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Abstract: The root tuber and rhizome of Curcuma longa L., abbreviated, respectively, as RCL and
RHCL, are used as different medicines in China. In this work, volatile oils were extracted from RCL
and RHCL. Then, gas chromatography–mass spectrometry (GC–MS) was used for RCL and RHCL
volatile oils analysis, and 45 compounds were identified. The dominant constituents both in volatile
oils of RCL and RHCL were turmerone, (−)-zingiberene, and β-turmerone, which covered more
than 60% of the total area. The chromatographic fingerprint similarities between RCL and RHCL
were not less than 0.943, indicating that their main chemical compositions were similar. However,
there were also some compounds that were varied in RCL and RHCL. Based on the peak area ratio
of 45 compounds, the RCL and RHCL samples were separated into principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA). Then, 20 compounds with a variable
importance for the projection (VIP) value of more than 1 were the high potential contributors for RCL
and RHCL differences. Furthermore, ferric ion-reducing antioxidant power (FRAP) assay results
demonstrated that the volatile oils of RCL and RHCL had antioxidant activities. This study provided
the material basis for the research of volatile components in RCL and RHCL and contributed to their
further pharmacological research and quality control.

Keywords: Curcuma longa L.; volatile oil; bisabolane-type sesquiterpene; fingerprint; antioxidant

1. Introduction

Traditional Chinese medicines (TCMs) are receiving worldwide attention due to their
low side effects and good therapeutic efficacies. Many TCMs are from different parts of
the same origin plants, such as Nelumbinis Semen and Nelumbinis Receptaculum [1] and
Isatidis Radix and Isatidis Folium [2]. Curcuma longa L., an herbaceous plant from the Zin-
giberaceae family, is popular worldwide in the food, cosmetics, textile, and pharmaceutical
industries. Multiple parts of Curcuma longa L. are used as medicines. As recorded in Chinese
Pharmacopoeia (2020 edition), the root tuber of Curcuma longa L. (RCL) can promote blood cir-
culation and relieve pain, promote qi and relieve depression, clear heart and cool blood, and
treat hepatitis with jaundice [3]. Modern pharmacological research has shown that it has a
variety of biological activities including improving the blood stasis model [4,5], alleviating
pain [6], anti-tumor activities [7], et al. The rhizome of Curcuma longa L. (RHCL) is known
as Jianghuang in Chinese. Its actions include promoting qi, breaking blood, unblocking
the meridian, and relieving pain [3]. It has been used to treat various diseases, such as
Alzheimer’s disease (AD) [8–10], diabetes [11–13], cancer [14–16], liver disease [17–19],
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cardiovascular disease [20–24], et al. Apparently, the efficacies of RCL and RHCL are some-
what different, which may be caused by their chemical differences. Chemical components
in Curcuma longa L. contain curcuminoids, volatile oils, alkaloids, microelements, and other
components. In the past, most research mainly focused on curcuminoids. However, many
studies had shown that the volatile oils, another main component of Curcuma longa L., had
important activities including anti-inflammatory [25], anti-tumor [26], anti-thrombosis [27],
stroke improvement [28], anti-fungal [29], anti-aflatoxigenic [29,30], diabetes improve-
ment [31], anti-hyperlipidaemic [32], et al. These indicated that the volatile oils also have
the potential to characterize the quality of Curcuma longa L.

Gas chromatography–mass spectrometry (GC–MS) has widely been used to analyze
volatile compounds, owing to its integrated superiorities of excellent separation power,
highly sensitive detection, and improved identification based on sufficient ion informa-
tion [33,34]. Chromatographic fingerprints were commonly applied to the holistic quality
assessment of TCMs [35]. Generally, similarity analysis of fingerprints is used to assess the
consistency of TCMs. Equally important, identifying the chemical differences contributes
to discriminating the herbal quality variance across different samples. However, the subtle
chemical differences are usually concealed under the holistic consistencies of their chro-
matograms [36]. Therefore, chemometric techniques and pharmacological activity were
introduced to evaluate the quality. For example, principal component analysis (PCA) and
partial least squares discriminant analysis (PLS-DA) were widely used to distinguish the
different herbs and accurately group samples.

In this work, the GC–MS fingerprints of the total volatile oils extracted from RCL and
RHCL were established. Chemical constituents in the volatile oils were characterized and
compared using PCA and PLS-DA on their peak area ratio. Additionally, the antioxidant
activities of total volatile oils from RCL and RHCL were evaluated and compared using the
ferric ion-reducing antioxidant power (FRAP) method. Through this analysis, we expect to
provide a more material basis to improve the comprehensive quality evaluation of RCL
and RHCL.

