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Trends
Mucosal surfaces form a major inter-
face between us and the external
environment. These surfaces are
decorated by complex sugar moieties
that profoundly affect its function. Indi-
vidual variation in these mucosal
sugars contributes to overall infection
and disease susceptibility within the
population.

Recent mechanistic studies involving
mouse models have revealed how
the FUT2 gene mediates host–bacter-
ial interactions, via its effect on muco-
sal surfaces. There is now a need to
further characterise the role of mucosal
sugars in bacterial and viral infection
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Glycans form a highly variable constituent of our mucosal surfaces and pro-
foundly affect our susceptibility to infection and disease. The diversity and
importance of these surface glycans can be seen in individuals who lack a
functional copy of the fucosyltransferase gene, FUT2. Representing around
one-fifth of the population, these individuals have an altered susceptibility to
many bacterial and viral infections and diseases. The mediation of host–path-
ogen interactions by mucosal glycans, such as those added by FUT2, is poorly
understood. We highlight, with specific examples, important mechanisms by
which host glycans influence infection dynamics, including by: acting as path-
ogen receptors (or receptor-decoys), promoting microbial stability, altering the
physical characteristics of mucus, and acting as immunological markers. We
argue that the effect glycans have on infection dynamics has profound impli-
cations for many aspects of healthcare and policy, including clinical manage-
ment, outbreak control, and vaccination policy.
dynamics. We describe several
mechanisms that highlight the impor-
tance of mucosal sugars in host
defence and their contribution to dis-
ease susceptibility.

Variation in glycans within the popula-
tion may play a crucial, yet underap-
preciated, role in viral-infection
susceptibility, with the potential to
inform clinical management.
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Mucus Glycans: More Than Just Decoration
Mucosal infections account for over one-tenth of deaths globally, and are a major source of
morbidity [1]. These are predominately infections of the respiratory tract, gastrointestinal tract,
and genitourinary tract. With these sites exposed to external sources, encounters with micro-
bial pathogens are unavoidable; however, the likelihood that an interaction will result in an
infection varies substantially between individuals [2]. The ability to predict the outcome of
exposure remains a central challenge in modern medicine.i

The extent to which mucosal surfaces influence the risk of infection is complex and remains
poorly understood. Often, these mucosae are oversimplified as mere physical barriers; how-
ever, their molecular composition, consisting of intricate glycan structures (see Glossary) on
secreted proteins and lipids, provides many additional immunological functions [3,4]. The large
diversity of glycans that can be displayed by mucosal surfaces are determined both by inherited
variation [5] and transcriptional regulation within epithelial cells [6]. Importantly, interindividual
variation in the types of glycan present on mucosal surfaces is a major contributor to differences
in susceptibility to a variety of infections [3,5,7,8]. Indeed, the contribution of mucosal glycans to
infection susceptibility has gained much recent interest, owing to studies that have provided
mechanistic insight into their function [9–11].

