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Abstract
Motivation: Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical 
task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC) for 
model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed 
genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodality index, not only to identify but also 
to rank meaningful and reliable bimodal patterns. The bimodality index can be computed using either a mixture model-based algorithm 
or Markov chain Monte Carlo techniques.

Results: We carried out simulation studies and applied the method to real data from a cancer gene expression profiling study. 
Our findings suggest that BIC behaves like a lax cutoff based on the bimodality index, and that the bimodality index provides an 
objective measure to identify and rank meaningful and reliable bimodal patterns from large-scale gene expression datasets. R code to 
compute the bimodality index is included in the ClassDiscovery package of the Object-Oriented Microarray and Proteomic Analysis 
(OOMPA) suite available at the web site http;//bioinformatics.mdanderson.org/Software/OOMPA. 
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Introduction
Identifying genes with bimodal expression patterns 
from large-scale expression profiling data is an 
important task. Bimodal expression patterns can 
result naturally from differential expression, with the 
two modes centered on the mean expression of a gene 
in two distinct subgroups of samples. In the context 
of cancer, bimodal expression patterns can result 
from genomic lesions that occur in some patients 
but not others. For example, Tomlins and colleagues1 
noticed that the ETV1 gene was overexpressed in 
10%–20% of prostate cancer samples in multiple 
data sets and that the ERG gene was overexpressed 
in about 40% of prostate cancer samples in the same 
datasets. They further noticed that overexpression 
of these two genes was mutually exclusive. These 
findings led them to discover that the overexpression 
was driven by recurrent translocations that fused the 
androgen-responsive gene TMPRSS2 either with 
ETV1 (in some cases) or with ERG (in other cases).

The definition of a bimodal distribution can be vague: 
the term typically refers to a mixture of two populations 
with distinct means. In density estimation, a bimodal 
distribution can be recognized by the presence of two 
modes, each with a characteristic peak. Determining 
the factor that characterizes the samples that belong 
to each of the two distributions can be difficult. 
In the realm of large-scale gene expression profiling, 
finding bimodal expression patterns is an important 
analytical process. In oncology, this process may be 
part of the search for clinically important therapeutic 
targets within tumors. The process can also reveal 
molecular signatures that distinguish tumor subtypes, 
which contributes to our understanding of the clinical 
and biologic characteristics of cancer.

A two-component normal mixture-model-based 
clustering algorithm is commonly used to discover 
bimodal expression patterns. In contrast to other 
clustering methods, this approach is based on a 
mixture of statistical distributions in which each 
component represents a cluster. The method converts a 
classification problem into a statistical estimation of the 
mixture density. The approach has proven to be useful 
in a wide range of applications, including microarray 
gene expression analysis.2–6 The technique is sensitive 
and allows for rapid computation. A major benefit of 
the mixture model-based clustering technique is that 
the algorithm characterizes each cluster and provides 

probabilities of cluster membership. In addition, the 
algorithm provides point estimates of the statistical 
parameters including the means, standard deviations, 
and sample proportions in each group.

One difficulty with its application is finding an 
appropriate test statistic to estimate p-values and 
choosing a suitable cutoff to minimize the false 
discovery rate. The log likelihood ratio test (LRT) 
statistic could be adopted to test the hypothesis 
H1 that gene expression distribution is a bimodal, 
against the null hypothesis H0 that the distribution 
is unimodal. Under the null hypothesis, the 
LRT asymptotically has a chi-squared distribution 
(-2 log λ ∼ χ2). However, in practice, the chi-squared 
distribution, with two degrees of freedom, seems to 
converge slowly. Consequently, the critical value 
from chi-square table is too small, so it over-rejects, 
or inflates the false positive rate.7 Recently Ertel and 
Tozeren applied a two-component normal mixture 
model to identify bimodal genes and their potential 
roles in cell signaling and disease progression.8 They 
used LRT, with p-values estimated by evaluating 
the chi-square distribution with six degree of freedom, 
in order to get more conservative p-values. To identify 
significant bimodal genes, an ad-hoc p-value was 
selected.

Researchers combine mixture-model-based 
clustering with either the Akaike information criterion 
(AIC) or the Bayesian information criterion (BIC). 
Both criteria impose arbitrary penalties based on 
the number of parameters to determine whether 
a unimodal or bimodal model is a better fit to the 
observed data. A dataset is identified as bimodal if the 
parameter penalties are outweighed by the increased 
likelihood of the bimodal model. Although useful, 
according to our experience, the reliance on AIC or 
BIC appears to be overly sensitive in its application 
to gene expression profiling data and may lead to 
the identification of numerous genes whose bimodal 
patterns cannot be confirmed in follow-up studies. 
In order to be clinically useful in practice, a bimodal 
pattern should exhibit significant separation between 
the means of the two groups and should have adequate 
sample sizes in each group. In applications of the 
mixture-model-based clustering technique, researchers 
frequently find it necessary to use subjective ad hoc 
cutoffs in addition to the AIC or BIC in order to reveal 
reliable and meaningful bimodal patterns.
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For identifying bimodal expressed genes, a practical 
method was introduced previously by Andrew 
and colleagues,9 called Profile Analysis using 
Clustering and Kurtosis (PACK). PACK has two 
steps; (1) using the expectation-maximization (EM) 
algorithm, a common method for finding maximum 
likelihood estimates of parameters in probabilistic 
models, and BIC for model selection to determine 
the number of clusters within the expression data. 
This step is the same as the model-based-clustering 
technique. (2) Using kurtosis to characterize features 
and find relevant classifiers. Depending on the sign of 
kurtosis, major bimodal pattern (negative kurtosis) 
or outlier bimodal pattern (positive kurtosis) can be 
identified. PACK has been applied to number of cancer 
gene expression datasets in breast successfully.9,10 The 
use of kurtosis for identifying bimodally expressed 
genes, however, has a blind spot. If the proportions 
of samples in the two groups are close to a 20%–80% 
split, then the kurtosis is close to zero. Negative 
kurtosis strongly favors a perfect 50–50 split, which 
we think has a chance to miss biologically interesting 
genes. Positive kurtosis, on the other hand, shows a 
strong preference for extremely unbalanced splits on 
the order of 95–5 or even 99–1.

