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Abstract: A new biodegradable aliphatic-aromatic poly (butylene carbonate-co-terephthalate)
(PBCT-85) with the molar ratio [BC]/[BT] = 85/15, successfully synthesized through transesterification
and polycondensation processes, was identified using 1H-NMR spectra. Various weight ratios
of PBCT/organically modified layered zinc phenylphosphonate (m-PPZn) nanocomposites were
manufactured using the solution mixing process. Wide-angle X-ray diffraction and transmission
electron microscopy were used to examine the morphology of PBCT-85/m-PPZn nanocomposites. Both
results exhibited that the stacking layers of m-PPZn were intercalated into the PBCT-85 polymer matrix.
The additional m-PPZn into PBCT-85 copolymer matrix significantly enhanced the storage modulus at
−70 ◦C, as compared to that of neat PBCT-85. The lipase from Pseudomonas sp. was used to investigate
the enzymatic degradation of PBCT-85/m-PPZn nanocomposites. The weight loss decreased as the
loading of m-PPZn increased, indicating that the existence of m-PPZn inhibits the degradation of
the PBCT-85 copolymers. This result might be attributed to the higher degree of contact angle for
PBCT-85/m-PPZn nanocomposites. The PBCT-85/m-PPZn composites approved by MTT assay are
appropriate for cell growth and might have potential in the application of biomedical materials.

Keywords: biodegradable copolyesters; composites; mechanical property; enzymatic degradation

1. Introduction

Aliphatic polycarbonates (APCs) prepared by copolymerization of CO2 and epoxides or the
ring-opening polymerization method have attracted lots of interest as biodegradable polymers,
due to their biocompatibility, biodegradability, and nontoxicity [1–4]. Among the obtaining
APCs, poly (butylene carbonate) (PBC) has received significant attention owing to its promising
comprehensive properties and competitive cost [5,6]. Nevertheless, the low melting temperature
and a slow crystallization rate of PBC could restrict its application. In accordance with previous
studies, the incorporation of aromatic ester monomer into PBC backbone to synthesize the
poly(carbonate-co-ester)s with random chain conformation could change the physical properties
of PBC [7,8]. A similar approach was applied to the preparation of commercially available product
poly(butylene adipate-co-terephthalate) (PBAT, Ecoflex®, BASF), as compared to poly (butylene adipate)
(PBA). It was reported that the crystallization behavior of PBA could be enhanced by copolymerizing
with aromatic polyesters [9].
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Consequently, this study intends to synthesize poly (butylene carbonate-co-terephthalate) (PBCT)
copolymer with suitable properties via transesterification and the polycondensation method. In order
to further enhance these mechanical and thermal properties of PBCT copolymer, the addition of
excellent physical properties of inorganic materials acting as nucleating agents and reinforcements
into the polymer matrix is undertaken to accelerate their crystallization rates and improve their
physical properties [10–13]. Reinforcing layered zinc phenylphosphonates (PPZn) has received
significant attention owing to the enhancement of the crystallization rates and physical properties
of polymers [9,10,14–16]. The interlayered spacing of PPZn is too small to fabricate the exfoliated
or intercalated polymer nanocomposites. Organo-modifiers with functional group are necessary to
enlarge the interlayered spacing of PPZn.

In this study, two biocompatible dodecylamine (DDA) and octadecylamine (ODA)—long-chain
primary alkylamines—were used in this work to fabricate the organically-modified PPZn
(m-PPZn) through the anion exchange method. A series of new poly (butylene
carbonate-co-terephthalate)/organically modified layered zinc phenylphosphonates nanocomposites
were successfully synthesized. To our knowledge, no report on PBCT/PPZn or PBCT/m-PPZn
nanocomposite has been discussed. The mechanical, thermal and enzymatic degradation
properties of PBCT/m-PPZn nanocomposites were studied systematically. Finally, the
potential of the PBCT/m-PPZn composites as biomedical materials was investigated using a
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with L929 fibroblast cells.

2. Materials and Methods

2.1. Materials

Lipase from Pseudomonas sp., dodecylamine (DDA), octadecylamine (ODA), zinc nitrate, and
phenylphosphonic acid was acquired from Sigma-Aldrich Chemical Company (St. Louis, MO,
USA). 1,4-butanediol (BD), dimethylene carbonate (DMC), and dimethylene terephthalate (DMT) were
obtained from Alfa Aesar Chemical Company (Haverhill, MA, USA). Sodium hydroxide was purchased
from Fluka Chemical Company (Buchs, Switzerland). All chemicals were used without purification.

