at 20 ◦C and 30 ◦C.
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Figure 9. Principal component analysis results obtained for the qualitative morphological and
physiological traits of C. indicum. RT20, room temperature of 20 ◦C; RT25, room temperature of 25 ◦C;
RT30, room temperature of 30 ◦C; CCI, chlorophyll content index; TPC, total phenolic content; TFC,
total flavonoid content.

3. Discussion

Adventitious root formation during cutting is often a limiting factor in vegetative
propagation. Cutting before planting is an effective method for developing root systems
to improve the root number and rooting percentage [54]. External and internal factors
influence adventitious root formation in cuttings, among which auxin type and concentra-
tion play crucial roles in initiating this process [55,56]. In the present study, the cuttings’
average root length and root number were significantly affected by auxin concentration
and type. Among the auxins tested, IBA was more effective than other tested auxins.
Significantly longer adventitious roots were observed for the 2000 ppm IBA treatment.
The lowest number of roots was observed in cuttings treated with 50 ppm IAA. The wide
variation in the morphological response of cuttings to different auxins could be due to the
chemical nature of auxins and the mode of action. However, in the case of IAA and NAA,
higher auxin concentrations did not yield better rooting. Several previous studies have
reported the beneficial and successful establishment of a rooting system of cuttings using
auxins in different plant species [57,58]. However, in some cases, adding auxins at higher
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concentrations than required caused an inhibitory effect on adventitious root formation [59]
and could cause callosity via excessive cell proliferation or inhibit root formation and shoot
growth [60]. The present study showed that root induction from cuttings at various IAA
and NAA concentrations increased up to the threshold level. Further increasing auxin
concentration caused a decrease in the root formation and FW of the cuttings. Higher auxin
levels have been observed to stimulate the biosynthesis of ethylene, triggering abscisic acid
(ABA) synthesis in plants. Higher ABA concentrations cause stomatal closure, chloroplast
damage, and ethylene production, leading to leaf senescence, necrosis, and ultimately plant
death [61]. This indicates that growth regulators influence not only the rooting system but
also photosynthetic parameters.

The stimulatory effect of auxins in producing adventitious roots in the cuttings varies
from one species to another, or within the species, and differs largely due to the variations
in the physiological, biological, and anatomical conditions [62]. This study observed a
higher rooting percentage from cuttings treated with 2000 ppm IBA, which decreased
in a concentration-dependent manner. In contrast, higher root formation was observed
in Stereospermum suaveolens [63]. In a similar study, Maytenus sp. did not respond to
the application of auxins such as IBA [64]. Higher IBA concentrations decreased the
rooting percentage in Syzygium cumini [65]. Another report observed a very high rooting
system in Santalum album [66], Gmelina arborea [67], and Syzygium malaccense [68] with and
without IBA, indicating that IBA’s influence on root formation during cutting is species-
specific and that different plant species require diverse IBA concentrations to induce
higher root percentages. The increase in the number of roots per cutting due to IBA
treatment found in this study corroborates previous findings [69]. In contrast, NAA more
effectively induced more roots in other plant species [70]. However, applying auxins often
does not promote the rooting percentage in some plant species [71,72]. Our results show
that auxins significantly affected the rooting percentage and root length of cuttings and
were critical in the rooting process. Moreover, it has been argued that applying auxins
causes the release of energy and mobilization of proteins required for cell division and
differentiation at the site of root primordia development [73]. Others have argued that
exogenous auxin treatment stimulates the recruitment of carbohydrates in the shoot and
increases the availability of sugars at the site of root primordia formation to act as a major
carbon source. The sugars are utilized to produce the energy necessary for cell division and
differentiation to trigger root initiation [74–77]. A similar tendency was also reported with
rooting following auxin treatment [75,78]. Similarly, Hartmann et al. [62] observed that
exogenously applying auxins activated vascular cambium cells and promoted adventitious
root formation and stem cutting growth. Moreover, previous research indicated that
auxin treatment influenced the accumulation of amino acids, such as aspartic acid, glycine,
tyrosine, glutamic acid, and tryptophan, in Ascophyllum cuttings, which correlated strongly
with rooting performance [79], which might be the case here. Although many others have
successfully established adventitious roots in cuttings via auxin treatment in other plant
species, the mechanisms triggering root formation and development by auxin treatment
are contradictory [74–77]. It has been reported that a higher number of adventitious
roots take up sufficient nutrients and water for the growth of cuttings and cause greater
biomasses [80].