2. Results and Discussions
2.1. Characterization of Compounds in RCL and RHCL Volatile Oils by GC–MS

The volatile oils of Curcuma longa have a large variety of pharmacological proper-
ties. Therefore, the volatile oils of RCL and RHCL were extracted by hydrodistillation
according to Chinese Pharmacopoeia and then analyzed by GC–MS. The extracted yields
of RHCL were more than 5%, which was much higher than that of RCL, which was on
average 1.8%. The total ion chromatograms of RCL and RHCL volatile oils are shown
in Figure 1. By comparing the obtained mass spectra data with the NIST MS spectra
database and previous literature data [6,33,37–39], we totally identified 45 compounds,
mainly including monoterpenes, sesquiterpenes, and other types. Their chemical structures
are shown in Figure 2, and the compounds’ information and their peak area ratio in all
tested samples are listed in Table 1. Among them, 14 compounds (peaks 4, 5, 6, 7, 8, 10, 12,
14, 15, 16, 18, 20, 34, and 39) were further confirmed with reference standards. For RCL
volatile oils, the main components were turmerone (42.78%), (−)-zingiberene (11.99%),
β-turmerone (10.69%), β-sesquiphellandrene (6.17%), ar-turmerone (5.58%), caryophyllene
(3.42%), and terpinolene (2.67%), while the main constituent of RHCL included turmerone
(35.18%), (−)-zingiberene (16.20%), β-turmerone (10.48%), β-sesquiphellandrene (9.06%),
ar-turmerone (8.93%), α-curcumene (2.28%), and terpinolene (1.93%). The top five high-
est concertation constituents in RCL were the same as RHCL, all of them belonging to
bisabolane-type sesquiterpene, which has many differences with other herbal medicines
from Curcuma [40,41]. Accordingly, the first three, i.e., turmerone, (−)-zingiberene, and
β-turmerone, covered more than 60% both in the RCL and RHCL volatile oil. Furthermore,
we found that all of the samples in our research belonged to the reported major chemi-
cal type of turmeric in Xu’s article [42]. In all, the results showed that the main volatile
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components of RCL and RHCL were basically the same, only their relative contents were
somewhat different.
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Table 1. Chemical constituents in RCL and RHCL volatile oils were identified by GC–MS.

Peak No. RT (min) Identification Formula

RCL RHCL
# Area Ratio

(%)
Average

(%)

# Area Ratio
(%)

Average
(%)

1 10.44 Camphene C10H16 0.01–0.05 0.03 N.D. /
2 11.09 (−)-β-Pinene C10H16 0.02–0.12 0.07 0.02–0.11 0.05
3 11.63 α-Phellandrene C10H16 0.03–0.08 0.06 0.02–0.08 0.06
*4 11.70 3-Carene C10H16 0.01–0.04 0.02 0.02–0.04 0.03
*5 11.85 α-Terpinene C10H16 0.03–0.12 0.08 0.04–0.11 0.09
*6 12.02 m-Cymene C10H14 0.02–0.08 0.05 0.02–0.18 0.09
*7 12.14 D-Limonene C10H16 0.01–0.04 0.03 0.05–0.10 0.07
*8 12.26 Eucalyptol C10H18O 0.07–0.25 0.13 0.53–1.39 1.02
9 13.27 Pyrazine, tetramethyl- C8H12N2 0–0.35 0.09 N.D. /

