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Abstract: Lung cancer stem cells (CSCs) play a pivotal role in tumor development, drug resistance,
metastasis and recurrence of lung cancer. Thus, it is of great importance to study the mechanism
by which CSCs are regulated. In this study, we demonstrate that the deubiquitinase USP4 is
critically important in promoting lung cancer stemness. Silencing of USP4 leads to reduction of Oct4
and Sox2 expression, decreased CD133+ cell population and inhibition of tumorsphere formation.
Conversely, ectopic expression of USP4 significantly enhances lung cancer cell stemness, which is
effectively rescued by simultaneous silencing of Twist1. Mechanistically, we identified USP4 as a novel
deubiquitinase of Twist1. USP4 binds to, deubiquitinates and stabilizes Twist1 protein. Furthermore,
we show that USP4 expression is elevated in human lung cancer specimens and is positively correlated
with Twist1 expression. High expression of USP4/Twist1 is associated with poor clinical outcomes
of lung cancer patients. Together, this study highlights an important role for USP4 in lung cancer
stemness and suggests USP4 as a potential target for lung cancer diagnosis and treatment.

Keywords: USP4; Twist1; lung cancer; CSCs; stemness

1. Introduction

Lung cancer is the most common cancer worldwide and a leading cause of cancer-related death [1].
Histopathologically, lung cancer is categorized into small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC), of which NSCLC accounts for 85% of all lung cancer cases. In recent
years, development of NSCLC therapy, including chemotherapy, radiotherapy, targeted therapy and
immunotherapy, greatly improves both survival and prognosis for patients [2]. However, a major
challenge in NSCLC treatment is that most of NSCLC patients do not respond well to immunotherapy
and that tumor recurrence and drug resistance after treatment remain [3]. Thus, it is of great
importance to illustrate new mechanisms and new drug targets involved in NSCLC tumorigenesis and
drug resistance.

It has been well documented that cancer stem cells (CSCs) play a critical role in cancer development,
tumorigenesis, drug resistance, metastasis and recurrence [4–7]. CSCs are a small sub-population of
tumor cells with the capacity for self-renewal, differentiation, tumor initiation and innate resistance to
chemotherapy and radiation. These characters associated with CSCs are collectively called stemness.
In NSCLC, CSCs can be identified and characterized by expression of CSCs markers, including CD133,
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CD44 and aldehyde dehydrogenase (ALDH) [8–11]. Several embryonic transcription factors, including
Oct4, Sox2, Nanog, MYC and KLF4, are essential in the regulation of stemness of CSCs [8,12–15].
In addition, CSCs characteristically exhibit activation of several highly conserved pathways involved
in cell renewal and tissue homeostasis, including Hedgehog, Notch, WNT/β-Catenin and TNF-α,
to promote cell survival, self-renewal, and metastasis [16–19]. Targeting proteins critical for CSCs
stemness has been a potential strategy for cancer treatment [20,21].

Twist1, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in promoting
EMT, tumor metastasis, cancer stemness and drug resistance [5,6]. Twist1 can form homo-dimers
or hetero-dimers with other bHLH proteins, which directly regulate the transcription of EMT or
stemness-related genes [22,23]. Twist1 is a key transcription factor to upregulate expression of Oct4
and Sox2 [24,25]. Expression of Twist1 is elevated in various human cancers, including cancers of
lung, breast, prostate and liver [26–33]. It has been reported that Twist1 is critical for oncogene-driven
cell proliferation since silencing of Twist1 induces senescence in lung adenocarcinoma cells driven by
various oncogenic drivers [26]. Activation of TGF-β signaling upregulates Twist1 expression, which in
turn promotes lung cancer stemness [34]. Several E3 ubiquitin ligases, including FBXL14, β-TRCP,
FBXO45 and Pirh2, have been shown to bind to and degrade Twist1 protein [35–37]. In addition,
HR23A protein, a poly-ubiquitin chain carrier, targets and degrades Twist1 to inhibit lung cancer
stemness [38].