In this investigation, we propose an approach that 
replaces (or supplements) the use of AIC or BIC with 
a criterion that provides for finer distinctions between 
the bimodally expressed genes. By assigning a 
continuous value (the bimodality index) to each gene 
instead of a simple yes-or-no answer to the question 
of bimodality, we can provide researchers with a tool 
to rank genes and thus focus their interest on those 
with the strongest evidence of “useful” bimodality. 
We evaluate the estimation of the bimodality index 
of a set of measurements using both mixture model-
based clustering and Markov chain Monte Carlo 
(MCMC) techniques to estimate the statistical 
parameters (means, standard deviation, and sample 
proportions) of the mixture. MCMC sampling 
techniques are common in the field of Bayesian 
analysis, and have emerged as popular tools for the 
analysis of complex statistical problems, including 
the analysis of microarray gene expression profiling 
data.11,12 We apply the proposed algorithm to 
simulated gene expression data and to a dataset 
from a microarray gene expression profiling study 
of breast cancer.

The Algorithm in Brief
We assume that, for a gene with bimodal expression, 
the distribution can be expressed as a mixture of two 
normal distributions:
	 y N N= + -π µ σ π µ σ( , ) ( ) ( , )1 1 2 21 � (1)
where y is the expression measurement; π is the 
proportion of samples in one group; µ1 and µ2 are the 
means of the expression level of the two modes; and 
σ1 and σ2 are the standard deviations. In analyzing 
gene expression data, equal variance between groups 
is frequently assumed. If we assume that σ1 = σ2, the 
equation becomes
	 y N N= + -π µ σ π µ σ( , ) ( ) ( , )1 21 � (2)
where σ is the common standard deviation. We 
define the standardized distance, δ, between the two 
populations as

	 δ µ µ
σ

= - ⋅| |1 2 � (3)

For identifying genes with bimodal expression, the 
null hypothesis is δ = 0 and the alternative hypothesis 
is δ  0.

To illustrate how the shape of a bimodal density 
changes as π and δ vary (with σ = 1), we plotted a 
set of theoretical distributions. Figure 1a arranges the 
density plots in the δ - π plane. Because of symmetry 
in π from 0.0 to 1.0, we only illustrate the plots using 
π from 0.50–0.95. The plots indicate that bimodality is 
visually obvious when δ is sufficiently large or when 
the proportion π in each group is adequate. When 
π and δ reach certain critical values, bimodality is no 
longer visually distinguishable. The plots also suggest 
that the distinguishable bimodal patterns, as indicated 
by the plots in red in Figure 1a, are approximately 
bounded by a curve in the δ - π plane. Although this 
observation about distinguishability is subjective, 
it can be made objective by reference to a standard 
sample size computation.

Defining the bimodality index
Consider an experiment that involves two normally 
distributed populations with means µ1 and µ2 and 
common standard deviation σ. The usual sample size 
computation tells us that the formula

	 N
Z Z

=
+4 2

2

2

( )
,/α β

δ � (4)

http://www.la-press.com


Wang et al

202	 Cancer Informatics 2009:7

where zα /2 and zβ are the percentiles of the standard 
normal distribution that yield the desired significance 
and power, gives the total number N of samples 
needed to detect the standardized difference δ in an 
experiment with equal-sized groups. To achieve the 
same power with unequal sizes Mπ and M(1 - π), 
we should choose M to make the variance of the 
estimated standardized difference with unequal 

group sizes the same as the variance with equal 
sizes; that is,

	
1

1

1 1

1

1

2

1

2

4

π π π π( ) ( ) / /-
= +

-
= + = ⋅

M M M N N N �
(5)

So, the total number of samples required when the 
groups are unequally sized is:

	 M
Z Z

=
+

-
⋅

( )

( )
/α β

π π δ
2

2

21
� (6)

Selecting reasonable values for α and β for 
microarray experiments has been addressed by Simon 
et al,13 so we will not provide a detailed description 
here. Rearranging equation (6), we obtain

	 π π δ α β( )
( )/1 2 2

2

- =
+

⋅
Z Z

M
� (7)

Motivated by equation (7), we define the bimodality 
index BI as

	 BI = - ⋅[ ( )] /π π δ1 1 2

� (8)
In practice, we can estimate δ and π for a given 

dataset, then use these estimated values to compute BI.
Combinations of δ and π that give the same 

value of BI describe bimodal distributions that are 
“equally separable” in the sense that experiments to 
distinguish the two subgroups at a given significance 
and power would require the same total number of 
samples. The right hand side of equation (7) shows 
that larger values of BI correspond to smaller sample 
sizes and thus represent bimodal distributions that 
are easier to distinguish. Constant BI values in 
equation (8) define curves in the δ - π space (Fig. 1b). 
Because of symmetry in π (0.0–1.0), we only show 
the plot for π from 0.5–1.0. The curves with constant 
bimodality index take on their minimum value at 
π = 0.5 (when the sizes of the two subgroups are the 
same), which gives the most power to distinguish 
a bimodal pattern for a given total sample size. When 
the group sizes are very unequal, for example, when 
π is close to 0.1 or 0.9, the power is much weaker 
for the same total sample size. Because the curve 
defined by BI = 1.1 perfectly separates the red 
“visually bimodal” distribution curves from the black 
distribution curves in Figure 1a, we recommend 
this cutoff to select bimodally expressed genes. 

Figure 1. Relationships between bimodality and π and δ. (A) Density plots 
of bimodal data as π and δ vary. These plots indicate that bimodality is 
obvious when both π and δ are sufficiently large, but difficult to distinguish 
when π and δ reach certain values. The density plots colored red are 
“visually” distinguishable as bimodal measurements. (B) Set of quadratic 
curves computed using different BI values; BI = 1.1 (blue), 1.2 (red), 
1.3 (green), 1.4 (brown), and 1.5 (purple).
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Other cutoffs can be chosen by using equations (7) 
and (8) to compute the sample size that would be 
needed to validate this degree of bimodality in an 
independent data set.