At the end of the eighth week, 100% rooting was observed regardless of treatment,
indicating that chrysanthemums are easy to root. Among the three growth substrates
tested, vermiculite and perlite at a ratio of 1:1 were more effective than Santro and soil
in promoting the rooting of cuttings. Oh et al. [81] reported similar results, in which
chrysanthemum sp. cuttings grown in perlite increased root numbers, root lengths, and
dry weight. An increase in bud number and length can be attributed to increased root
number and root length in the treated cuttings, as a higher number of roots absorb more
water and nutrients from the growing substrate, leading to the production of more buds.
This observation was further supported by the significant and positive correlation between
bud number and the number of roots in the treated cuttings. The higher root formation in
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the perlite and vermiculite could be attributed to the higher water holding capacity and
good aeration of the growing media. In contrast to the other substrate types, the aeration
in the soil was low, which could have contributed to the lower root formation. Moreover,
in a similar study, Khayyat et al. [82] observed that better aeration, drainage, and water
holding capacity are important parameters for the improved root formation in Epipremnum
aureum cuttings, indicating that rooting may be influenced by other factors, such as proper
drainage and aeration properties of the substrate used for plant growth.

In the present study, the position of the cuttings collected from the donor plants
influenced the rooting capacity. The average number of roots, root length, and biomass
were higher in the apical segments than in the medium and basal segments. Similar
results have been reported for the Rosa hybrid [83]. In contrast, another report observed
no significant difference in rooting rate when the cuttings were collected from different
positions along with the donor plants [84], indicating that the rooting potential of the cutting
is significantly affected by the physiological state of the explants used in the experiment.

In the present study, leaves in cuttings significantly influenced the rooting system. The
cuttings obtained from leafy nodes (LN) had a higher number of roots, root length, leaf
number, bud length, and length, whereas no buds developed in cuttings from non-leafy
nodes (NLN). In the present study, the average number of roots, root length, FW, and DW
of the adventitious roots obtained from the LN apical cuttings were significantly higher
than those of the basal and median cuttings. In contrast, Nicoloso et al. [85] reported that
a higher root length was obtained from the median cuttings of Hyptis suaveolens (L.). In
a similar study, Garbuio et al. [86] observed that the best root length was obtained for
apical and median cuttings in Pogostemon cablin (Blanco) Benth. The mortality rate of basal
cuttings without leafy nodes was superior to that of NLN apical cuttings, as per Amaro
et al.’s [87] and Chagas et al.’s results [88]. The present study’s findings indicate that
leaves in cuttings contribute to a better rooting system. Moreover, Pearson’s correlation
analysis showed a significant and positive correlation between the number of leaves and
root number. A significant positive correlation was also observed between leaf number and
shoot FW (Table S1). The FW obtained from the apical LN cuttings showed greater FW and
DW than NLN apical cuttings, probably due to the presence of leaves from the beginning of
the experiments. It has been argued that the presence of leaves greatly affects bud growth
by cuttings due to photoassimilate production, which is essential for bud formation [89].
Moreover, the young leaves are believed to be the major sources of auxins, after which
they are transported basipetally to the stem in a sufficient amount to stimulate the root
growth [90]

In the present study, the temperature at which the chrysanthemums grew was crit-
ical for adventitious root number and length. When the cuttings were treated with IBA
(2000 ppm) and grown at a soil temperature of 25 ◦C, the cutting showed improved and
faster rooting than the cutting grown at other temperatures (20 ◦C and 30 ◦C). Several
previous studies have reported a close relationship between the temperatures of the stock
plants before harvesting cuttings [91]. Moreover, the temperature of the growth medium
influenced bud activity, growth rates, and flowering [92]. It has been reported that low tem-
peratures during the growth of cuttings inhibit the activity of endogenous auxins [93]. Other
studies have shown that reducing the temperature from 25 ◦C reduced the basipetal trans-
port of auxins, such as IAA [94]. Thus, this could be a possible reason that the present study
observed the lower root number, root length, number of buds, and bud length in chrysan-
themum cuttings grown at 20 ◦C. These results align with Hansen et al.’s findings [95] for
Stephanotis floribunda, which show reduced bud formation at a lower temperature (17 ◦C).
It has been reported that applying IBA at higher temperatures increased cell wall plasticity
more readily by activating ATPase located in the cell membranes [96]. Moreover, the PCA
results indicate that the auxin treatment distinctly influenced the chlorophyll content and
its association with rooting performance. It has been reported that chlorophyll content
and photosynthesis rate are related to carbohydrate metabolism and energy production in
plants, which are important for rhizogenesis at the initial rooting stage [97]. Others argue
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that the increase in the chlorophyll level in the cuttings may be a defense response to stress
tolerance during unfavorable growing conditions at the initial rooting stage [98].