Deubiquitinating enzymes (DUBs) are a group of proteases that catalyze the cleavage of
protein–ubiquitin bonds. USPs (ubiquitin-specific proteases), the largest subfamily of DUB, play critical
roles in development of various malignant tumors [39,40]. USP4 is the first deubiquitinating enzyme
identified in mammalian cells [41] and is frequently overexpressed in various cancers, including lung
adenocarcinoma and glioblastoma [42,43]. A body of evidence indicates that USP4 functions as a potent
oncogene, through regulating p53 signaling, Wnt/β-catenin and TGF-β/SMAD signaling pathways, to
promote tumorigenesis and cancer development [44–47]. However, whether USP4 directly regulates
lung cancer stemness remains unclear.

In this study, we demonstrate that USP4 is critically important in maintaining lung cancer cell
stemness. We show that USP4 is a novel deubiquitinating enzyme of Twist1 protein. These results
highlight USP4 as a critical factor in promoting lung cancer stemness and as a potentially useful lung
cancer prognosis marker.

2. Results

2.1. USP4 Promotes Lung Cancer Cell Stemness

Cancer stem cells (CSCs) play a pivotal role in lung cancer development, metastasis and
recurrence [4–7]. Thus, it is of great importance to understand the molecular bases by which
CSCs are regulated. Given the critical roles of ubiquitin-specific proteases (USPs) in regulation of
protein stability and cancer development, we aimed to identify novel USP(s) in the regulation of
CSCs. Therefore, we first analyzed the correlation of expression between USPs and stemness transcript
factors exemplified by Oct4/Sox2, utilizing clinical lung cancer samples from Oncomine database [48].
As shown in Figure 1A and Figure S1A–I, expression of USP1 was significantly correlated with
expression of Oct4 and Sox2 in human lung cancers, in keeping with previous reports [49,50]. Notably,
expression of USP4 was also significantly correlated with expression of Oct4 (R = 0.295; p < 0.001;
n = 203) and Sox2 (R = 0.448; p < 0.001; n = 203), suggesting that USP4 is a potential positive regulator
of lung cancer stemness.

Next, we aimed to confirm the relationship between USP4 and Oct4/Sox2. We used shRNAs specific
for USP4 to facilitate the knockdown of USP4 in human non-small cell lung cancer (NSCLC) H1975 and
A549 cells. As shown in Figure 1B and Figure S2A, silencing of USP4 significantly reduced Oct4 and
Sox2 protein expression, suggesting that silencing of USP4 can inhibit lung cancer cell stemness. Indeed,
silencing of USP4 significantly led to reduced population of CD133+ cells, a marker for CSCs in NSCLC,
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concomitant with reduced tumorsphere formation (Figure 1C–E and Figure S3A–C). Conversely, ectopic
expression of wild-type USP4, but not USP4C311A mutant defective in deubiquitinating enzymatic
activity, significantly upregulated Oct4 and Sox2 protein expression, concomitant with both increased
population of CD133+ cells and increased capacity of tumorsphere formation (Figure 1F–I, Figure S2B
and Figure S4A–C). Together, these data indicate that USP4 is a critical factor to promote lung cancer
stemness, which is dependent on its deubiquitinating enzymatic activity.

These results prompted us to verify expression levels of USP4 in lung cancer. Clinical analyses
of Oncomine “Gaber lung” dataset showed that USP4 mRNA levels were elevated in lung cancer
specimens compared to normal tissues (Figure 1J), and analyses of Oncomine “Bild lung” dataset
showed that stage II-IV lung cancer specimens had elevated USP4 mRNA levels compared to stage
I lung cancer specimens (Figure 1K). Furthermore, higher levels of USP4 mRNA were significantly
associated (p = 0.0294) with poor overall three-year survival of lung cancer patients (Figure 1L).
Together, these findings indicate that USP4 is critically important in promoting lung cancer stemness
and is associated with lung cancer clinical prognosis.
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Figure 1. USP4 promotes lung cancer cell stemness and its high expression is correlated with human
lung cancer patients. (A) The Oncomine dataset “Bhattacharjee Lung” was used to analyze Pearson
correlation of USP4 and Oct4/Sox2 expression. (B–E) H1975 cells stably expressing shRNA against
USP4 (shUSP4-#1 or shUSP4-#2) were subjected to (B) Western blot analyses, (C–D) FACS analyses for
CD133-stained cells or (E) tumorsphere formation assay. Respective images and quantitation were
shown. Data from three independent experiments in triplicates were presented as means ± SD. *** p
< 0.001. Scale bar = 100 µm. (F–I) H1975 cells stably expressing Flag-USP4 or Flag-USP4C311A were
subjected to (F) Western blot analyses, (G) FACS analyses for CD133-stained cells or (H–I) tumorsphere
formation assay. Respective images and quantitation were shown. Data from three independent
experiments in duplicates were presented as means ± SD. ** p < 0.01, *** p < 0.001. Scale bar = 100 µm.
(J) The Oncomine dataset “Gaber lung” was used to analyze USP4 mRNA levels in normal human lung
tissues and lung cancers. (K) The Oncomine dataset “Bild lung” was used to analyze USP4 mRNA
levels in stage I or stage II-IV human lung cancers. (L) The Oncomine dataset “Raponi lung” was used
to analyze USP4 mRNA levels in 3 year-alive or 3 year-dead human lung cancer patients.
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2.2. USP4 Promotes Lung Cancer Stemness Via Upregulation of Twist1 Protein Expression