2.2. Fabrication of PBCT/m-PPZn Nanocomposites

The PBCT with molar ratio of butylene carbonate (BC) to butylene terephthalate (BT) was
85:15, which was synthesized via transesterification and polycondensation; the resulting product
is hereinafter designated as PBCT-85. In brief, desirable amounts of DMC, DMT, BD, and sodium
hydroxide as a catalyst were heated and mechanically stirred at 120 ◦C for 1 h in a stream of nitrogen
gas, and then heated to 190 ◦C for 1 h, and finally heated to 220 ◦C for 4 h in a vacuum of 67 Pa.
For purification of PBCT, the as-prepared PBCT was dissolved in 200 mL dichloromethane and then
precipitated from 2 L cold methanol. The above purification process needs to be repeated three times.
The PPZn and organically modified PPZn (m-PPZn) with long-chain primary alkylamine, such as
dodecylamine (DDA) and octadecylamine (ODA), were fabricated using the approach reported in
previous literatures [17,18]. Different amounts of PBCT-85 and m-PPZn were individually dissolved
in dichloromethane, and then mixed/mechanically stirred for 3 days. The obtained 1, 3, and 5 wt%
PBCT-85/m-PPZn nanocomposites were washed and dried in vacuum.

2.3. Analytical Procedures

Experimental measurements of wide-angle X-ray diffraction (WAXD) and small-angle X-ray
scattering (SAXS) were performed using an X-ray diffractometer (Bruker D8, Bruker, Billerica, MA,
USA) equipped with a Ni-filtered Cu Kα radiation source. In WAXD measurement, the diffraction
patterns were carried out in the range of 2θ = 1.5◦–30◦ at a scanning rate of 1◦/min. In situ WAXD
experiments were recorded under vacuum using a temperature-attachment assembly. The increasing
rate of applied temperature was 10 ◦C/min and the applied temperature was stabilized for 5 min before
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each measurement. The degree of crystallinity was calculated by WAXD data. In SAXS measurement,
the q is the scattering vector defined as q = (4πsinθ)/λ, where λ is he X-ray wavelength. The sample
to detector distance is ~300 mm. The transmission electron microscopy (TEM) was performed using
Hitachi HF-2000 (Hitachi, Tokyo, Japan). The samples of TEM experiments encapsulated by epoxy were
prepared using a Reichert Ultracut ultramicrotome (Reichert, Manila, Philippines). The field-emission
scanning electron microscopy (FESEM) conducted at 3 kV using a JEOL JSM-6700F (Tokyo, Japan)
field-emission instrument was used to characterize the morphology of the nanocomposites. Fourier
transform infrared (FTIR) experiments were carried out on a Perkin–Elmer Spectrum One (Perkin–Elmer,
Waltham, MA, USA) spectrometer in the range of 400 to 4000 cm−1.

The crystallization behavior was carried out by a PerkinElmer Pyris Diamond DSC (Perkin–Elmer,
Waltham, MA, USA), and all measurements were carried out under nitrogen environment.
All specimens were heated to the designed temperatures (Tds) at a rate of 10 ◦C/min—about 30 ◦C
higher than the melting temperatures of PBCT-85—and held for 5 min to eliminate the residual crystals.
Subsequently, they were cooled to −50 ◦C at a rate of 10 ◦C/min. Finally, the samples were heated to Tds

at a rate of 10 ◦C/min and the crystalline melting temperature (Tm) for the PBCT-85 and PBCT-85/m-PPZn
nanocomposites was obtained. The thermal behaviors of samples were operated using Perkin Elmer
TG/DTA 6300 thermoanalyzer (Perkin–Elmer, Waltham, MA, USA). These measurements were obtained
from room temperature to 800 ◦C at a heating rate of 10 ◦C/min under a nitrogen environment.

1H-nuclear magnetic resonance (NMR) and 13C-NMR spectra were obtained with Agilet
Technologies DD2 600MHz NMR (Agilet Technologies, Santa Clara, CA, USA) spectrometer using
CDCl3 as solvent and internal standard. The gel permeation chromatography (GPC; Waters 717
Plusautosampler, Waters Instruments, Rochester, NY, USA) was used to verify the number-average
molecular weight (Mn), weight-average molecular weight (Mw), and polydispersity PDI = Mw/Mn of
the resulting polymers and composite materials. Polystyrene standards with narrow molecular-weight
distributions were used as calibration. The storage modulus (E’) was operated on a Perkin Elmer
dynamic mechanical analyzer (DMA) (Perkin–Elmer, Waltham, MA, USA) from −80 to 120 ◦C at
2 ◦C/min heating rate and 1 Hz constant frequency.