*10 13.40 Terpinolene C10H16 1.31–4.07 2.67 0.88–2.57 1.93
11 13.50 p-(1-Propenyl)-toluene C10H12 0.03–0.06 0.04 0.02–0.08 0.06
*12 13.58 Linalool C10H18O N.D. / 0.03–0.07 0.04
13 15.84 (−)-cis-Carveol C10H16O 0–0.09 0.04 0–0.02 0.01
*14 15.94 (−)-Terpinen-4-ol C10H18O N.D. / 0.01–0.03 0.02
*15 16.02 p-Cymen-8-ol C10H14O 0.03–0.31 0.14 0.02–0.58 0.27
*16 16.31 α-Terpineol C10H18O 0.01–0.04 0.02 0.06–0.16 0.13
17 24.14 7-epi-Sesquithujene C15H24 0.08–0.10 0.09 0.12–0.19 0.15
*18 25.58 Caryophyllene C15H24 3.14–3.75 3.42 0.49–2.12 1.43
19 25.88 cis-α-Bergamotene C15H24 0.02–0.03 0.03 0.04–0.06 0.05
*20 26.63 (E)-β-Farnesene C15H24 0.19–0.27 0.24 0.25–0.42 0.34
21 26.92 (−)-β-Sesquiphellandrene C15H24 0.05–0.07 0.06 0.08–0.11 0.10
22 27.51 Humulene C15H24 0.22–0.24 0.23 0.03–0.14 0.10
23 28.36 γ-Curcumene C15H24 0.08–0.15 0.11 0.16–0.26 0.20
24 28.52 α-Curcumene C15H22 0.48–2.22 1.11 0.81–3.85 2.28
25 28.88 (E)-β-Farnesene isomer C15H24 0.04–0.11 0.06 0.05–0.11 0.08
26 29.38 (−)-Zingiberene C15H24 8.74–14.26 11.99 11.22–21.15 16.20
27 30.22 β-Bisabolene C15H24 0.96–1.15 1.06 1.44–2.13 1.69
28 31.33 β-Sesquiphellandrene C15H24 5.32–6.77 6.17 7.92–10.88 9.06
29 31.51 trans-γ-Bisabolene C15H24 0.22–0.31 0.28 0.31–0.46 0.37
30 33.46 cis-Sesquisabinene hydrate C15H26O 0.13–0.22 0.17 0.15–0.25 0.21
31 33.78 Nerolidol C15H26O 0.03–0.08 0.05 0.10–0.26 0.17

32 34.47 3,3,5,5-
Tetramethylcyclopentene C9H16 0.03–0.04 0.04 0.04–0.08 0.06

33 34.90 Tumerone isomer C15H22O 0.08–0.10 0.09 0.09–0.16 0.13
*34 36.11 Caryophyllene oxide C15H24O 0.03–0.34 0.13 0.01–0.13 0.06

35 36.35 cis-Sesquisabinene hydrate
or isomer C15H26O 0.38–0.78 0.64 0.46–0.61 0.56

36 38.37 Zingiberenol C15H26O 0.60–0.85 0.76 0.63–0.77 0.70
37 39.88 Zingiberenol isomer C15H26O 0.41–0.55 0.48 0.34–0.51 0.43

38 42.13

2-Hepten-1-ol,2-methyl-6-
(4-methyl-1,4-

cyclohexadien-1-yl)-
,(2Z,6R)-(9CI,ACI)

C15H24O 0.72–1.03 0.89 0.33–0.57 0.44

*39 42.8 ar-Turmerone C15H20O 3.24–10.28 5.58 4.23–16.54 8.93
40 43.25 Turmerone C15H22O 33.48–46.19 42.78 28.94–41.73 35.18

41 44.81 cis-Sesquisabinene hydrate
or isomer C15H26O 0.08–0.25 0.15 0.08–0.16 0.11

42 45.84 β-Turmerone C15H22O 9.92–11.32 10.69 8.02–12.57 10.48
43 46.54 Curcuphenol C15H22O 0.07–0.17 0.12 0.04–0.21 0.12
44 48.52 (6R, 7R)-Bisabolone C15H24O 0.83–1.03 0.90 0.40–1.00 0.76
45 49.80 (E)-Atlantone C15H22O 0.63–1.33 0.81 0.26–1.01 0.60

Total / / 92.60 / 94.86

*: Identified with the reference standards; #: The ranges of six investigated batches; “N.D.”: not detected.
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2.2. GC–MS Fingerprint and Similarity Analysis
2.2.1. Methodology Validation of Fingerprint Analysis

In order to develop the GC–MS fingerprint of the RCL and RHCL volatile oils, the
precision, stability, and repeatability of the analytical method were assessed. The chromato-
graphic similarity between the six repeated injections of the same sample and their common
chromatography were not less than 0.999. The obtained chromatograms of one sample
solution at 0, 2, 4, 8, 12, 20, and 24 h showed similarity with their common chromatography
at 1.000. Moreover, the chromatographic similarity of six independent sample solutions
from the same volatile oil was 1.000. Furthermore, the relative standard deviation (RSD)
values of the relative retention time (RRT) and relative peak area (RPA) of 11 characteristic
peaks (analyte/IS) were calculated (Table 2). The precision did not exceed 0.03% for RRT
and 4.68% for RPA. The stabilities of RRT and RPA were not more than 0.04% and 3.65%,
respectively. The results of the repeatability were not more than 0.04% for RRT and 5.07%
for RPA. All the results showed that the instruments and methods were valid and suitable
for analysis.