Mucosal constituents that are decorated with glycans are formed through a process mediated
by a diverse family of glycosyltransferase enzymes, mostly acting in a template-independent
manner [12]. FUT2 encodes an a(1,2)-fucosyltransferase that is expressed in mucosal tissues
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Glossary
FUT2: the gene encoding an a(1,2)-
fucosyltransferase expressed in
epithelial cells of multiple mucosal
tissues. This enzyme catalyses the
addition of L-fucose to the terminal
galactose of a glycan in an a1,2
confirmation. This a(1,2)-fucosylated
glycan is termed the H antigen.
Glycan: a polymer of covalently
linked sugar monomers.
Glycosyltransferase: enzymes that
catalyse the transfer of a sugar
monomer from a donor to an
acceptor substrate molecule, forming
a glycan. A diverse range of
glycosyltransferases exist, each with
a particular specificity for sugar
monomers and glycosidic linkage.
Microbiota: all commensal,
symbiotic, and pathogenic
microorganisms sharing a defined
niche.
Natural antibodies (NAbs):
immunoglobulins that are produced
independently of T cell selection.
NAbs generally have a weaker
affinity, with lower specificity,
compared to T cell-dependent
immunoglobulins.
Nonsecretor: an individual who has
two loss-of-function mutations in the
FUT2 gene and therefore fails to
express a(1,2)-fucosylated glycans in
mucosal secreted and cell-surface
glycoproteins and glycolipids.
by multiple epithelial cell types. FUT2 facilitates the attachment of the L-fucose monosaccha-
ride to specific O-linked glycan chains, producing a(1,2)-fucosylated glycans [5,8]. This
resulting a(1,2)-fucosylated glycan is a highly versatile structure and can be further modified
to form one of a number of clinically important glycans, including the A and B histo-blood group
antigens on mucosal surfaces [5,8]. Mucosal histo-blood groups are analogous to those found
on erythrocytes, although only those secreted by mucosal surfaces are dependent on FUT2.
For example, an individual who has an A blood type will express A-type glycans on eryth-
rocytes, but will only express A-type glycans on mucosal surfaces if they have a functional FUT2
[5]. After the glycosylation process, a(1,2)-fucosylated proteins and lipids are either secreted
from mucosal epithelium into the lumen directly, or are anchored to the apical cell surface
membrane. Because FUT2 controls the nature of the various a(1,2)-fucosylated glycans
secreted by mucosal surfaces, it was termed the ‘secretor’ gene, although it does not regulate
secretion per se [5].

As a(1,2)-fucosylated glycans act as important precursors for a range of mucosal glycans, the
high frequency of nonsense SNPs within the FUT2 gene in humans [13] is perhaps surprising. In
fact, approximately one-fifth of the global population harbour two nonfunctional alleles and are
therefore unable to express a(1,2)-fucosylated glycans on mucosal surfaces [7,13]. While
individuals with a functional FUT2 allele are termed ‘secretors’, those with loss-of-function
mutations are termed ‘nonsecretors’. Interestingly, the frequency of nonsecretors varies
substantially with ethnicity [7,13], with a range of SNPs found to confer this nonsecretor
phenotype. However, the widespread distribution of these traits indicates a conserved selective
advantage for nonsecretors under certain circumstances [14] (Box 1). In addition to an absence
of a(1,2)-fucosylated glycans in mucosal secretions, including the absence of histo-blood
group antigens, nonsecretors also display increased levels of sialylated glycans in mucosal
secretions [15], presumably as a result of reduced glycosyltransferase competition.

A clue as to why these loss-of-function mutations are carried at such a high frequency, and an
illustration more generally of the importance of surface glycans to infection susceptibility, is the
major differences in rates of bacterial- and viral-mediated diseases between secretors and
nonsecretors (Table 1, Key Table). A large number of studies have now reported significantly
higher rates of viral infection in secretors, including life-threatening infections caused by HIV,
influenza, and norovirus [16–21]. At the same time, secretors appear to be at a reduced risk of
infections caused by bacterial pathogens, including Streptococcus pneumoniae, Neisseria
meningitidis, Haemophilus influenzae, and Salmonella enterica serovar Typhimurium
[9,11,22–24]. This dichotomy in susceptibility also extends to chronic multifactorial diseases,
such as chronic pancreatitis [25], and diseases of altered immune regulation, such as asthma
[26,27], type 1 diabetes [28], and psoriasis [29]. It is important to note that while all of the studies
listed in Table 1 reported significant associations between secretor status and disease, sample
sizes and effect sizes vary.
Box 1. FUT2 SNPs and Historical Infections

Multiple SNPs, found in the FUT2 coding region, confer loss, or hindered function. The most common nonsense SNP in
Caucasian, African, and central Asian populations is a G!A substitution at base pair 428 (rs601338); however, the most
common in east Asian populations is an A!T substitution at base pair 385 (rs1047781) [7,13]. Both SNPs occur at
similar frequencies in their respective populations, with estimates dating the emergence of the 428G!A mutation to at
least 1.87 million years ago and the 385A!T mutation to at least 256 000 years ago [72]. The age and frequency of
these mutations suggest that they are maintained in the gene pool by balancing selection, where both secretor and
nonsecretor variants provide selective advantage. Available evidence suggests that differential resistance to infection is
the driver of this balancing selection [14], although identification of the causative infective agent is speculative. However,
this phenomenon has been observed outside of the human population, where infection-driven selection of glycosyl-
transferase variants was reported in a study of rabbit populations, where those with endemic rabbit haemorrhagic
disease virus had glycosyltransferase SNPs at higher frequencies compared to populations without endemic virus [73].
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Key Table