The PBCT-85/m-PPZn nanocomposites were hot pressed at a temperature about 50 ◦C higher
than its melting temperature to prepare the samples for enzymatic degradation analysis. All samples
(10 mm × 10 mm) for enzymatic degradation test were put in 24-well plates, including 1 mL/mg
lipase from Pseudomonas sp. The degraded samples were removed at 3, 6, 9, and 12 days, washed
with distilled water, and vacuum-dried. The quantity of degradation was estimated by means of
the equation Wweight loss (%) = 100 [(W0 −Wt)/W0], where W0 is the original weight of a sample and
Wt corresponds to the weight of a sample after various degradation periods. The experimental data
obtained here are the average values of at least three experiments.

L929 (BCRC RM60091, Hsinchu, Taiwan) cells were incubated on the specimens for 12, 24,
and 48 h. Cell suspensions were promptly seeded over each of the specimens in a 24-well
plate. After the determined L929-cell incubation time, the cell growth was assayed using the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; Sigma-Aldrich, St. Louis, MO, USA)
assay, in which tetrazolium salt is decreased to formazan crystals by the mitochondrial dehydrogenase
of living cells. Briefly, 3 h before the end of the incubation time, 20 µL of MTT solution and
180 µL of Dulbecco’s modified Eagle medium (DMEM; Gibco, Langley, OK, USA) containing 1%
penicillin/streptomycin were added to each well. Upon removal of the MTT solution, 200 µL of
dimethylsulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO, USA) was also added to each well.
The plates were then shaken until the formazan crystals had dissolved, and 150 µL of the solution
from each well was transferred to a new 96-well plate. Plates were read using a BioTek Epoch
spectrophotometer (BioTek, Winooski, VT, USA) at 563 nm. The absorbance results were verified for
three independent measurements.



Polymers 2020, 12, 2149 4 of 14

3. Results

3.1. Synthesis, Structure and Morphology of PBCT-85/m-PPZn Nanocomposites

The chemical composition of PBCT-85 copolymer identified by 1H-NMR spectroscopy in CDCl3 is
shown in Figure 1. Two signals at δ = 8.06 and 7.24 ppm are assigned to the phenylene (-C6H4-) and
CDCl3 signal. The signals at 4.41 and 4.36 ppm correspond to hydrogen proton of -CH2O(CO)C6H4-
for the ester group, and the other signals at 4.19 and 4.13 ppm correspond to hydrogen proton
of -CH2O(CO)O- for the carbonate group [7,8]. The chemical composition of PBCT-85 copolymer
determined using the peak area ratio at δ = 4.41–4.36 ppm to that at δ = 4.19–4.13 ppm is shown in
Table 1. The experimental ratio of carbonate group to ester group is approximately consistent with
the feed ratio of [BC] to [BT], implying that the composition of the synthesized PBCT-85 is in good
agreement with that calculated approximately on the basis of the feed ratio. The weight average
molecular weights and (Mw) and polydisperse index (PDI) of PBCT-85 copolymer established via GPC
are 38,110 g/mol and 1.89, respectively. The melting temperature of PBCT-85 established via DSC is
33.7 ◦C.

Figure 1. 1H-nuclear magnetic resonance (H-NMR) spectra of the poly (butylene carbonate-co-
terephthalate) (PBCT-85) copolyester.

Table 1. Composition and molecular weight of synthesized polyesters.

Polymer
Feed Ratio

[DMC]/[DMT]
(mol %)

Polymer Ratio a

[DMC]/[DMT]
(mol %)

Mw (g/mol)
× 104

Mn (g/mol)
× 104 PDI Tm (◦C)

PBCT-85 85/15 85.8:14.2 3.81 2.02 1.89 33.7
a Composition measured by 1H-NMR.