We then investigated the molecular bases by which USP4 promotes lung cancer stemness. It has
been reported that EMT-associated transcriptional factors, including Twist1, Snail, Slug and ZEB1, play
a critical role in lung cancer stemness [34,38]. We therefore performed Gene Set Enrichment Analyses
(GSEA) on gene signatures of Notch and TNF signaling, both of which are important in maintaining
lung cancer stemness [16,19]. As shown in Figure 2A, high expression of both USP4 and Twist1 was
significantly associated with gene signatures of Notch and TNF signaling, suggesting that Twist1 may
play a role in USP4-mediated lung cancer stemness. We then examined the effect of USP4 on Twist1
expression. As shown in Figure 2B and Figure S5A, ectopic expression of USP4, but not USP4C311A, led
to a significant increase in Twist1 protein expression in H1975 cells. Conversely, silencing of USP4
dramatically reduced Twist1 protein expression in H1975 and A549 cells (Figure 2C and Figure S3A).
Consistently, ectopic expression of USP4 also increased Twist1 protein expression in A549 cells
(Figure S4A).

To investigate the causative role of Twist1 in USP4-mediated lung cancer stemness, we
performed the rescuing experiments. As shown in Figure 2D, silencing of Twist1 completely rescued
USP4-induced upregulation of Oct4 and Sox2 protein expression. Consistently, silencing of Twist1
significantly reversed USP4-induced increase of CD133+ cell population and tumorsphere formation
(Figure 2E–G and Figure S5B). Together, these results demonstrate that Twist1 is a critical downstream
effector in USP4-induced lung cancer stemness.
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Figure 2. USP4 promotes lung cancer stemness via upregulation of Twist1 protein expression. (A) Gene
Set Enrichment Analyses (GSEA) analyzed the effects of USP4 or transcriptional factors associated with
EMT (Twist1, Slug, Snail and ZEB1) on Notch signaling and TNF signaling. GSE19804 dataset was used
to these analyses. NES: normalized enrichment score. (B) H1975 cells stably expressing Flag-USP4 or
Flag-USP4C311A were subjected to Western blot analyses. (C) H1975 cells stably expressing shRNAs
against USP4 (shUSP4-#1 or shUSP4-#2) were subjected to Western blot analyses. (D–G) H1975 cells
stably expressing Flag-USP4 and either shTwist1 or shGFP were subjected to (D) Western blot analyses,
(E–F) FACS analyses for CD133-stained cells or (G) tumorsphere formation assay. Respective images
and quantitation were shown. Data from three independent experiments in duplicates were presented
as means ± SD. ** p < 0.01, *** p < 0.001. Scale bar = 100 µm.
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2.3. USP4 Is a Deubiquitinase of Twist1 Protein

We next investigated the mechanism by which USP4 upregulates Twist1 expression. As shown in
Figure 3A, ectopic expression of USP4 had little effects on the steady-state Twist1 mRNA levels. Instead,
silencing of USP4 significantly shortened the half-life of Twist1 protein (Figure 3B). In addition, treatment
with MG132, a well-known proteasome inhibitor, markedly rescued silencing of USP4-induced
downregulation of Twist1 (Figure 3C). These results indicate that USP4 stabilizes Twist1 protein via
proteasome pathway.