The key issue that remains, then, is how to 
accurately estimate the parameters δ and π (and 
thus BI) from a given dataset. One approach is to 
use the expectation-maximization (EM) method for 
maximum-likelihood estimation in parameterized 
normal mixture models. We can then combine the 
EM method for mixture estimation with BIC for 
identifying bimodal distributions. We can use the 
R package MCLUST© (University of Washington, 
Seattle, Washington), which follows this approach. 
We refer to this approach as a normal mixture-
model-based clustering algorithm. Alternatively, 
we can use MCMC sampling techniques for the 
estimation in a parameterized normal mixture model. 
We applied both algorithms to estimate the statistical 
parameters of the measurements. Then, based on the 
estimated parameters obtained from both algorithms, 
we computed BI in order to identify and rank more 
reliable bimodal patterns of expression. The difference 
between the two algorithms is their output: the 
mixture model-based clustering technique provides 
point estimates, whereas the MCMC technique 
provides distributions of the estimated parameters. 
Knowing the distributions of the estimated parameters 
allows us to estimate the posterior probability of the 
classification of each sample.

Simulation Studies
To evaluate the performance of the bimodality index 
for identifying genes with meaningful bimodal 
expression, we first performed simulation studies. 
We adopted the R package MCLUST© (University 
of Washington, Seattle, Washington), to perform 
mixture-model-based clustering and to obtain 
the estimated statistical parameters. From these 
estimated values, we computed the bimodality 
index BI for each measurement, and then selected 
bimodal measurements by setting a cutoff on the BI 
value. For comparison, we applied a hybrid MCMC 
technique to the same simulated dataset to estimate 
the measurement parameters and compute BI. To 
compute BI, we used point-estimated parameters 
from MCLUST and the posterior mean estimates 
from MCMC.

Unimodally distributed measurements
To obtain unimodal distributions, we generated 
expression datasets at four sample sizes: n = 50, 100, 
200, and 300. Each simulated dataset consisted of 
500 randomly generated samples from a unimodal 
normal distribution, N(µ = 5, σ = 1). Such a study 
is used to evaluate the rate of false positives or to 
evaluate the specificity of the proposed method.

The results of our null simulation are presented 
in Table 1. When the sample size was sufficiently 
large (200), our proposed method using estimated 
parameters from either MCLUST or MCMC performed 
equally well, with almost no false discoveries. 
Similarly, the rate of false positives was low when 
using BIC. When the sample size was relatively small 
(n  100), the MCMC algorithm provided slightly 
better results. All three methods performed with 
high specificity in the simulated null datasets, which 
indicates very low rates of false positives.

Bimodally distributed measurements
Next, we evaluated the proposed method on simulated 
measurements that were truly bimodally distributed. 
Here the simulations are more elaborate, since δ and π 
will affect the “strength” or “reliability” of the bimodal 
expression. To fully evaluate the performance of the 
proposed method, we simulated expression datasets 
with different parameter settings.

Various δ with sufficient π in each group  
(π = 0.3–0.7)
To evaluate how the proposed method detected 
bimodal measurements for different values of δ, we 
simulated datasets as δ varied from 2 to 5. Here, δ  4 
indicates a strong bimodal pattern; δ = 3 indicates 
a weak bimodal pattern; and δ = 2 corresponds to a 
very weak bimodal pattern. We assumed equal variance 
in each group. For simplicity, we set σ1 = σ2 = 1, 
in which case δ is equivalent to ∆µ. We again used 
four sample sizes, n = 50, 100, 200, and 300. For 
this simulation, we let π range from 0.3 to 0.7 by 
steps of  0.1. For each π, we simulated 100 bimodal 
measurements. Therefore, we had 500 bimodal 
variables associated with different values of π for each 
sample size. We applied both MCLUST and MCMC 
to estimate the statistical parameters µ1, µ2, σ, π, and δ. 
Based on these estimated parameters, we computed 
BI for each measurement.
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Table 1. Performance in simulated null distributions (δ = 0).

Sample sizes (n)  
(with 500 measurements)

Percentage of measurements identified as bimodal (false-positive rate) 

 BI cutoffs MCMC estimated MCLUST estimated BIC
50 1.1 0.8 1.8 2.6

1.2 0.2 1.4
1.3 0.0 1.4
1.4 0.0 1.2
1.5 0.0 0.8

100 1.1 0.4 1.2 1.6
1.2 0.2 0.8
1.3 0.2 0.8
1.4 0.0 0.4
1.5 0.0 0.0

200 1.1 0.0 0.4 0.6
1.2 0.0 0.4
1.3 0.0 0. 0
1.4 0.0 0.0
1.5 0.0 0.0

300 1.1 0.0 0.2 0.4
1.2 0.0 0. 0
1.3 0.0 0. 0
1.4 0.0 0. 0
1.5 0.0 0. 0

The results from this simulation study indicate 
that for a large δ (δ  4), the percentage of identified 
bimodal measurements using MCLUST was close 
to the percentage obtained using MCMC. Both 
techniques demonstrated high accuracy (Table 2a). 
When δ = 5, the MCLUST algorithm facilitated the 
identification of the bimodal measurements with no 
false negatives (Fig. 2). This was also true when BIC 
was used. Even with a small sample size (n = 50) 
we were able to identify nearly all of the samples 
as bimodal. As expected, when the separation of 
the means between the two groups was large and 
the sample population in each group was sufficient 
(30%  π  70%), any of the three methods allowed 
us to easily identify the bimodal measurements. For 
δ = 3, the identification of bimodal measurements 
was the same using any of the three methods. When 
the sample size was small (n  50), all three methods 
identified about 50% of the bimodal measurements. 

As the sample size increased, all three methods 
performed equally well and identified nearly 100% of 
the bimodal measurements.