Table 1. Secretor Status Profoundly Influences Infection and Disease
Susceptibilitya

Infection Secretors more
susceptible

Nonsecretors
more susceptible

Refs

Norovirus (GII.4) ✔ [21,74]

Rotavirus (VP8) ✔ [36–38]

Influenza A virus ✔ [19]

Rhinovirus ✔ [19]

Echovirus ✔ [19]

RSV ✔ [19]

HIV ✔ [16–18]

Helicobacter pylori ✔ [24,75,76]

Candida albicans ✔ [77,78]

Streptococcus pneumoniae ✔ [22]

Neisseria meningitidis ✔ [22]

Haemophilus influenzae ✔ [23]

Salmonella enterica serovar Typhimuriumb ✔ [11]

Citrobacter rodentiumb ✔ [9]

Campylobacter jejuni ✔ [41,42]

Urinary tract infection ✔ [79,80]

Bacteraemia (after haematopoietic
stem cell transplantation)

✔ [81]

Disease Secretors more
susceptible

Nonsecretors more
susceptible

Refs

Non-CF bronchiectasis severityc ✔ [67]

Asthma severity ✔ [82]

Graft-versus-host disease ✔ [81]

Intestinal-type gastric cancer ✔ [83]

Primary sclerosing cholangitis ✔ [84]

Crohn’s disease ✔ [53,85]

Celiac disease ✔ [86]

Asthma ✔ [26,27]

Type 1 diabetes ✔ [28]

High plasma vitamin B12 ✔ [87–89]

Chronic pancreatitis ✔ [25]

Psoriasis ✔ [29]

Acute uncomplicated pyelonephritis ✔ [90]

Behçet’s disease ✔ [91]

aSecretor phenotype is associated with increased susceptibility to viral infections and respiratory disease severity, but with
decreased susceptibility to bacterial infections and a diverse range of chronic inflammatory diseases.

bDemonstrated in Fut2–/– mice with no human epidemiological evidence.
cAbbreviation: CF, cystic fibrosis.
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Despite the well-described associations between FUT2 and other mucosal glycosyltransfer-
ases, and a diversity of infections and diseases, our understanding of the mechanisms behind
these relationships remains poor. Infection and pathogenesis are complex processes, with
mucosal glycans likely influencing susceptibility through both direct and indirect mechanisms.

Sticking Around: FUT2 and Pathogen Adherence
a(1,2)-fucosylated glycans influence infection susceptibility directly, through facilitating patho-
gen adherence. As has been reviewed in detail [30–32], multiple bacteria encode specific
receptors that bind to host a(1,2)-fucosylated glycans for pathogen adherence. A well char-
acterised example of this is in Helicobacter pylori, facilitated by the BabA adhesin. BabA has a
specificity for the ‘Lewis b’ a(1,2)-fucosylated mucosal glycan, therefore BabA-expressing H.
pylori is more readily able to adhere to the gastric mucosa and colonize the stomachs of
secretor individuals [33] (Figure 1A). BabA-encoding H. pylori and subsequent infection
susceptibility is something of an exception, as this is the only bacterial species listed in Table 1
where susceptibility is increased in secretors (due to the specificity of BabA towards a(1,2)-
fucosylated glycans). Two viruses have analogous receptors, norovirus (specifically strain GII.4)
[34,35] and rotavirus (specifically strains containing spike protein VP8) [36,37]. Both of these
viruses encode different adhesins, specific to a(1,2)-fucosylated glycans. The absence of these
glycans in nonsecretors therefore confers high levels of resistance [20,21,38] (Figure 1A).