The X-ray diffraction patterns of PPZn, DDA-PPZn, and ODA-PPZn are presented in Figure 2a.
A very strong diffraction of PPZn is observed, revealing the formation of classically and extremely
stacked lamellae structure. The adjacent distance of zinc phenylphosphonate layers for PPZn
determined using the Bragg’s equation was 14.6 Å. The XRD data of organically-modified PPZn show
that the main diffraction peaks are moved to lower angle with the incorporation of dodecylamine and
octadecylamine. The interlayer spacings were enlarged to 24.2 and 30.0 Å after the anionic exchange of
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DDA and ODA, respectively. Figure 2b shows the FTIR spectra of PPZn, DDA-PPZn, and ODA-PPZn.
The FT-IR data of PPZn show two absorption peaks at 3465 and 1640 cm−1, which are attributed to
the stretching mode of monohydrates molecules in the PPZn interlayer gallery. The absorption peaks
from 750 to 650 cm−1 are assigned to the C=C bands and out-of-plane bands of phenyl. The absorption
peaks from 1200 to 950 cm−1 are characteristic of PO3 group of phosphonic acid. In accordance with
the above-mentioned results, these absorption peaks are affiliated with the typical FT-IR spectra of
PPZn [17]. The FT-IR spectra of DDA-PPZn and ODA-PPZn present two strong absorption peaks at
2920 and 2860 cm−1, which are assigned to the stretching vibration of C–H and =C–H for the alkylamine
group in DDA and ODA. The absorption peaks at 1465 and 1070 cm−1 contribute to the C–H and C–N
bendings of alkylamine group in DDA and ODA. The N–H bending vibration is observed at 1600 cm−1.
According to the XRD and FT-IR results, DDA and ODA were effectively intercalated into the gallery
of PPZn, hence expanding the interlayer spacing.

Figure 2. (a) X-ray diffraction patterns for PPZn, dodecylamine (DDA)-PPZn and octadecylamine
(ODA)-PPZn. (b) FTIR spectra of PPZn, DDA-PPZn, and ODA-PPZn.

In addition, in situ WAXD measurements helped us to understand the structure and behavior
of DDA and ODA in the interlayer space of PPZn. Figure 3a,b present the in situ WAXD curves of
PPZn and DDA-PPZn from 40 to 240 ◦C. It can be observed in Figure 3a that the strong (010) and
(020) diffraction peaks remain almost the same with increasing temperature. This finding reveals
that the interlayer spacing of PPZn is almost the same as the temperature increases. As observed
for DDA-PPZn in Figure 3b, the (010) and (020) diffractions of m-PPZn that occurred at a lower 2θ
angle remained almost the same from 80 ◦C to 160 ◦C. The in situ WAXD patterns of the (010) and
(020) diffractions for DDA-PPZn slightly shifted to lower 2θ angle from 180 ◦C to 200 ◦C. This finding
reveals that DDA-PPZn lattice is expanded with increasing temperature. At the temperature of 210
◦C, the X-ray intensity of (010) plane is significantly decreased. At the same time, the diffraction peak
of (010) plane for PPZn is observed. This result indicates that a mixture of DDA-PPZn and PPZN is
present at this temperature, in which DDA is partially removed in the interlayer gallery of DDA-PPZn.
However, the DDA was completely removed in the interlayer gallery of m-PPZn as the temperature
reached 220 ◦C. The results recommend that the stacking structure of DDA-PPZn at 220 ◦C is almost
the same as that of PPZn. Similar results are also observed for ODA-PPZn, except the temperature of
structure change is decreased about 20–40 ◦C. To further examine the change of the interlayer distance
of PPZn, DDA-PPZn, and ODA-PPZn, the d-spacings of the (010) diffraction calculated using Bragg’s
equation for different temperatures are shown in Figure 3c. The interlayer distance of PPZn is almost
the same as the temperature increases from 30 ◦C to 240 ◦C. In contrast, the d-spacings of the (010)
diffraction for DDA-PPZn slightly increased from 160 ◦C to 200 ◦C and then significantly decreased
from 26.2 to 14.7 Å as the temperature increased from 200 ◦C to 240 ◦C. At the same time, the interlayer
distance of ODA-PPZn increased from 80 ◦C to 160 ◦C and then significantly decreased from 35.3 to
14.7 Å as the temperature increased from 190 ◦C to 200 ◦C.
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Figure 3. In situ wide-angle x-ray diffraction (WAXD) patterns of (a) PPZn and (b) DDA-PPZn in the
temperature range of 40–240 ◦C. (c) The relationship between the d010 basal spacing and temperature
of PPZn, DDA-PPZn, and ODA-PPZn.