Several previous studies have reported the possible role of phenolic compounds in
triggering primary root formation [99]. Moreover, it has been reported that phenolic
compounds present in cuttings’ explants can influence metabolic processes, including the
respiration rate, and protect auxins against oxidation by inhibiting the activity of IAA
oxidase and phenol–oxidase complexes [100]. It is further argued that these complexes
are cofactors for root primordia formation [100]. Thus, the influence of phenolics on
peroxidase and polyphenol oxidase may influence the formation of root primordia in
cuttings [96]. Other studies have observed that polyphenolic compounds can affect the
activity of some enzymes that participate in rhizogenesis in cuttings [101]. They act as
antioxidants to protect auxins from oxidation and plant tissues at the site of wounds from
oxidative stress at the cutting site and promote a higher rooting percentage [101]. In this
report, the high-performance liquid chromatography (HPLC) analysis of the auxin-treated
chrysanthemums showed an increase in the phenolic compounds, which are important in
the initial stage of adventitious root formation. In particular, the content of protocatechuic
acid, salicylic acid, and gentisic acid significantly increased in all the auxin treatments.
Similarly, a higher auxin concentration increased the accumulation of chlorogenic acid
relative to the control plants. Previous studies have shown that phenolic compounds, such
as chlorogenic acid, caffeic acid, and gallic acid, impact rooting cofactors and protect IAA
against oxidation [102]. Other studies have reported that phenolic compounds (chlorogenic
acid, epicatechin, caffeic acid, catechol, gallic acid, and ferulic acid) are critical during
the initial root formation stage by protecting auxins (IAA) against oxidation [103,104]
or function as free radical scavengers and increase the auxin concentration to trigger
adventitious root formation [104,105]. Therefore, based on the data obtained in the present
study, it can be assumed that the enhanced accumulation of phenolic compounds in the
cuttings may have enhanced cell division and differentiation into root primordia regulated
by auxins.

4. Materials and Methods
4.1. Chemicals

All chemicals used in this study were of analytical grade. Compounds, such as the
Folin–Ciocalteu reagent, quercetin, tert-butyl-4-hydroxytoluene (BHT), 2,2-diphenyl-1-
picryl-hydrazyl-hydrate (DPPH), 2,20-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS), Trolox, gallic acid, IBA, IAA, and NAA, were obtained from Sigma-Aldrich Chemi-
cal Co. (St. Louis, MO, USA). Ultrapure distilled water used in the analysis was purchased
from the Zeneer Power 1 System (Human Corporation, Seoul, Korea). Standard phenolic
compounds were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

4.2. Experimental Site and Plant Material

The plant material was grown in a field at Kangwon National University experimental
farm, at 37◦5624.63 (N) latitude and 127◦46 (E) longitude and 117.22 m above sea level.
Samples were taken in September (2015 and 2016) from a very mature C. indicum plant.
Perforated polythene bags were used for collection from the growing field, and the cuttings
were used within 1 h of collection. The voucher specimens were deposited in the Herbar-
ium, Department of Biological Sciences, College of Natural Sciences, Kangwon National
University, Chuncheon, South Korea.