More complex FUT2-dependent pathogen adherence pathways have also been characterised,
based on glycan location. Glycosylated proteins and lipids are abundant in the gastrointestinal
tract, either anchored to the cell surface, secreted into the lumen, or taken in through ingestion.
Therefore, infection susceptibility, where pathogens adhere to glycans, depends on the
location and anchoring of the glycan. Glycans that are not attached to the epithelium can,
in fact, reduce infection susceptibility by acting as receptor decoys. For example, the cell
surface mucin, MUC1, carries Lewis-b glycans and is shed from the surface of gastric epithelial
cells acting as a releasable decoy to limit adhesion by BabA-expressing H. pylori to other cell
surface Lewis-b-expressing molecules [39]. As a separate example, maternal secretor status
affects glycosylation of glycoproteins in milk [40], and consequently maternal secretors reduce
their infants’ susceptibility to Campylobacter jejuni diarrhoea [41]. This has been attributed to C.
jejuni binding to a(1,2)-fucosylated milk glycans [42], which act as a receptor decoy in the infant,
sequestering the pathogen away from the epithelium (Figure 1B). As these examples demon-
strate, the dynamics of how glycan-mediated adherence (either membrane-bound or luminal)
ultimately confers susceptibility or resistance to infection is complex.

Commensal Influence: FUT2 and the Microbiota
In addition to influencing pathogen adherence, FUT2 has been shown to also affect infection
susceptibility indirectly. For example, murine studies have shown that the presence of Fut2
reduces susceptibility to S. Typhimurium, Enterococcus faecalis and Citrobacter rodentium
infection through the effect of a(1,2)-fucosylated glycans on the commensal gut microbiota
[9–11] (Figure 1C). Even small changes to microbiota composition can alter nutrient availability,
profoundly affecting the ability of bacterial pathogens to colonise the gut [43]. Beyond such
‘colonisation resistance’, murine studies have also shown that Fut2-dependent fucosylated
glycans are an important endogenous nutrient for commensal microbes, facilitating rapid host
recovery following periods of stress caused by intestinal infection or inflammation [9]. These
findings are supported by in silico analyses of microbial structure stability using microbiota data
from Fut2 knock-out mice [44].

By contrast, a large study in healthy adult humans reported no difference in faecal microbiota
composition between secretors and nonsecretors [45], contradicting previous, positive
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Figure 1. a(1,2)-Fucosylated Glycans Affect Infection Susceptibility. (A) Adhering to membrane-bound a(1,2)-fucosylated glycans facilitates pathogen
infection. (B) Adhering to luminal a(1,2)-fucosylated glycans can act as a receptor decoy, reducing infection susceptibility. MUC1 glycoprotein is membrane bound,
however, detaches from the epithelium following pathogen binding. (C) Commensal microbes can utilise a(1,2)-fucosylated glycans, occupying a niche space and
hindering pathogen colonisation. Abbreviations: H. pylori, Helicobacter pylori; C. jejuni, Campylobacter jejuni; S. typhimurium, Salmonella enterica serovar
Typhimurium.
associations from a smaller cohort analysing mucosal microbiota from biopsies [46]. The use of
intestinal mucosal biopsies in the smaller cohort study, where a greater host genotype effect
may be expected [47], may explain this discrepancy [44].

Differences in microbiota composition and resilience may also explain the numerous diseases
associated with secretor status (as detailed in Table 1). Many of these conditions (including
asthma, Crohn’s disease, celiac disease, and psoriasis) are associated with intestinal micro-
biota composition [48–50]. If secretor status can influence gut microbiology, it is reasonable to
suggest that secretor status may contribute to microbiota-related disease susceptibility among
predisposed individuals, as discussed elsewhere [8,30,31,46,51–53]. However, given the
numerous confounding environmental exposures in human populations, large cohort studies
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with detailed metadata are required to determine the contribution of secretor status to these
complex, multifactorial diseases.

Sugar Structures: Glycans Influencing Mucus Barrier Function
The physical barrier properties of mucus define its primary function, as governed by its
viscosity, permeability, and rheology [3,4]. Mucins, the major proteins that make up the mucus
layer, are comprised of 70% glycans by mass [4]. Small variations in the molecular composition
of mucin glycans can therefore impact the overall physical properties of mucus. While a(1,2)-
fucosylated mucins constitute a large proportion of secretor mucus, interestingly, nonsecretors
display higher levels of sialylated mucins [15]. Sialic acid, like fucose is often added as a terminal
saccharide and has different properties to fucose.