Next, we investigated whether USP4 can function as deubiquitinating enzyme for Twist1.
To this end, we first asked whether USP4 can form a stable protein complex with Twist1.
Co-Immunoprecipitation assay showed that USP4 interacted with Twist1 (Figure 3D). Moreover,
ectopic expression of USP4, but not USP4C311A, dramatically removed polyubiquitin of endogenous
Twist1 in vivo (Figure 3E). These results indicate that USP4 is a novel deubiquitinating enzyme to
protect Twist1 from proteasome-mediated degradation.
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Figure 3. USP4 is a deubiquitinase of Twist1 protein. (A) H1975 cells stably expressing USP4 or a
vector control were subjected to Q-PCR analyses. ns stands for no significance. (B) H1975 cells stably
expressing shUSP4 or shGFP were treated with 50 µg/mL cycloheximide (CHX) for an indicated time
interval, and then subjected to Western blot analyses. Twist1 protein levels were quantified and the plot
was presented. (C) H1975 cells stably expressing shRNAs against USP4 (shUSP4) were treated with or
without 20 µM MG132 for 12 h prior to Western blot analyses. (D) HEK293T cells were transfected with
Flag-USP4 expressing plasmids for 36 h. Cells were treated with 20 µM MG132 for 6 h prior to Co-IP
experiments. (E) HEK293T cells were co-transfected with Twist1 and His-ubiquitin in the presence
of either Flag-USP4 or Flag-USP4C311A expressing plasmids for 36 h (left panel). HEK293T cells were
co-transfected with His-ubiquitin and either Flag-USP4 or Flag-USP4C311A expressing plasmids for 36
h (right panel). Cells were then treated with 20 µM MG132 for 6 h prior to immunoprecipitation (IP)
and Western blot analyses.



Cancers 2020, 12, 1582 6 of 13

2.4. Clinical Validation of Correlation between USP4 and Twist1 Expression and Its Association with Overall
Survival in Lung Cancer

Our data indicate that USP4 stabilizes Twist1 to promote lung cancer cell stemness, which
prompted us to verify the clinical relevance of USP4–Twist1 in human lung cancer. As shown in
Figure 4A,B, compared to adjacent tissues, expression of both USP4 and Twist1 proteins were high
in biopsy specimens of lung adenocarcinoma patients. We further examined the clinical correlation
between USP4 and Twist1 using tissue microarrays of lung adenocarcinoma. A positive correlation was
observed between USP4 and Twist1 expression (R = 0.6039, p = 0.0005) (Figure 4C). Clinical analysis by
Kaplan–Meier dataset showed that lung cancer patients with high USP4 or Twist1 levels exhibited
poor overall survival (OS) (Figure 4D). Together, these results indicate that the USP4–Twist1 axis plays
a critical role in lung cancer stemness and clinical prognoses (Figure 4E).
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Figure 4. High expression of USP4 is positively correlated with Twist1 and associated with poor
overall survival in human lung cancers. (A,B) Consecutive tissue slides derived from human lung
adnocarcinoma (treatment-naïve) and adjacent normal tissues were subjected to immunohistochemistry
(IHC) for expression of USP4 and Twist1 expression. Representative images of IHC staining were
shown (A). Stainings were quantified by average optical density (AOD) (B). *** p < 0.001. Scale bar =

50 µm. (C) Consecutive tissue microarray slides derived from human lung adenocarcinoma (LUAD)
were subjected to IHC analyses for Pearson correlation of USP4 and Twist1 expression. Representative
images of IHC staining were shown. Stainings were quantified by average optical density (AOD). Scale
bar = 50 µm. (D) Kaplan–Meier plots of overall survival of human lung cancer patients were stratified
by the USP4 or Twist1 mRNA expression levels in the patient tumor samples. (E) A working model
depicting that USP4 deubiquitinates and stabilizes Twist1 protein to promote lung cancer stemness.
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3. Discussion

Lung cancer is a leading cause of cancer incidence and mortality worldwide [1]. Accumulating
evidence indicates that CSCs are responsible for resistance to conventional therapies due to the stemness
properties [51]. Several DUBs have been shown to be important in the regulation of lung cancer
stemness. For instance, USP21 deubiquitinates and stabilizes Nanog protein stability [52]. USP17 and
OTUD3 promote lung cancer stemness through mediating TRAF2/TRAF3 complex and stabilizing
GRP78, respectively [53,54]. Herein, we show that USP4 is critically important in promoting lung
cancer stemness via stabilizing Twist1 expression. This notion is supported by the evidence that ectopic
expression of USP4, but not USP4C311A, significantly upregulates Oct4 and Sox2 expression, increases
the population of CD133+ cells and promotes mammosphere formation, all of which can be rescued by
simultaneous silencing of Twist1.