4.3. Stem Cutting Preparation and Applying Growth Regulator

Cuttings were collected during the early morning (from 9:00 to 10:00 am) and main-
tained at moist and cool temperatures using perforated polyethylene bags during their
transportation from the experimental field to the greenhouse. Cuttings were prepared with
an average length of 15.50 ± 0.65 cm and diameter of 0.89 ± 0.23 mm, discarding the apical
2–3 cm. The cuttings were treated with various freshly prepared concentrations (50 ppm,
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100 ppm, 1000 ppm, and 2000 ppm) of IAA, IBA, and NAA, as described by Kroin [106], by
dipping their basal (2.5 cm) portions in various test solutions for 24 h at room temperature
(25 ◦C). An untreated set of cuttings was dipped in water as a control. The apical cut ends
of each cutting were covered with paraffin wax to minimize water loss. Each treatment
consisted of 20 cuttings. After the growth regulator treatment, cuttings were dried in
cold air for 1–2 min before being placed in growing media. Every treated and untreated
cutting was planted in polybags (12 cm × 12 cm) containing sterilized rooting medium, viz.
vermiculite and perlite (1:1), Santro (organic potting mix, Seoul Bio Co., Ltd., Seoul, South
Korea), and sandy loam soil (pH 6.75, organic matter 9.30%, and phosphorus 1.20%). The
cuttings were planted vertically in polybags of 800 mL of the volume of rooting medium
(one cut in each bag). The planted cuttings were shifted to the growth chamber at 20 ◦C,
25 ◦C, and 30 ◦C, 50–60 relative humidity, with a photoperiod of 16 h (~500 µmol·m−2·s−1

irradiance) and darkness for 8 h. The root and bud initiation of the cuttings was first
observed after approximately two weeks. After collecting the morphological traits of the
cuttings, these plantlets were re-planted in polybags containing a growing medium.

4.4. Experimental Design

The cuttings were watered regularly. The experiment was designed using a random-
ized complete block design (RCBD). This experiment was performed in triplicate for three
seasons. After eight weeks, the mature stem cuttings were recorded for the shoot and root
traits: (1) number of nodes, (2) the maximum number of primary shoots, (3) shoot length,
(4) number of cuttings that showed rooting, (5) the maximum number of adventitious roots,
(6) bud length and number, (7) fresh weight and dry weight of roots and shoots, and (8)
root length.

4.4.1. Sample Collection and Extract Preparation

The fresh and fully developed roots (20 g) were collected and thoroughly washed
with distilled water and freeze-dried for one day. Approximately 2 g of the finely ground
samples was mixed with 20 mL of 80% methanol at room temperature (25 ◦C). Then, the
mixture samples were filtered through filter paper (Whatman No. 1) and concentrated at
40 ◦C in a rotary evaporator (Eyela, SB-1300, Shanghai Eyela Co., Ltd., Shanghai, China).
The obtained residue was suspended in 10 mL of methanol (80%). The extractions were
performed in triplicate for each root sample and used for further analysis.

4.4.2. Determining Total Phenolic Acid Content (TPC)

Total phenolics were extracted using the Folin–Ciocalteu assay, following the method
described by Singleton et al. [107] with some modifications. Each extract (100 µL, 1 mg/mL)
was added to a test tube containing a 50 µL of phenol reagent (1 M). The volume was
increased by adding 1.85 mL of distilled deionized water, and the solution was allowed
to stand for 3 min for a reaction after vortexing. After 3 min, 300 µL of Na2CO3 (20% in
water, v/v) was added, and the final volume (4 mL) was adjusted by adding 1.7 mL of
distilled deionized water. Reagent blanks were prepared using deionized distilled water.
The final mixture was vortexed and incubated for 1 h in the dark at room temperature. The
absorbance was measured at 725 nm using a Jasco V 530 UV-VIS spectrophotometer. The
standard curve was prepared using 0 mg L−1, 65.5 mg L−1, 125 mg L−1, and 250 mg L−1

solutions of gallic acid in methanol: water (50:50, v/v). Total phenol values are expressed
in terms of the gallic acid equivalent (GAE) of the plant’s DW. All determinations were
performed in triplicate.

4.4.3. Determining Total Flavonoid Content (TFC)

Adventitious roots cultured in a liquid medium supplemented with various sucrose
concentrations were used to determine TFC. The TFC in the extracts was determined as
described by Moreno et al. [108]. A 0.5 mL sample (1 mg/mL) was mixed with 0.1 mL of
10% aluminum nitrate and 0.1 mL of potassium acetate (1 M). Then, 4.3 mL of 80% ethanol
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was added to the mixture to reach a total volume of 5 mL. The mixture was vortexed,
and the solution was allowed to stand for 40 min at room temperature. The absorbance
was measured spectrophotometrically at 415 nm. All determinations were performed in
triplicate. Total flavonoid values are expressed in terms of the quercetin equivalent (Qu) of
the plant’s DW. The standard curve was prepared using 0 mg L−1, 5 mg L−1, 10 mg L−1,
and 100 mg L−1 quercetin solutions.