At a molecular level, sialylated terminal glycans have a larger polar surface compared to fucose
[54,55]. The higher electronegative change in sialylated mucins has therefore been proposed to
increase both mucus hydration and electronegative repulsion, compared to fucosylated
mucins [54,55]. Particularly in the airways, mucus hydration is an important characteristic
for mucociliary clearance [4,54]. Well-described examples of impaired clearance are evident in
diseases such as chronic obstructive pulmonary disease and cystic fibrosis [4]. While this
requires experimental validation, higher sialic acid levels in nonsecretor airways may affect
mucus clearance mechanisms. Such a difference might explain the observed findings of a
study in which infection by influenza virus, respiratory syncytial virus (RSV), rhinovirus, and
echovirus were all lower in nonsecretors [19]. It is interesting to speculate that altered mucus
characteristics in nonsecretors may contribute to this reduced susceptibility to viral infection.

Anti-sugar Antibodies: Host Antibodies Recognise Nonself Glycans
A major contributor to mucosal immunity is the detection and neutralisation of pathogens by
secreted antibodies [56,57] – particularly natural antibodies (NAbs), which are generated in a
T cell-independent way and have broad-spectrum activity against a diversity of antigens [57]. A
subset of NAbs have an affinity towards glycans, recognising those specific to bacteria, but also
to glycans found naturally within the human population. For example, the A and B histo-blood
group antigens elicit strong NAb-specific immune responses in noncompatible individuals, best
known as the primary cause of blood transfusion reactions [58]. An interesting research
question is whether these same A and B antigens decorate viral particles and affect viral
transmission between histo-incompatible hosts.

By definition, viral replication is reliant on host-cell machinery, which includes glycosylation by
host glycosyltransferases. Many viruses also utilize host membranes for encapsulation. Several
studies have demonstrated that viruses shed from epithelial cells displaying A or B glycans also
display these glycans. Specifically, cell lines infected with HIV-1 [59] or measles virus [60] were
found to produce viral particles coated in their specific blood group glycan (as depicted in
Figure 2). While these studies were performed in vitro using transformed cell lines, they support
a logical conclusion; viruses from a cell expressing particular glycosyltransferases carry a host-
glycan fingerprint of this parent cell. Addition of anti-histo blood group NAbs was found to bind
to these viruses and elicit antibody-mediated inactivation [59,60]. Further studies have investi-
gated NAb-mediated viral neutralisation using other, analogous glycan structures, showing
supporting results [61,62]. However, it is unlikely that nonsecretors develop NAbs with speci-
ficity to secretor glycans, as a(1,2)-fucosylated glycans exist in nonmucosal sites, which are not
reliant on FUT2. Secretor status may however affect a virus’s ability to evade host antibody
defences. As FUT2 mediates the display of ABO histo-blood group antigens in mucosal
secretions, viruses that come from a nonsecretor would not display blood group antigens
Trends in Microbiology, February 2018, Vol. 26, No. 2 97
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Figure 2. Viruses Are Decorated in Host Glycans. Viral replication requires the use of host cell machinery, including
host glycosyltransferases. Underlying genetic factors (such as FUT2 SNPs) affect glycosylation of shed viruses. Viral
glycoproteins and glycolipids (for enveloped viruses) differ between viruses shed from secretor and nonsecretor cells.
and hence would not be affected by anti-histo blood group NAbs. Further infection models are
required to elucidate the contribution of viral glycosylation to infection dynamics.

Using Glycosyltransferase Characteristics to Inform Policy and Practice
The majority of studies discussed have been observational, with stratification by glycosylation
status revealing differences in infection or disease susceptibility. Information on the underlying
mechanisms surrounding the contribution of glycosyltransferases remains very limited (see
Outstanding Questions). However, it is becoming apparent that common SNPs in genes such
as FUT2 have clinically important predictive capabilities. We are now entering an era in which
whole-genome sequencing is becoming increasingly common in both research (for large
cohort studies) and at an individual level (as a predictive tool for risk susceptibility). These
growing data repositories provide an opportunity to explore effects of glycosylation variability on
risks of infection and disease susceptibility at a population-level, as well as at an individual level.