EMT transcriptional factors, Snail/Slug, Twist1 and ZEB1, are pivotal in regulation of tumor
metastasis and stemness [38]. It has been reported that expression of these factors is tightly controlled
by DUBs. Snail protein can be deubiquitinated and stabilized by USP26, USP11, USP10, USP37 or
OTUB1 [55–59]. Slug can be stabilized by USP10 and DUB3 [55,60]. ZEB1 is stabilized by USP51 [61].
Twist1 protein, on the other hand, can be stabilized by deubquitinase DUB3 in response to IL-6 [35–37,60].
In this study, we uncover that USP4 is a novel deubquitinase of Twist1 and that silencing of Twist
dramatically inhibits USP4-induced stemness of lung cancer cells, suggesting that the USP4–Twist1
axis plays a critical role in lung cancer stemness.

The biological function of USP4 in cancer development appears to be complex. It has been
reported that USP4 can deubiquitinate and stabilize TRAF2/TRAF6 to inhibit TNFα-induced cancer
cell migration [62]. In addition, USP4 expression could be upregulated by CircBMPR2-miR-553 to
suppress breast cancer resistance to tamoxifen [63]. These results suggest a role for USP4 in growth
suppression. However, USP4 is highly expressed in various cancers [42]. A wealth of evidence
strongly suggests that USP4 functions as a tumor-promoting protein, as exemplified by the ability
of USP4 to promote tumorigenesis via deubiquitinating and stabilizing ARF-BP1, β-catenin and
TGF-βRI [47,64–66]. In addition, USP4 can also promote cell cycle procession and tumorigenesis by
deubiquitinating SART3 and Ro52 [45,46]. Our results presented in this study provide another series
of strong evidence supporting USP4 as an oncoprotein.

Importantly, our results showed clear clinical relevance, supported by the observations that
expression of USP4 and Twist1 is positively correlated in lung cancers and that high expression of
USP4/Twist1 is associated with poor overall survival in lung adenocarcinoma patients. Together, our
findings demonstrate that USP4 deubiquitinates and stabilizes Twist1 protein to promote lung cancer
stemness. Thus, targeting the USP4–Twist1 axis may represent a novel therapeutic approach for lung
cancer treatment.

4. Materials and Methods

4.1. Cell Culture

Human non-small cell lung cancer H1975 cells were cultured in RPMI-1640 medium (Hyclone,
Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, UT, USA),
100 units/mL penicillin (GIBCO, Rockville, MD, USA) and 100 µg/mL streptomycin (GIBCO, Rockville,
MD, USA). Human non-small cell lung cancer A549 cells and human embryonic kidney HEK293T
cells were cultured in DMEM medium supplemented with 10% fetal bovine serum (FBS; Hyclone,
Logan, UT, USA), 100 units/mL penicillin (GIBCO, Rockville, MD, USA) and 100 µg/mL streptomycin
(GIBCO, Rockville, MD, USA). Cells were maintained in a humidified 37 ◦C incubator under a 5%
CO2 atmosphere.
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4.2. Plasmids and Lentiviral Infection

Twist1 recombinant expressing vector (EX-U1219-Lv105) was purchased from GENECOPIEA.
A pLVX-puro vector was used to generate recombinant lentiviruses expressing human USP4.
The USP4C311A mutants were generated by KOD-Plus-Mutagenesis kit (SMK-101, Toyobo Osaka).
Short hairpin RNA constructs targeting human USP4 or Twist1 were generated using pLKO.1-puro
vector as described [67]. All plasmid constructs used in this study were confirmed by DNA sequencing.
The amplification primer and specific shRNA sequences used in this study are listed below:

For Flag-USP4, Forward: 5′ GAGGATCTATTTCCGGTGAAGAGGAG
ATCTGCCGCCGCGA 3′; Reverse: 5′ TCTAGAACTAGTCTCGAGGTTA
AACCTTATCGTCGTCAT 3′. For Flag-USP4C311A, Forward: 5′ ACCGCCT
TCATGAACTCCGCTTTGC 3′; Reverse: 5′ GTTTCCCAGGTTTCCAAGTC
CACAG 3′

For anti-USP4, # 1: CCCAACTGTAAGAAGCATCAA; # 2 GCCCAGAAT
GTGCTAAGGTTT. For anti-Twist1: GCTGAGCAAGATTCAGACC

4.3. Plasmid Transfection, Lentiviral Infection and RNA Interference

Cells at 70–80% confluence were transfected with expressing plasmids by Lipofectamine 2000
transfection reagent (Invitrogen, Carlsbad, CA, USA). Recombinant lentiviruses were amplified by
co-transfecting psPAX2 and pMD2.G packaging plasmids and lentiviral expressing plasmids using
Lipofectamine 2000 in HEK293T. Viruses were collected at 60 h after transfection. Cells at 50%
confluence were infected with recombinant lentiviruses in the presence of 10 µg/mL polybrene,
followed by 12 h incubation.

4.4. Western Blot, Immunoprecipitation and Immunohistochemistry (IHC) Analyses

For Western blot analysis, cells were collected, washed with cold PBS, and resuspended in
EBC250 lysis buffer (250 mM NaCl, 50 mM Tris pH 8.0, 0.5% Nonidet P-40, 50 mM NaF, 1 mM
phenylmethylsulfonyl fluoride, 2 µg/mL aprotinin, and 2 µg/mL leupeptin). Equal amounts of
total protein were loaded, separated by SDS-PAGE, transferred to PVDF membranes (Millipore,
Darmstadt, Germany), and hybridized to an appropriate primary antibody and HRP-conjugated
secondary antibody for subsequent detection by enhanced chemiluminescence. The immunoblots
were quantitated by Image Lab 5.0 and normalized to the loading control GAPDH.

Immunoprecipitation and immunohistochemistry analyses were performed according to
procedures described previously [68,69]. Human tumor tissue microarray slides (Cat# HLugA030PG02)
were purchased from Outdo Biotech Co., (Shanghai, China). Slides were scanned by NanoZoomer
(Hamamatsu, Japan) and images were quantified by integrated optical density (IOD) using Image-Pro
Plus 6.0 software from Media Cybernetics Inc. (Rockville, MD, USA). Average optical density (AOD)
was calculated using the formula: AOD = IOD/Area. Antibodies for USP4 (612819, 1:500 for WB,
1:100 for IHC) and Oct4 (618077, 1:1000 for WB) were purchased from zenbioscience (Chengdu,
China). Antibody for Sox2 (AB5603, 1:500 for WB) was purchased from Merck (Darmstadt, Germany).
Antibodies for GAPDH (AB0037, 1:1000 for WB) and Twist1 (CY2578, 1:1000 for WB, 1:200 for IHC)
were purchased from Abways (Shanghai, China). Antibody for Flag (14793, 1:1000 for WB) was
purchased from Cell Signaling Technology (Danvers, MA, USA).

4.5. Tumorspheres Formation Assay

20,000 cells were seeded on the 6-ultral-low-adherient plates and grown in DMEM/F12
medium containing 5 mg/mL insulin (Sigma, Taufkirchen, Germany), 2% B27 (Invitrogen,
Carlsbad, CA, USA), 20 ng/mL epidermal growth factor (R&D systems), 100 units/mL penicillin
(GIBCO, Rockville, MD, USA) and 100 µg/mL streptomycin (GIBCO, Rockville, MD, USA) for 7 days.



Cancers 2020, 12, 1582 9 of 13

Tumorspheres were defined to the diameter of spheres that were greater than 50 µm. The number
of tumorspheres of each well were counted, normalized and presented to reflect tumorsphere
formation ability.