WAXD diffraction profiles of the PBCT-85/DDA-PPZn nanocomposites are exhibited in Figure 4a.
For comparison, the X-ray diffraction data of DDA-PPZn is also presented in this figure. It is obvious
that a clear sign of diffraction peak at 2θ = 3.64◦ was found in the experimental results of different
loading of DDA-PPZn, which contributed to the presence of the stacking layers of the DDA-PPZn. These
results recommend that the DDA-PPZn is well intercalated in the PBCT-85 copolymer matrix. Related
results are also found for the PBCT-85/ODA-PPZn nanocomposites. Furthermore, the morphologies of
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5 wt% PBCT-85/DDA-PPZn nanocomposites are wholly examined using TEM. Figure 4b presents the
TEM image of 5 wt% loading of DDA-PPZn into PBCT-85 copolymer matrix. This image shows that the
stacking layers of the DDA-PPZn are intercalated into the PBCT-85 copolymers. Related observations
are also found for the PBCT-85/ODA-PPZn nanocomposites. Consequently, both WAXD and TEM
experimental results of PBCT-85/m-PPZn nanocomposites recommend the presence of intercalated
morphologies of nanocomposites. The degree of crystallinity (Xc) evaluated using WAXD data is shown
in Table 2. These results show that the value of Xc of the PBCT-85/m-PPZn nanocomposites remained
almost the same as the loadings of m-PPZn increase. This phenomenon contributed to the existence of
m-PPZn in the PBCT-85 matrix, which probably caused almost similar effect on the heterogeneous
nucleation and crystal growth rate, resulting in the similarity of the degree of crystallinity.

Figure 4. (a) WAXD patterns of PBCT-85 and various weight ratios of PBCT-85/DDA-PPZn
nanocomposites. (b) TEM micrograph of 5 wt% PBCT-85/DDA-PPZn nanocomposites.

Table 2. Structural parameters and crystallinity of PBCT-85/DDA-PPZn and PBCT-85/ODA-PPZn
obtained by X-ray scattering (SAXS) and WAXD measurements.

Sample LP
(nm)

lc
(nm)

la
(nm)

la/LP
(%)

Xc
(%)

PBCT-85 12.80 2.72 10.08 78.73 39.5
1 wt% PBCT-85/DDA-PPZn 12.84 2.76 10.08 78.78 39.6
3 wt% PBCT-85/DDA-PPZn 12.80 2.73 10.07 78.70 39.4
5 wt% PBCT-85/DDA-PPZn 12.80 2.72 10.08 78.77 39.5
1 wt% PBCT-85/ODA-PPZn 13.01 2.77 10.24 78.71 39.7
3 wt% PBCT-85/ODA-PPZn 13.70 2.92 10.78 78.70 39.6
5 wt% PBCT-85/ODA-PPZn 13.80 2.94 10.86 78.70 39.7

The microstructures of PBCT-85/m-PPZn nanocomposites were examined by SAXS.
The Lorentz-corrected SAXS data of PBCT-85/DDA-PPZn nanocomposites is shown in Figure 5a.
To comprehensively investigate the structural parameters, such as long period (Lp), the lamellar
thickness (lc), and the amorphous thickness (la = Lp − lc), of the PBCT-85/DDA-PPZn nanocomposites,
the Fourier transformation of Lorentz-corrected SAXS data were used to calculate the one-dimensional
correlation function using the following equation [19,20]:

γ(z) =
1
Q

∫
∞

0
qI2(q) cos(qz)dq (1)

where Q is the invariant, I(q) is the Lorentz-corrected intensity, and z is the direction along which the
electron density is measured.
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Figure 5. (a) Lorentz-corrected SAXS profiles and (b) one-dimensional correlation function calculated
from the SAXS profiles for PBCT-85/DDA-PPZn nanocomposites.