Glycosylation status might, for example, be informative at a population level during infection
outbreaks, where identifying at-risk individuals is vital for effective control management and global
security. For example, a retrospective analysis of 45 people exposed to severe acute respiratory
syndrome (SARS) virus in a Hong Kong hospital in 2003 found that individuals who did not express
98 Trends in Microbiology, February 2018, Vol. 26, No. 2



Outstanding Questions
How do the effects of secretor status
on infection and disease susceptibility
replicate across multiple studies?

Does transcriptional regulation of
FUT2 change during health, infection,
and disease? Might this influence
severity of infection and/or disease?

Does ABO blood group type affect viral
transmissibility?

Are viral particles from nonsecretors
better able to evade host NAb
defences?

With personal genome sequencing
becoming increasingly common,
might an individual’s knowledge of
their infection/disease susceptibility
reduce incidence or late diagnosis?
A or B histo-blood group glycans had reduced frequency of infection (odds ratio 0.18), supporting
the NAb-anti-viral hypothesis [63]. Developing stratification strategies based on glycosylation
compatibility could therefore inform and reduce infection spread. At an individual level, identifica-
tion of common genetic infection and disease risk factors, such as FUT2 SNPs, could inform and
direct an individual’s behaviour to minimise infection and disease risk, particularly when linked to
other risk factors. Further, with the apparent link between glycan variation and antibody repertoire
[5,8], individual glycosylation status may inform patient stratification in clinical settings such as
predicting vaccine efficacy and progression of chronic diseases.

A major growingclinical concern is theglobal increase in prevalence of chronic diseases causedby
a diverse range of complex lifestyle, genetic, and environmental factors. Respiratory- and
gastrointestinal-associated diseases often have a direct microbial component, and many other
seemingly unrelated chronic diseases are also associated with our interactions with microbes,
including type 2 diabetes [64], asthma [65], and rheumatoid arthritis [66], to name but a few.
Secretor status is associated not only with susceptibility to many of these chronic diseases, but
also their progression and severity. This relationship could inform the stratification of patient
populations and the prediction of adverse events. For example, stratification of patients with
noncystic fibrosis bronchiectasis by secretor status identified that chronic airway infection, lung
function, and pulmonary exacerbation frequency were higher in secretor individuals [67].

The frequency of allergic diseases is also increasing rapidly, particularly in developed countries
[68]. Early-life antibiotic exposure or a dysregulated microbiota has been linked with allergen
sensitisation [65]. Maternal secretor status is linked with infant microbiota composition [44,69],
and nonsecretorsaremore susceptible toasthma [26], psoriasis [29], andearly-life IgE-associated
eczema [70].While it isessential thatwebetterunderstandhowthe influence ofglycanfucosylation
on the microbiome contributes to the development of these conditions, such relationships might
also present opportunities for novel therapeutic strategies. For example, might breast milk,
supplemented with a(1,2)-fucose, reduce allergic disease susceptibility in at-risk infants? Oral
supplementation with a(1,2)-fucose has been shown to be well tolerated and shift the intestinal
microbiota in healthy adults [71], highlighting its safety and efficacy as a potential prebiotic.

Concluding Remarks
We are now in the era where data repositories are available that combine genomic sequence
data with clinical metadata from large cohorts [13]. The effect of genetic variation in genes that
mediate mucosal glycosylation, such as SNPs in FUT2, increases our understanding of
immunology at a population level, and creates opportunities to implement effective precision
medicine. Testing glycan-mediated mechanisms of infection and disease susceptibility is now
warranted to assess their inclusion in clinical and policy practices. Ultimately, precision medi-
cine requires an integrated decision-making model that encompasses extrinsic factors, includ-
ing diet, mental and physical health, the microbiome, and intrinsic factors, such as human
genetics and subsequent phenotypes. While testing population-level variability remains chal-
lenging [2], a better understanding of the factors by which glycans mediate disease suscepti-
bility offers the potential to significantly improve clinical outcomes.

Resources
iwww.cdc.gov/amd/
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