Table 2. Precisions, stabilities, and respectabilities of the GC–MS method.

Peak No.
Precision (n = 6, RSD, %) Stability (n = 6, RSD, %) Repeatability (n = 6, RSD, %)

RPA RRT RPA RRT RPA RRT

10 1.76 <1.00 × 10−3 3.46 <1.00 × 10−3 4.59 2.66 × 10−2

18 0.47 2.02 × 10−2 2.28 1.48 × 10−2 4.80 3.42 × 10−2

24 0.63 1.43 × 10−2 2.61 <1.00 × 10−3 5.06 3.40 × 10−2

26 0.85 1.76 × 10−2 1.38 1.29 × 10−2 4.20 3.54 × 10−2

27 1.44 2.49 × 10−2 1.00 3.15 × 10−2 4.96 2.78 × 10−2

28 0.95 <1.00 × 10−3 1.30 <1.00 × 10−3 4.04 2.09 × 10−2

39 1.03 9.54 × 10−3 1.70 1.84 × 10−2 4.88 3.10 × 10−2

40 0.78 9.42 × 10−3 1.77 2.47 × 10−2 4.26 3.18 × 10−2

42 0.81 1.13 × 10−2 1.74 1.17 × 10−2 4.23 3.06 × 10−2

44 1.75 1.84 × 10−2 2.86 1.10 × 10−2 5.07 2.96 × 10−2

45 4.68 1.04 × 10−2 3.65 1.07 × 10−2 3.90 2.66 × 10−2

2.2.2. Establishment of GC–MS Fingerprints and Similarity Analysis

The GC–MS chromatographic data of six batches RCL and six batches RHCL volatile
oil were analyzed and imported into the Similarity Evaluation System for Chromatographic
Fingerprint of Traditional Chinese Medicine software version 2004 A (Chinese Pharma-
copoeia Commission, Beijing, China). Then, the fingerprints were obtained using the
median method with a time width of 0.1 (Figure 3). The peaks found in all samples with
good resolution and intensity were specified as common peaks. As shown in Figure 3, we
identified seventeen common peaks. Their peak number was consistent in Table 1. These
peaks included the main and characteristic peaks of RCL and RHCL volatile oils. Among
them, peak 36 (zingiberenol), peak 37 (zingiberenol isomer), peak 40 (turmerone), and peak
42 (β-turmerone) showed similar peak ratios among all batches. The relative contents of
peak 18 (caryophyllene) in RCL volatile oils were higher than that in RHCL, while peak 28
(β-sesquiphellandrene) and peak 27 (β-bisabolene) were on the contrary.

The similarity is an important parameter for the fingerprint analysis. It has been
demonstrated that samples with similar fingerprints may have similar properties. In
this case, the reference chromatogram (R) was generated based on the chromatograms
of 12 samples, and the similarities of 12 different samples were evaluated by comparing
each sample’s chromatogram with the reference chromatogram. Additionally, their values
expressed 0.943–0.998, which indicated that these samples had high similarities (Table 3).
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Table 3. The chromatographic similarities with GC–MS fingerprints for RCL and RHCL volatile oils.

Samples ID Similarity Samples ID Similarity

S1 0.996 S7 0.965
S2 0.998 S8 0.989
S3 0.997 S9 0.996
S4 0.971 S10 0.994
S5 0.993 S11 0.943
S6 0.997 S12 0.943

2.3. Profiling the Differences between RCL and RHCL Volatile Oil Using PCA and PLS-DA

Although there was a high degree of the similarities, there were some minor peaks
that were different between RCL and RHCL. To evaluate the quality variation and dif-
ference between RCL and RHCL, PCA was performed based on the peak area ratio of
45 components. As shown in Figure 4A, the RCL and RHCL samples were separated
from each other with the R2X at 0.658. These results demonstrated that volatile compo-
nents of RCL and RHCL had some minor differences, which were hard to indicate using
chromatographic fingerprints.