The structural parameters of PBCT-85/DDA-PPZn nanocomposites are found from the typical
profiles of one-dimensional correlation function presented in Figure 5b. Similar results are also obtained
for the PBCT-85/ODA-PPZn nanocomposites. The obtained structural parameters of PBCT-85/m-PPZn
nanocomposites are presented in Table 2. For the PBCT-85/DDA-PPZn nanocomposites, Lp and
lc remained almost the same with the DDA-PPZn content. This result indicates that the presence
of stearic acid served as an intercalation agent for PPZn, which has few effects on the crystalline
packing of PBCT-85 crystallites. Therefore, the calculated la/Lp and the degree of crystallinity of
the nanocomposites determined using WAXD data remained unchanged regarding the loading of
DDA-PPZn. For the PBCT-85/ODA-PPZn nanocomposites, Lp and lc gradually increased with the
ODA-PPZn content. Regarding the incorporation of ODA for PPZn intercalation, ODA-PPZn might
enhance the migration of PBCT-85 chains to the packing of crystals. At the same time, the la values
are also increased as the loadings of ODA-PPZn content increased. However, the calculated la/Lp

and the degree of crystallinity determined using WAXD data remained unchanged as the loading of
ODA-PPZn. These results suggest that the incorporation of m-PPZn into PBCT-85 polymer matrix did
not change the microstructure of PBCT-85.

3.2. Physical Properties of PBCT/m-PPZn Nanocomposites

Figure 6 shows the change of storage modulus E’ against temperature of PBCT-85/DDA-PPZn
nanocomposites in a temperature range between −70 and 20 ◦C. These findings indicate that the E’
of PBCT-85 at −70 ◦C is around 305 MPa and decreases with an increasing temperature. This result
suggests that the molecular movement of PBCT-85 in the region of glassy state is deficient. When the
temperature higher than the glass transition temperature is increased, the thermal energy appears to
be equivalent to the potential energy barriers of the molecular movements. The values of E’ of the
PBCT-85/DDA-PPZn nanocomposites at −70 ◦C and 20 ◦C are increased as the loading of DDA-PPZn
increases. Related results are also found for the PBCT-85/ODA-PPZn nanocomposites. Detailed E’ for
all nanocomposites is also illustrated in Table 3. The improvement of E’ at −70 ◦C may be ascribed to
the strengthening influence of the addition of the stiff and inorganic m-PPZn, causing the enhancement
of the rigidity of the PBCT-85 polymer matrix. The change of E’ in rubbery state is not significant due to
the increase in molecular chain movements. Similar phenomenon has been reported previously [21,22].
As the temperature reaches above the Tg, the effect of the PPZn incorporation on E′ becomes negligible
and the rigidity of composites turns matrix-dependent.
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Table 3. The temperature of the maximum degradation rate, storage modulus, and weight loss after
24 h degradation time of the various PBCT/m-PPZn nanocomposites.

Sample
aTd

max

(◦C)
E′ at −70 ◦C

(MPa)
E′ at 20 ◦C

(MPa) Weight Loss (%)

PBCT-85 340.1 306 ± 31 42 ± 10 100
1 wt% PBCT-85/DDA-PPZn 354.1 473 ± 25 62 ± 4 82.8
3 wt% PBCT-85/DDA-PPZn 354.4 624 ± 8 71 ± 4 72.5
5 wt% PBCT-85/DDA-PPZn 354.9 698 ± 4 83 ± 9 47.8
1 wt% PBCT-85/ODA-PPZn 354.3 441 ± 4 51 ± 4 52.0
3 wt% PBCT-85/ODA-PPZn 355.1 610 ± 12 60 ± 3 45.6
5 wt% PBCT-85/ODA-PPZn 355.5 684 ± 5 72 ± 6 30.2

aTd
max: Temperature of the maximum degradation rate.

Figure 6. Dependence of the storage modulus on temperature of PBCT-85/DDA-PPZn nanocomposites.

The effect of m-PPZn on the thermal degradation of the various PBCT matrices has been studied
using thermogravimetric analysis (TGA). Figure 7 reveals the TGA curves of the PBCT-85/DDA-PPZn
nanocomposites. These profiles present the weight loss as the temperature increases; the degradation
temperatures obtained from these profiles are reported in Table 3. As displayed in this table, the initial
degradation temperature of the PBCT-85/m-PPZn nanocomposites increases compared to that of the
pure PBCT-85 copolymer. This phenomenon is ascribed to fact that the presence of higher thermal
stability of inorganic materials of m-PPZn in the PBCT-85 matrix induced better thermal stability, and
thus the initial degradation temperature evidently moved into higher temperatures.