When δ = 2, which indicates a very weak bimodal 
pattern and is slightly below our defined detection 
limit (bimodality index, BI = 1.1), we expect that most 
of the measurements will be identified as unimodal. 
Our study showed that only a few measurements 
were identified as bimodal under this setting (Fig. 3 
and Table 2a). The results suggest that the MCMC 
method is slightly less sensitive than the MCLUST 
algorithm, but that the difference is almost negligible. 
Table 1 also shows that the BIC is more sensitive, 
especially with a larger sample size. This is not 
surprising. Because δ = 2, these simulations do arise 
from bimodal distributions. In effect, the BIC behaves 
like a cutoff on the bimodality index at a much smaller 
value than our limit of BI = 1.1 and thus will identify 
more samples as bimodal.
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Various δ with small proportions in one group 
(π = 0.1, 0.2, 0.25, or 0.8, 0.9)
We then focused on the issue of highly unbalanced 
group sizes (summarized in Table 2b). The findings 
indicate that the bimodality index performed 
similarly when using either MCLUST or MCMC 
in settings with a strong bimodal pattern, i.e. 
when δ was large (δ  4) and the sample size was 
sufficient (n  100). Using MCMC, the performance 
was consistently more conservative. The BIC 
method was associated with a higher percentage 
of identified bimodal measurements, regardless 

of the sample size. The study also indicated that, 
when π was less than 0.1 or greater than 0.9 in one 
group, some bimodal measurements were detected 
as unimodal (Fig. 4). In other words, when π  0.1 
or π  0.9 and the sample size is small (n  100), 
even when δ is sufficiently large, the false-negative 
rate will be high.

Application to Cancer Microarray 
Gene Expression Measurements
Microarray gene expression measurements are more 
complicated than simulated data. To evaluate the 
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Figure 2. Performance of the proposed method with MCLUST and MCMC techniques in a simulated strong bimodal measurement dataset, δ = 5 and 
π = 0.3–0.7. The dataset contains 50 samples and 500 measurements. The black spots represent individual measurement, and blue clouds indicate 
the density of each data point. The set of quadratic curves computed using different BI values; BI = 1.1 (blue), 1.2 (red), 1.3 (green), 1.4 (brown), 
and 1.5 (purple).
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Figure 3. Performance of the proposed method with MCLUST and MCMC in simulated bimodal dataset, with δ = 2 and π = 0.3–0.7. The dataset contains 
50 samples and 500 measurements. The set of quadratic curves computed using different BI values; BI = 1.1 (blue), 1.2 (red), 1.3 (green), 1.4 (brown), 
and 1.5 (purple).
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Table 2a. Results from simulated bimodal data set, with sufficient sample sizes in each subgroup (Proportion in one group 
π = 0.3 to 0.7, in 0.1 intervals).

  

Sample sizes (n) 
(data = 500 × n)

BI cutoffs Identified bimodal (%)  
δ = 2 δ = 3  δ = 4 δ = 5

MCMC 
estimated

MCLUST 
estimated

BIC  
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

50 1.1 6.0 8.2 8.8 47.6 50.0 50.0 93.6 98.4 98.4 100 96.2 100
1.2 4.0 8.8 40.2 49.8 92.0 98.4 100 96.2
1.3 2.8 7.6 33.4 49.6 89.8 98.2 100 96.0
1.4 1.4 6.8 26.6 47.4 85.8 97.6 100 95.8
1.5 0.6 5.8 17.8 43.6 78.8 95.0 100 95.6

100 1.1 6.6 8.8 9.6 77.2 83.2 83.2 99.4 100 100 100 99.4 100
1.2 3.2 8.4 67.0 82.0 98.8 100 100 99.4
1.3 1.2 6.0 53.8 76.8 98.2 99.8 100 99.4
1.4 0.4 2.8 37.8 63.4 96.6 99.0 100 99.2
1.5 0 1.4 23.2 43.2 94.2 97.6 100 99.2

200 1.1 5.4 13.2 17.2 91.6 97.4 98.0 99.8 100 100 100 100 100
1.2 2.0 9.0 83.8 95.4 99.8 100 100 100
1.3 0.4 2.0 70.6 85.4 99.8 100 100 100
1.4 0.2 0.2 48.2 66.4 99.6 99.8 100 100
1.5 0 0 23.6 40.4 99.3 99.8 100 100

300 1.1 7.8 18.2 27.6 94.8 99.8 100 99.8 100 100 100 100 100
1.2 2.6 8.2 88.6 97.0 99.8 100 100 100
1.3 0.4 1.8 73.8 85.6 99.8 100 100 100
1.4 0 0 47.8 63.6 99.8 100 100 100
1.5 0 0 22.4 35.2 99.8 100 100 100

usefulness of our proposed method for identifying 
genes with bimodal expression, we applied the 
algorithm to a dataset of microarray gene expression 
profiles from a study of breast cancer.

Briefs of expression profiling  
and data processing
The gene expression profiling array dataset was 
produced by the Breast Cancer Pharmacogenomic 
Program at The University of Texas M. D. Anderson 
Cancer Center using Affemetrix U133A GeneChip. 
The dataset contains 133 human breast cancer 
samples, with each array containing 22,283 probe 
sets. (The expression profiles and clinical information 
are available at http://bioinformatics.mdanderson.
org/pubdata.html.) The original purpose of the 
investigation was to develop multi-gene predictors of 
pathologic complete response (pCR) to preoperative 

therapy.14 The clinical variables associated with the 
dataset include disease stage, histologic grade, and 
routine clinical markers such as the estrogen receptor 
(ER), the human epidermal growth factor receptor 2 
(HER-2), and the progesterone receptor (PR) status. 
Response to preoperative chemotherapy was also 
available.

For gene expression measurements, the signal 
intensities at the level of the probe sets were quantified 
by dChip 1.3 (http://dchip.org) using the PM-model 
only. Normalization was performed by dChip using 
the array with median brightness. The normalized 
expression measurement was logarithm transformed 
(base 2) for analysis. Because the expression data 
were produced on different dates, we considered the 
possibility of a “batch effect,” which occurs as a result 
of differences in the hybridization environment on 
different days. Although common in microarray gene 
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Table 2a. Results from simulated bimodal data set, with sufficient sample sizes in each subgroup (Proportion in one group 
π = 0.3 to 0.7, in 0.1 intervals).