4.4.4. Estimation of Phenolic Compounds

The phenolic compound content in C. indicum was estimated by liquid chromatography–
mass spectrometry (LC-MS/MS), as described previously by Ghimire et al. [109]. An
Agilent 1200 Series HPLC system (Agilent 1200, Agilent Technologies, Palo Alto, CA,
USA) was equipped with a pump, degasser, autosampler, and column (Agilent 1100 series,
Agilent Technologies, Palo Alto, CA, USA) coupled to a mass spectrometer (Applied Biosys-
tems, Beamsville, ON, Canada). The negative ion mode was used. The parameters used to
determine the phenolic compounds present in the samples were as follows: nebulizer gas
pressure, 40 psi; drying gas pressure, 70 psi; collision gas pressure, 2 psi; and curtain gas
pressure, 20 psi. The drying gas temperature and capillary voltage were set to 350 ◦C and
4.5 kV, respectively. The mobile phase consisted of 0.1% HCOOH (v/v) in water (mobile
phase A) and 0.1% C2H3N in water (95:5, v/v). The flow rate was 0.7 mL min−1, and the
gradient was as follows: 10–40% B for 0–10 min; 40–50% B for 10–20 min; 50–100% B for
20–25 min; 100–10% B for 25–26 min; and 10% B for 26–30 min. The phenolic compounds
were separated using a C18 column (4.6 mm × 250 mm, 5 µm). The compounds were then
separated at 25 ◦C. The injection volume was 10 µL. The process was carried out in negative
mode in the multiple reaction monitoring (MRM) mode. An electrospray ion source (ESI)
recorded the mass spectrometry data. Different mass spectrometric parameters, such as
entrance potential (EP), collision energy (CE), declustering potential (DP), cell entrance
potential (CEP), and collision cell exit potential (CXP), were determined for each MRM
transition monitored.

4.4.5. Statistical Processing

The data are presented as the mean ± standard deviation values of independent
replications. Statistical processing related to the test results was analyzed by ANOVA using
the SPSS program (Statistical Package for Social Science, Version 24). Significant differences
at p < 0.05 between the control and experimental groups were verified by Duncan’s multiple
range test.

5. Conclusions

This is the first systematic study to present results for the regeneration of C. indicum cut-
tings and provide useful information about the biochemical and physiological parameters
involved during the propagation process. It has been shown that exogenously applying
auxins can stimulate root formation in C. indicum, and that vegetative propagation of
C. indicum via cutting is viable. The results recommend using 2000 ppm IBA to achieve
more effective adventitious root regeneration than other auxins. Overall, rooting was best
in the apical cuttings portion of the stem grown in the vermiculite and perlite substrate at a
ratio of 1:1. The elevated number of phenolic compounds in the treated cuttings suggested
that these phytochemicals are involved in the tissue’s physiological state and adventitious
root formation. Improved propagation methods could provide opportunities for massive
production and increase the number of planting materials for commercial applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11111440/s1. Table S1. Pearson’s correlation coefficient
among growth parameters. Table S2. Calibration curves of the equation of 33 phenolic compound
standards. Figure S1. MRM ion chromatogram of the selected 33 phenolic compound standards.
Figure S2. Representative MRM ion chromatogram of phenolic compounds from root sample treated
with 2000 ppm of IBA.
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102. Krajnc, A.U.; Turinek, M.; Ivančič, A. Morphological and Physiological Changes during Adventitious Root Formation as Affected
by Auxin Metabolism: Stimulatory Effect of Auxin Containing Seaweed Extract Treatment. Agricultura 2013, 10, 17–27.

103. Osterc, G.; Trobec, M.; Usenik, V.; Solar, A.; Štampar, F. Changes in polyphenols in leafy cuttings during the root initiation phase
regarding various cutting types at Castanea. Phyton 2004, 44, 109–119.

104. Trobec, M.; Štampar, F.; Veberič, R.; Osterc, G. Fluctuations of different endogenous phenolic compounds and cinnamic acid in
the rest days of the rooting process of cherry rootstock ‘Gisela 5′ leafy cuttings. J. Plant Physiol. 2005, 162, 589–597. [CrossRef]
[PubMed]
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