The PLS-DA technique was introduced to obtain better group clustering and discover
the compounds’ differences. As shown in Figure 4B, the RCL and RHCL samples were
clearly classified into two groups according to their original parts. The values of R2Y
and Q2Y were 0.982 and 0.895, respectively, which indicated that the PLS-DA model was
stable and had a better prediction. Based on the PLS-DA, the variable importance for
the projection (VIP) plot was established to show the contribution of each variable to the
discrimination of the RCL and RHCL samples. As shown in Figure 4C, 20 compounds with
VIP values of more than 1 were screened as the potentially differential components among
the RCL and RHCL samples. Among them, peak 38 (2-Hepten-1-ol,2-methyl-6-(4-methyl-
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1,4-cyclohexadien-1-yl)-,(2Z,6R)-(9CI,ACI)), peak 22 (humulene), peak 18 (caryophyllene),
peak 14 ((−)-terpinen-4-ol), and peak 8 (eucalyptol) possessed the top five VIP values.
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2.4. Antioxidant Activity of Volatile Oils by FRAP Assay

The sesquiterpenoids of Curcuma plants are one of the major groups of antioxidants
besides curcuminoids. Therefore, the antioxidant activities of the volatile oils extracted
from RCL and RHCL were evaluated based on their ferric-reducing antioxidant power. The
results are listed in Table 4. The FRAP values of the volatile oils varied from 33.4 ± 21.4
to 438.4 ± 52.3 mM FeSO4/mL for RCL, while 30.8 ± 15.5 to 335.9 ± 16.7 mM/mL FeSO4
for RHCLs. The mean FRAP value of the six batches of RCL and RHCL samples was 265.5
and 149.8, respectively. Although the volatile oils yield of RCL was lower than RHCL,
the antioxidant activity of the RCL volatile oils showed slightly better than RHCL’s. As
previously reported [43], the essential oils of C. longa rhizomes gave the highest antioxidant
activity than other medicinal rhizomes from Curcuma, and α-turmerone, β-turmerone, and
β-sesquiphellandrene were determined as major contributing sesquiterpenoids. According
to our GC–MS results, turmerone, β-turmerone, and β-sesquiphellandrene covered 59.64%
of the RCL volatile components, which were slightly higher than those in RHCL (54.72%),
calculated as the sum of their peak area ratio on average. However, the antioxidants from
C. longa should be verified by reference standards in the future.
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Table 4. The results of FRAP assay.

Sample ID
FRAP Values

(Mean ± SD, n = 3, mM
FeSO4/mL)

Sample ID
FRAP Values

(Mean ± SD, n = 3, mM
FeSO4/mL)

S1 438.4 ± 52.3 S7 30.8 ± 15.5
S2 207.2 ± 30.0 S8 51.1 ± 18.1
S3 397.3 ± 21.8 S9 210.7 ± 21.3
S4 224.4 ± 17.3 S10 158.6 ± 10.7
S5 33.4 ± 21.4 S11 335.9 ± 16.7
S6 292.1 ± 4.1 S12 111.7 ± 12.7

3. Materials and Methods
3.1. Materials, Reagents, and Reference Standards

The herbal samples including 6 batches of RCL (S1–S6) and 6 batches of RHCL (S7–S12)
were collected from Sichuan province, China (Table 5). The species were identified by
Professor Ping Li (China Pharmaceutical University, Nanjing, China), and the voucher spec-
imens were stored in the State Key Laboratory of Natural Medicines, China Pharmaceutical
University, Nanjing, China.

Table 5. Basic information of RCL and RHCL samples.

Sample ID Medicinal Parts Source

S1 Root tuber Shuangliu, Chengdu, Sichuan
S2 Root tuber Shuangliu, Chengdu, Sichuan
S3 Root tuber Shuangliu, Chengdu, Sichuan
S4 Root tuber Qianwei, Leshan, Sichuan
S5 Root tuber Qianwei, Leshan, Sichuan
S6 Root tuber Qianwei, Leshan, Sichuan
S7 Rhizome Shuangliu, Chengdu, Sichuan
S8 Rhizome Shuangliu, Chengdu, Sichuan
S9 Rhizome Shuangliu, Chengdu, Sichuan

S10 Rhizome Shuangliu, Chengdu, Sichuan
S11 Rhizome Qianwei, Leshan, Sichuan
S12 Rhizome Qianwei, Leshan, Sichuan

Anhydrous ethanol (GC grade) was bought from Yonghua Chemical Reagent Co.,
Ltd. (Suzhou, China). Anhydrous sodium sulfate was obtained from Nanjing Chemical
Reagent Co., Ltd. (Nanjing, China). Ultrapure water was prepared by Milli-Q water
purification system (Millipore, Bedford, MA, USA). The commercial kits for ferric-reducing
antioxidant power (FRAP) assay were purchased from Beyotime Institute of Biotechnology
(Shanghai, China).