  

Sample sizes (n) 
(data = 500 × n)

BI cutoffs Identified bimodal (%)  
δ = 2 δ = 3  δ = 4 δ = 5

MCMC 
estimated

MCLUST 
estimated

BIC  
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

MCMC 
estimated

MCLUST 
estimated

BIC 
selected

50 1.1 6.0 8.2 8.8 47.6 50.0 50.0 93.6 98.4 98.4 100 96.2 100
1.2 4.0 8.8 40.2 49.8 92.0 98.4 100 96.2
1.3 2.8 7.6 33.4 49.6 89.8 98.2 100 96.0
1.4 1.4 6.8 26.6 47.4 85.8 97.6 100 95.8
1.5 0.6 5.8 17.8 43.6 78.8 95.0 100 95.6

100 1.1 6.6 8.8 9.6 77.2 83.2 83.2 99.4 100 100 100 99.4 100
1.2 3.2 8.4 67.0 82.0 98.8 100 100 99.4
1.3 1.2 6.0 53.8 76.8 98.2 99.8 100 99.4
1.4 0.4 2.8 37.8 63.4 96.6 99.0 100 99.2
1.5 0 1.4 23.2 43.2 94.2 97.6 100 99.2

200 1.1 5.4 13.2 17.2 91.6 97.4 98.0 99.8 100 100 100 100 100
1.2 2.0 9.0 83.8 95.4 99.8 100 100 100
1.3 0.4 2.0 70.6 85.4 99.8 100 100 100
1.4 0.2 0.2 48.2 66.4 99.6 99.8 100 100
1.5 0 0 23.6 40.4 99.3 99.8 100 100

300 1.1 7.8 18.2 27.6 94.8 99.8 100 99.8 100 100 100 100 100
1.2 2.6 8.2 88.6 97.0 99.8 100 100 100
1.3 0.4 1.8 73.8 85.6 99.8 100 100 100
1.4 0 0 47.8 63.6 99.8 100 100 100
1.5 0 0 22.4 35.2 99.8 100 100 100

expression profiling investigations, the batch effect 
necessitates correction of the data. In order to obtain 
meaningful results, we performed a gene-by-gene 
adjustment of the means to put the batches created 
on two different dates on the same scale. Briefly, we 
adjusted the means on each gene from one batch to 
match the means of the same genes in the other batch.

Identifying genes with bimodal 
expression
Once data processing was complete, we applied the 
proposed method with the MCLUST and MCMC 
algorithms to identify the genes with bimodal 
expression. In both approaches, we estimated µ1, µ2, 
σ, π, and δ from the expression measurement of each 
gene across all samples, and computed BI for each 
gene. Figure 5 shows the genes from the breast cancer 
dataset identified as having bimodal expression.

Microarray gene expression profiling data contain 
significant levels of technical and biologic variation. 
Many measurements are just “noise,” containing no 
useful information. In order to identify genes with 
interesting expression patterns, it is common to 
apply a filtering criterion to eliminate some “noise.” 
The selection of a filtering condition involves some 
subjectivity. In this investigation, we filtered at several 
different levels. Specifically, we first computed the 
expression levels at several percentiles (0.25, 0.30, 
0.35, 0.40, 0.45, and 0.50) using all expression 
measurements across all samples. We then computed 
the maximum expression value of each gene across 
all samples. If the maximum was less than the 
expression level at a selected filtering percentile, we 
considered that expression measurement to be “noise” 
and eliminated it from the analysis. For example, 
the overall 25th percentile of expression was 6.771. 
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Table 2b. Results from simulated bimodal data set, with small sample size in one subgroup (Proportion in one group, 
π = 0.1, 0.2, 0.25, 0.8, 0.9).

  

Sample sizes (n)  
(data = 500 × n)

BI cutoffs Identified bimodal (%)      
 

    

δ = 2 δ = 3    δ = 4  δ = 5
    MCMC 

estimated
MCLUST 
estimated

BIC  
selected

MCMC 
estimated

MCLUST 
estimated

BIC  
selected

MCMC  
estimated

MCLUST 
estimated

BIC  
selected

MCMC  
estimated

MCLUST 
estimated

BIC 
selected

50 1.1 4.8 8.0 11.0 25.2 43.6 51.4 58.2 83.0 91.6 69.4 93.6 98
1.2 2.0 7.0 18.8 39.2 52.2 77.4 67.8 91.0
1.3 1.0 5.4 13.2 32.2 45.8 69.0 65.2 87.8
1.4 0.8 3.6 7.8 22.2 38.0 59.6 60.8 83.6
1.5 0.0 2.6 5.4 14.0 31.2 48.6 56.2 77.4

100 1.1 2.8 5.8 11.0 31.8 48.6 77.2 75.8 87.8 98.4 85.6 97.2 100
1.2 1.8 3.4 21.2 37.0 69.8 79.8 84.2 94.8
1.3 0.8 2.0 13.2 24.5 60.0 71.4 80.8 91.6
1.4 0.2 1.4 6.6 14.4 51.6 61.4 77.0 87.8
1.5 0 0.2 1.6 7.0 39.6 50.4 71.4 81.6

200 1.1 0.2 3.6 23.2 41.4 53.6 95.8 80.4 90.4 100 89.9 99.6 100
1.2 0 0.4 27.4 39.4 72.2 80.0 88.0 98.0
1.3 0 0 12.4 21.0 63.6 69.6 85.4 93.8
1.4 0 0 5.4 9.2 53.8 60.4 79.8 88.6
1.5 0 0 1.8 3.6 43.2 49.8 74.0 81.0

300 1.1 0.2 2.4 35.0 46.4 55.4 99.6 83.8 91.8 100 90.8 99.8 100
1.2 0 0 26.4 38.2 72.8 81.4 89.4 99.4
1.3 0 0 12.0 16.8 64.0 69.2 86.8 96.6
1.4 0 0 3.0 5.4 56.0 60.2 80.0 90.0

 1.5 0 0  0.2 0.4  46.4 52.4  71.8 79.9  

If a gene had a maximum expression of less than 6.771, 
we removed that gene from the analysis. Once the 
“noise” measurements were filtered out, we performed 
the analysis for identifying bimodal measurements 
using the MCLUST and MCMC techniques at each 
of the defined filtering percentiles and at each of the 
BI values. The results are summarized in Table 3.