4.6. Quantitative PCR

Total RNA was extracted from cells using RNeasy plus Mini Kit (cat# 74134, QIAGEN, Germantown,
MD, USA) and reverse-transcribed according to the manufacturer’s instructions. Q-PCR was
performed for Twist1 and GAPDH. The Q-PCR reactions were carried out in CFX-960 Real time
PCR System (Bio-Rad, CA, USA) and using Bio-Rad SoFast Eva-Green Supermix (Bio-Rad, Hercules,
CA, USA) according to the manufacturer’s instructions. Relative quantitation values were calculated
using the ∆∆Ct method. Q-PCR primer for Twist1, Forward: GTCCGCAGTCTTACGAGGAG;
Reverse: GCTTGAGGGTC

TGAATCTTGCT. For GAPDH, Forward: TGGACTCCACGACGTACTCA; Reverse:
AATCCCATCACCATCTTCCA.

4.7. Flow Cytometry Assay

To analyze CD133+ cell population, cells were harvested and washed twice with PBS, then were
re-suspended in staining buffer (Bio-Rad), and cell numbers were counted. Cells were incubated with
Phycoerythrin (PE) conjugated anti-CD133 antibody (12-1338-42, Invitrogen, Carlsbad, CA, USA) or
PE conjugated IgG1 kappa isotype control antibody (12-4714-81, Invitrogen, Carlsbad, CA, USA) for
30 min at 4 ◦C. Cells were then washed twice with staining buffer and re-suspended by staining buffer,
and analyzed by FACS machine (Calibur, Bio-Rad, Hercules, CA, USA). The data of flow cytometry
assay were analyzed by FlowjoX software.

4.8. Clinical Relevance Analysis

Pearson correlation of USPs and Oct4/Sox2 expression was analyzed using Oncomine dataset
“Bhattacharjee Lung”. The mRNA levels of USP4 in normal human lung tissues and lung cancers were
analyzed using Oncomine dataset “Gaber lung”. The mRNA levels of USP4 in stage I or stage II–IV
human lung cancers were analyzed using Oncomine dataset “Bild lung”. The mRNA levels of USP4
in 3 year-alive or 3 year-dead human lung cancer patients were analyzed using Oncomine dataset
“Raponi lung”. Kaplan–Meier plots of overall survival of human lung cancer patients stratified by the
USP4 or Twist1 mRNA expression levels were analyzed using the Kaplan–Meier survival datasets.
The high and low groups were defined by the best cutoff.

Gene signature enrichment analyses (GSEA) were performed by GSEA software (v 4.0.3,
UC San Diego and Broad Institute Inc., San Diego, CA, USA) based on GSE19804 dataset available on
GEO database. The mean value of each gene expression involved in the assay was used to divided into
“high” and “low” groups. Notch and TNF signaling related genes were described in Figure S6.

4.9. Statistical Analysis

GraphPad Prism 6.0 (GraphPad Software Incorporation, San Diego, CA, USA) was used for data
recording, collection, processing, and calculation. All cell-based experiments were performed at least
three times in duplicates. Data were presented as means ± SD. Quantitative data were analyzed
statistically using Student’s t-test to assess significance.

5. Conclusions

Our results demonstrate that deubiquitinase USP4 promotes lung cancer cell stemness via
upregulation of Twist1, Oct4 and Sox2 expression. Mechanistically, we have identified USP4 as a novel
deubiquitinase of Twist1. In addition, USP4 expression is elevated in human lung cancer specimens
and is positively correlated with Twist1 expression. High expression of USP4/Twist1 is associated with
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poor clinical outcomes of lung cancer patients. Thus, targeting USP4 may represent a novel therapeutic
approach for lung cancer treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1582/s1,
Figure S1: Correlation of USPs and Oct4/Sox2 expression in lung adenocarcinoma; Figure S2: USP4 significantly
regulates proteins expression of Oct4 and Sox2; Figure S3: Silencing of USP4 downregulates Twist1, Oct4 and Sox2
expression and inhibits stemness of lung cancer A549 cells; Figure S4: Ectopic expression of USP4 upregulates
Twist1, Oct4 and Sox2 expression and promotes stemness of lung cancer A549 cells; Figure S5: Ectopic expression
of USP4 increases Oct4 and Sox2 protein levels via upregulation of Twist1 protein expression; Figure S6: Genes
related to TNF and Notch signaling used for Gene signature enrichment analysis.
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