For the enzymatic degradation test, the lipase from Pseudomonas sp. was utilized to study the effect
of m-PPZn on the enzymatic degradation behavior of the PBCT-85/m-PPZn nanocomposites. Because
m-PPZn cannot be degraded via lipase, the difference of weight loss after enzymatic degradation
is related to the PBCT-85 copolymers. Figure 8a shows the weight losses of PBCT-85/DDA-PPZn
nanocomposites after various degradation times. The weight loss of neat PBCT-85 after 24 h degradation
was 100%; the weight losses for the PBCT-85/DDA-PPZn nanocomposites were 82.8%, 72.5%, and
47.8%, with loadings of 1, 3, and 5 wt% DDA-PPZn, respectively. The weight loss tendencies of
PBCT-85/ODA-PPZn nanocomposites were similar to those of the PBCT-85/DDA-PPZn nanocomposites.
Detailed weight loss after 24 h degradation for all nanocomposites is also illustrated in Table 3.
The weight loss decreases as the incorporation of m-PPZn increases, recommending that the existence of
m-PPZn inhibits the degradation of the PBCT-85 copolymers. Figure 8b shows the surface contact angle
of PBCT-85, 5 wt% PBCT-85/DDA-PPZn, and 5 wt% PBCT-85/ODA-PPZn nanocomposites. This result
shows that the contact angles of nanocomposites are relatively higher than of PBCT-85 polymer matrix.
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Higher contact angles lower hydrophilic properties. The change of weight loss of composites might
have contributed to the lower hydrophilic properties for PBCT-85/m-PPZn nanocomposites.

Figure 7. TGA curves of PBCT-85/DDA-PPZn nanocomposites.

Figure 8. (a) Dependence of the weight loss on the degradation time for the
PBCT-85/DDA-PPZn nanocomposites. Contact angles of (b) PBCT, (c) PBCT-85/DDA-PPZn, and
(d) PBCT-85/ODA-PPZn nanocomposites.

FESEM analysis can be used to examine the morphologies of all the nanocomposites after the
enzymatic degradation. Figure 9 shows the FESEM images of the surfaces of all the nanocomposites
before and after enzymatic degradation. Before enzymatic degradation, the surfaces of PBCT-85 and
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their nanocomposites were very smooth. After the degradation, the porous and holes structures
were observed on the surface of PBCT-85 and all nanocomposites. It can be noticed that the
surface roughness of the PBCT-85/m-PPZn nanocomposites decrease as the loadings of m-PPZn
increase, recommending that the incorporation of the organically-modified PPZn content into
PBCT significantly reduces the degradation rate of PBCT-85. Related results are also found for
the PBCT-85/ODA-PPZn nanocomposites.

Figure 9. FESEM images of the enzymatically degraded PBCT-85/DDA-PPZn nanocomposites.

According to previous literature, there is no significant cytotoxicity for the layered zinc
phenylphosphonates [17,18,23,24]. The were no related reports of the cytotoxicity of new synthesized
PBCT-85 in the literature. In this investigation, two biocompatible materials were mixed to fabricate
the PBCT-85/m-PPZn composites using solution mixing process. In the MTT assay, the optical density
of purple formazan converted from the MTT can be used to represent the cell growth. The greater
the absorbance, the larger number of living cells [25]. Figure 10 shows the quantitative results of the
MTT assay for the PBCT-85/DDA-PPZn nanocomposites after incubation periods of 12, 24, and 48 h,
respectively. The experimental results revealed that the number the living L929 cell in all samples
increased as the culture times increased. This verified that the fabricated PBCT-85/m-PPZn composites
were appropriate for cell growth and might be a potential candidate used as biomedical materials.
Nevertheless, the fabricated composites might be considered ecologically-friendly materials that can
be useful for environmental sustainability.
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Figure 10. Biocompatibility of PBCT-85/DDA-PPZn seeded with L929 cells at various time points.

4. Conclusions

The new biodegradable and biocompatible PBCT-85/m-PPZn nanocomposites were fabricated
using the transesterification and polycondensation process. WAXD and TEM results revealed that the
intercalated conformations are formed for the PBCT-85/m-PPZn nanocomposites. The incorporation of
m-PPZn into PBCT-85 matrix could enhance the storage modulus, as compared to that of neat PBCT-85.
The weight loss decreases as the loading of m-PPZn increases, showing that the existence of m-PPZn
inhibits the degradation of the PBCT-85 copolymers. This result might have contributed to the higher
degree of contact angle for PBCT-85/m-PPZn nanocomposites. The results of the MTT assay show that
the PBCT-85/m-PPZn composites may have a potential application for biomedical materials.
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