The results show that using our method combined 
with MCLUST identified more genes with bimodal 
expression than using our method combined with 
MCMC at the same filtering conditions and the same 
bimodality index cutoff. This suggests again that 
MCLUST is more sensitive than MCMC. However, 
at every level of the bimodality index and at every 
filtration level based on a more stringent definition 
of noise, a larger percentage of the genes identified 
by MCMC remain above the noise, as compared to 

MCLUST. We also compared the genes with bimodal 
expression that were identified from our method 
combined with the MCMC versus the MCLUST 
algorithms. The results from that comparison show 
extensive overlap in the genes identified with bimodal 
expression by both algorithms (see Table 4). This 
suggests that using our method with either technique 
yields similar results when estimating the statistical 
parameters and computing the bimodality index for 
detecting genes with bimodal expression.

The results also show that vastly more genes (often 
by an order of magnitude) were identified as bimodal 
using BIC, but a smaller percentage of these genes 
remain above the filtration noise cutoffs. Because 
the bimodality index for these genes is small, this 
finding strongly suggests that the majority of the 
genes identified by BIC either have small separations 
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Table 2b. Results from simulated bimodal data set, with small sample size in one subgroup (Proportion in one group, 
π = 0.1, 0.2, 0.25, 0.8, 0.9).

  

Sample sizes (n)  
(data = 500 × n)

BI cutoffs Identified bimodal (%)      
 

    

δ = 2 δ = 3    δ = 4  δ = 5
    MCMC 

estimated
MCLUST 
estimated

BIC  
selected

MCMC 
estimated

MCLUST 
estimated

BIC  
selected

MCMC  
estimated

MCLUST 
estimated

BIC  
selected

MCMC  
estimated

MCLUST 
estimated

BIC 
selected

50 1.1 4.8 8.0 11.0 25.2 43.6 51.4 58.2 83.0 91.6 69.4 93.6 98
1.2 2.0 7.0 18.8 39.2 52.2 77.4 67.8 91.0
1.3 1.0 5.4 13.2 32.2 45.8 69.0 65.2 87.8
1.4 0.8 3.6 7.8 22.2 38.0 59.6 60.8 83.6
1.5 0.0 2.6 5.4 14.0 31.2 48.6 56.2 77.4

100 1.1 2.8 5.8 11.0 31.8 48.6 77.2 75.8 87.8 98.4 85.6 97.2 100
1.2 1.8 3.4 21.2 37.0 69.8 79.8 84.2 94.8
1.3 0.8 2.0 13.2 24.5 60.0 71.4 80.8 91.6
1.4 0.2 1.4 6.6 14.4 51.6 61.4 77.0 87.8
1.5 0 0.2 1.6 7.0 39.6 50.4 71.4 81.6

200 1.1 0.2 3.6 23.2 41.4 53.6 95.8 80.4 90.4 100 89.9 99.6 100
1.2 0 0.4 27.4 39.4 72.2 80.0 88.0 98.0
1.3 0 0 12.4 21.0 63.6 69.6 85.4 93.8
1.4 0 0 5.4 9.2 53.8 60.4 79.8 88.6
1.5 0 0 1.8 3.6 43.2 49.8 74.0 81.0

300 1.1 0.2 2.4 35.0 46.4 55.4 99.6 83.8 91.8 100 90.8 99.8 100
1.2 0 0 26.4 38.2 72.8 81.4 89.4 99.4
1.3 0 0 12.0 16.8 64.0 69.2 86.8 96.6
1.4 0 0 3.0 5.4 56.0 60.2 80.0 90.0

 1.5 0 0  0.2 0.4  46.4 52.4  71.8 79.9  

between the modes or have highly imbalanced 
proportions of samples in the two groups. Figure 6 
illustrates that 70% of genes called bimodal by BIC 
that have BI  1.1 also have π  10%, and 97% of 
these genes have π  20%. Thus, most of these genes 
are driven by a relatively small number of samples 
in one of the two groups.

Example of genes identified as having 
bimodal expression in the human breast 
cancer data
With known clinical information from the dataset, we 
checked three probesets related to three breast cancer 
genes, ERS1, PGR and HER2, which we expect to 
be expressed bimodally in our dataset. Previous 
investigation suggested that the three selected 
probesets correspond to the three genes strongly.15–17 

In addition to the three known genes in breast cancer, 
we also present here two bimodal genes (CKB and 
BST2) discovered by our method.

The first example is the estrogen receptor (ERS1) 
with probe set ID 205225_at. From a previous 
analysis, we know that this probe set correlates highly 
with the clinical estrogen receptor status.16 Figure 7 
illustrates the density plot for the ERS1 gene (top left). 
The estimated parameters are provided in Table 5. 
The point estimate is BI = 1.955 and the posterior 
probability of being bimodal is 99.9% (based 
on BI = 1.1). This value of BI was the 16th largest 
among the 22,283 probe sets on the array. The clinical 
information associated with this experiment indicates 
that there are 51 patient samples with negative ER 
status and 82 patient samples with positive ER status 
in this dataset. The estimated proportions are close to 
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Figure 4. Performance of the proposed method with MCLUST and MCMC techniques in a simulated bimodal dataset, with δ = 4 and π = 0.1, 0.2, 0.25, 
0.8 and 0.9. The simulated dataset contains 50 samples and 500 measurements. The set of quadratic curves computed using different BI values; BI = 1.1 
(blue), 1.2 (red), 1.3 (green), 1.4 (brown), and 1.5 (purple).
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Figure 5. Genes identified with bimodal expression from breast cancer 
dataset. The significant genes with bimodal expression are circled in 
purple. The π represent the population sizes; δ is the difference between 
the means divided by standard deviation (σ). Equal variance in both 
groups is assumed. The curve represents BI = 1.1.

the clinical ER status obtained from both the MCMC 
and MCLUST techniques. In comparison, MCLUST 
provided slightly better results.

The second example of a gene with bimodal 
expression involves the progesterone receptor (PGR), 
for which the probe set ID is 208305_at. PGR is an 
intercellular steroid receptor that specifically binds 
progesterone and is located at 11q22. The point 
estimate is BI = 1.733, and the posterior probability 
of it being bimodal is 100%. The density plot of PGR 
is illustrated in Figure 7 (middle left). The estimated 
measurement parameters are provided in Table 4. The 
clinical information indicates that the dataset contains 
information on 55 patient samples with positive PGR 
status, 75 patient samples with negative PGR status, 
and 3 patient samples with unknown PGR status. The 
estimated proportions in each group are close to those 
of the true sub-population (see Table 5).

The third example of bimodal gene expression 
involves the human epidermal growth factor 
receptor 2 (ERBB2 or HER2), for which the probe 
set ID is 216836_s_at.15,17 HER2 is important for its 
role in the pathogenesis of breast cancer and as a 
current target of treatment. The density plot of HER2 
is illustrated in Figure 7 (bottom left). The estimated 
measurement parameters are provided in Table 5. 
The point estimate is BI = 1.634 and the posterior 
probability of HER2 being bimodal is 99.9% 
(at BI = 1.1). The clinical information indicates that 

the dataset includes information on 33 patient samples 
with positive HER2 tumor status, 99 patient samples 
with negative HER2 status, and one patient 
sample with unknown HER2 status. The estimated 
proportions in each group approximate those of the 
true sub-population. The results from these three 
examples strongly indicate that the proposed method 
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works accurately with the MCMC and MCLUST 
algorithms. Importantly, all three of these bimodally 
expressed genes represent therapeutic targets for anti-
estrogen and anti-HER2 therapies that are currently 
used in the clinic. We hope that the other bimodally 
expressed genes contain similarly important but novel 
drug targets.

In addition to the three “standard” breast cancer 
therapeutic target genes, we present two bimodal genes 
identified by our method, but previously unreported. 
The two genes are (1) Creatine kinase, brain (CKB; 
with probe set ID 200884_at), and (2) Bone marrow 
stromal cell antigen 2 (BST2; with probe set ID 
201641_at). Both genes exhibit strong bimodal 
patters, with bimodality index 1.619 for CKB and 
1.602 for BST2 (Fig. 8). Their roles in breast cancer 
are poorly understood and further investigation will 
be carried out.

Identifying genes with strong  
bimodal expression
We also applied more stringent conditions to identify 
genes with bimodal expression. Using BI  1.5 as 
a cutoff and without filtering, we identified 181 
and 213 genes with bimodal expression using the 
MCMC and MCLUST algorithms, respectively. 
There were 151 genes with bimodal expression 
that were identified using both algorithms. To test 
the hypothesis that bimodally expressed genes 
could be used as outcome or disease phenotype 
markers, we performed two-way hierarchical 
cluster analysis using these 151 genes (Fig. 9). The 
results of the analysis suggest that the genes with 
the strongest bimodal expression are closely related 
to two clinical types of breast cancers: ER-positive 
cancers and ER-negative cancers. As these two 
neoplastic diseases of the breast may originate from 
different cell types (luminal and basal epithelial 
cells, respectively) this association is not surprising 
and supports the validity of our method.18 We also 
correlated the clusters with HER2 status and with 
patient response to treatment, recorded as either 
pCR or residual disease (RD) (see Fig. 10). As noted, 
the major split in the dendrogram correlates with 
hormone receptor status. The second split in the 
dendrogram correlates with HER-2 status. These 
associations have already been noted in the clinical 
literature.17 However, correlations between these Ta
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routine clinical markers and the other genes on our 
list will warrant further biological exploration.

Discussion and Conclusions
In this paper, we have introduced a new approach 
to identifying and ranking meaningful and reliable 
bimodal measurements from large-scale gene 
expression measurements. The key to this approach 
is to define a bimodality index that provides an 
objective measure of the “strength” of the bimodal 
separation. Comparing with AIC or BIC, the 
major difference is that our approach is not just for 
selecting bimodal genes, but also ranks the genes. 
The bimodality index can be evaluated empirically, 
and its interpretation is justified by standard sample 
size and power calculations. To apply this method to 
large-scale gene expression data, we need to estimate 
the model parameters µ1, µ2, σ, and π in order to 
compute the bimodality index BI. Suitable techniques 
for performing such an analysis include a mixture-
model-based clustering technique and the MCMC 
technique.

When applying a mixture-model-based clustering 
technique, the number of components (clusters) 
needs to be predefined. For bimodal measurements, 
a two-component mixture model is applied. The 
model fits the data with a mixture of two normal 
distributions, and provides point estimations of 
the measurement parameters µ1, µ2, σ, and π. The 
estimated parameters are then used to compute 
the bimodality index. The major advantage of 
the mixture-model-based clustering technique is 
computational efficiency. For large-scale gene 
expression data, that process can be completed in a 

very short time with high accuracy in the estimated 
parameters.

The advantage of the MCMC technique is that 
it provides distributions of the parameters µ1, 
µ2, π, and σ. Applying the MCMC technique with 
our method, we can use either the posterior mean 
or the full posterior distribution of the bimodality 
index. Because the process involves estimating the 
distributions, the MCMC technique takes longer and 
is more computationally intensive. This increased time 
can be especially problematic for large-scale gene 
expression data, which makes MCMC less popular 
in the analysis of high-throughput genomic data. 

Table 4. Commonly identified bimodal genes using proposed method and with MCMC and MCLUST.

Quantiles set for filtering Bimodality Index cutoffs
BI = 1.1 BI = 1.2 BI = 1.3 BI = 1.4 BI = 1.5

0.00 1113 673 397 235 151
0.25 1077 664 393 233 150
0.30 1057 653 390 233 150
0.35 1036 646 387 232 149
0.40 1012 637 384 232 149
0.45 967 617 372 228 149
0.50 919 590 361 224 147
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Figure 6. Histogram of the proportion of samples in the smaller of two 
groups for genes that were called bimodal by BIC in the breast cancer 
dataset but had BI  1.1.
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That problem, however, can be overcome by using 
a parallel processor system, which involves breaking 
the expression dataset into several small subsets and 
performing the analysis in parallel for each subset. 
In this way, the MCMC algorithm can be carried 
out in a relatively short time. Although a number of 
MCMC algorithms are available, we only applied one 
MCMC technique in this investigation. We chose the 
hybrid MCMC technique because it is not difficult 
to implement and was readily available. (We did not 
intend to evaluate which of the MCMC algorithms 
performed better).

One potential objection to our method is that it 
assumes both components are normally distributed 
with the same variance. Both model-based clustering 

via the EM algorithm and MCMC techniques can be 
extended to use mixtures of t-distributions19 or mixtures 
of other distributions. As long as the distributions 
being used have a “central parameter” that plays 
the role of the mean for the normal distribution, the 
definition of the bimodality index proposed here 
carries over directly to these more general mixture 
distributions. One can also accommodate different 
standard deviations by defining the standardized 
distance between means to be δ µ σ µ σ= -| / / | .1 1 2 2  
The performances of these kinds of extensions to the 
method deserve further study.

We evaluated the sensitivity and specificity of 
the proposed method in identifying meaningful 
bimodal measurements through simulation studies. 
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Figure 7. Left panel: histograms of three identified bimodally expressed genes from breast cancer dataset; estrogen receptor (top), progesterone receptor 
(middle), and HER-2 (bottom). Right panel: posterior distributions of bimodality index on the three genes, computed using MCMC. The vertical blue lines 
indicate the point estimated bimodality index value from MCLUST. The red lines are the density estimations.
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We compared the results of computing the bimodality 
index by two different algorithms, MCLUST and 
MCMC. We also compared the results obtained from 
our method with those obtained from the commonly 
used BIC. Due to the similarity in application 
between AIC and BIC, we did not include AIC in the 
comparison. In the null distribution, the results were 
quite similar; all methods had few false positives. 
In addition to the null distribution, we evaluated 
bimodal patterns with various parameter settings. 
Those simulations indicate that, although BIC is more 
sensitive for detecting bimodal distributions, using 
the bimodality index provides fine-grained control 
over the discoveries, allowing the researcher to rank 
the genes by their degree of bimodality and thus 
focus attention on the genes whose bimodal patterns 
are most believable and most likely to be clinically 
useful.

We further applied our proposed method to a 
dataset from a breast cancer gene expression profiling 
study. Unlike simulated data, actual gene expression 
data is far more complex and contains a high level 
of noise; therefore we expected a much higher rate 

of false discovery in that analysis, particularly when 
the size of one of the groups was small. When we 
applied the mixture-model-based clustering technique 
with BIC, over 35% of the genes were identified as 
bimodal. We tried to remove some noise prior to the 
analysis by setting various filtering conditions. After 
filtering, we still identified a substantial number 
of bimodal measurements when using BIC. We 
then applied our method to the filtered datasets. In 
contrast, our method produced much more reasonable 
results, which suggests that it is a useful approach 
for the analysis of real datasets. Moreover, the 
filtering process helped to remove some unreliable 
measurements for small values of BI (BI  1.3). 
For a strong bimodal pattern (BI  1.4), the results 
indicate that the bimodal measurements identified in 
this process were almost unchanged, regardless of 
whether or not the filtering conditions were applied. 
Further, the genes identified as most strongly bimodal 
appeared to be related to the hormone receptor (ERS1 
and PGR) status and HER2 status of the breast cancer 
patients. Since these characteristics are known to 
be strong determinants of both gene expression and 

Table 5. Estimated parameters for ERS, HER2 and PGR genes.

Genes Estimated from MCMC Estimated from MCLUST
µ1 µ2 σ δ π1 and π2 µ1 µ2 σ δ π1 and π2

ERS1 6.90 10.79 1.00 3.90 40.9% and 60.1% 6.88 10.79 0.97 4.02 38.4% and 61.6%
HER2 9.36 12.68 0.86 3.89 19.0% and 81.0% 9.34 12.63 0.83 3.97 21.6% and 78.4%
PGR 4.62 6.98 0.62 3.84 26.8% and 73.2% 4.62 6.98 0.60 3.95 26.0% and 74.0%
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Figure 8. Histograms of two bimodally expressed genes in breast cancer: Creatine kinase, brain (left), and Bone marrow stromal cell antigen 2 (right). 
The roles of these two genes in breast cancer chemotherapeutic treatment were not reported previously.
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response to specific treatments in breast cancer, this 
finding provides evidence that using our method 
has the potential to focus on biologically important 
subsets of gene expression profiling data.

In addition to finding the expected genes, we 
described two additional genes (CKB and BST2) that 
exhibit strong bimodal expression patterns within 
breast cancer samples. Creatinine kinase, brain 
(CKB) is a cytoplasmic enzyme involved in energy 

homeostasis. It acts as a homodimer (CK-BB) in brain 
as well as in other tissues, and as a heterodimer with 
a similar muscle isozyme (CKM) in heart. Rubrey et al 
reported that 34% of breast cancer patients showed 
elevated serum levels of the CK-BB homodimer, and 
that an increased incidence of elevated serum CK-BB 
levels was associated with advanced stage disease.20 
Using a more sensitive assay, Zarghami et al measured 
CK-BB levels in breast tumor cytosols and found that 
CK-BB was associated with more aggressive tumors 
but concluded that its value as a prognostic indicator 
was limited.21

Bone marrow stromal cell antigen 2 (BST2 or 
CD317) was originally recognized as a surface 
antigen on bone marrow stromal cell lines; however, 
it is predominantly expressed in liver, lung, heart, 
and placenta, and not typically expressed in normal 
breast. Becker et al using Affymetrix HuGeneFL 
and Hu95Av2 microarray experiments, identified 
BST2 as significantly up-regulated in a tamoxifen-
resistant cell line derived from the mammary tumor 
cell line MaCa 3366.22 Recently, Cai et al reported 
that BST2 is up-regulated in breast cancer with 
bone metastasis, and concluded that BST2 may be 
a potential biomarker in breast cancer with bone 
metastasis.23

Our method performed reasonably well in 
revealing meaningful bimodal patterns of gene 
expression in comparison with the commonly-used 
BIC approach. The results from the analyses suggest 
that our proposed method is a sensible approach 
for the analysis of large-scale gene expression data, 
and can be extended for broad application.
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Figure 9. Heat map image produced using 151 genes with strong bimodal 
expression as commonly identified by MCMC and MCLUST from 133-array 
breast cancer dataset. Two distinct sample clusters can be seen. One 
cluster contains mainly ER positive tumor samples (blue color bar) and the 
other cluster contains mostly ER negative tumor samples (red color bar).
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Figure 10. Hierarchical cluster analysis using 151 genes with “strong” 
bimodal expression as commonly identified by MCMC and MCLUST 
algorithms. The color codes correlate the ER, HER-2, PR and pCR, and 
RD status of the tumor.
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