Reference standards of (−)-terpinen-4-ol, caryophyllene oxide, (E)-β-farnesene were
bought from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China). N-tridecane,
α-terpineol, β-caryophyllene, α-terpinene, Linalool, and m-cymene were obtained from
Push Bio-technology Co., Ltd. (Chengdu, China). Terpinolene was bought from Shanghai
TCI Development Co., Ltd. (Shanghai, China). 3-Carene was obtained from Rhawn
Reagent (Shanghai, China). D-Limonene was bought from Shanghai Sigma-Aldrich Co.,
Ltd. (Shanghai, China). Eucalyptol was obtained from National Institute for Food and Drug
Control (Beijing, China). ar-Turmerone was bought from BioBioPha Co., Ltd. (Yunnan,
China). p-Cymen-8-ol was obtained from Shanghai Zzbio Co., Ltd. (Shanghai, China). All
the purities of the reference standards mentioned above were not less than 80% (GC).

3.2. Volatile Oil Extraction and Sample Preparation

The dried RCL and RHCL samples were pulverized and griddled through 24 mesh.
Accurately weighed 40 g powder of each sample was extracted with 320 mL water in a
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Clevenger-type apparatus for 5 h. The extracted volatile oil was dried with anhydrous
sodium sulfate and stored at −20 ◦C. The extraction yield was calculated in a milliliter of
oil per 40 g of dried RCL and RHCL.

A solution of N-tridecane, an internal standard (IS), was prepared in anhydrous
ethanol at a concentration of 1 mg/mL. Then, this solution was stored at −80 ◦C. For
GC–MS analysis, the extracted 1 µL of volatile oil was transferred to a centrifuge tube and
diluted 1000-fold by anhydrous ethanol. A certain amount of N-tridecane was also added
into the sample with the final concentration at 10 µg/mL. Then, the sample solution was
filtered through a 0.22 µm syringe filter before injection.

3.3. Chemical Profiling of the RCL and RHCL Volatile Oils
3.3.1. GC–MS Condition

GC–MS was performed on an Agilent 7890B GC system equipped with Agilent 5977A
Mass Selective Detector (Agilent Technologies, Santa Clara, CA, USA).

Chromatographic separation was performed on an Agilent DB-5 column (60 m × 0.25 mm,
0.25 µm). Helium was used as carrier gas with a constant flow rate of 1.0 mL/min. The
oven temperature program was started at 60 ◦C, increased to 100 ◦C at a rate of 5 ◦C/min,
increased to 140 ◦C at a rate of 10 ◦C/min, held for 2 min, and increased to 155 ◦C at a rate
of 1 ◦C/min, held for 2 min, increased to 160 ◦C at a rate of 0.5 ◦C/min, increased to 180 ◦C
at a rate of 3 ◦C/min, and finally reached 260 ◦C at a rate of 15 ◦C/min. Each 1 µL aliquot
of volatile oil sample solution was injected into the GC–MS system at a split ratio of 10:1.

The electron impact ionization mode at 70 eV was used. The temperature of the ion
source and MS quadrupole were set to 230 ◦C and 150 ◦C. The filament on delay was set for
9 min, and the runtime was from 9 to 53 min. All data were acquired in a full-scan mode
within a mass range from m/z 50–600.

Data were acquired by Agilent MassHunter Acquisition Software version B.06.01
(Agilent Technologies, Santa Clara, CA, USA). Data analysis was performed by Agilent
MassHunter Qualitative Analysis Software version B.10.00 (Agilent Technologies, Santa
Clara, CA, USA), and all components were identified by comparing their mass fragments
with the standard mass spectra from NIST Mass Spectral Search Program version 14.0
(National Institute of Standards and Technology, MD, USA).

3.3.2. Methodology Validation of Fingerprint Analysis

The analytical method was validated for precision, repeatability, and stability. Based
on the established GC–MS condition programs, we repeatedly injected the same sample
solution six times to evaluate the instrumental run-to-run precision. The stability was
tested with the same sample solution at room temperature and analyzed at 0, 2, 4, 8, 12, 20,
and 24 h, injecting independent sample solutions from the same batch of volatile oil sample
(S6) to assess method repeatability. The similarities among chromatograms were calculated
to assess the precision, repeatability, and stability. Additionally, the relative peak area and
the relative retention time of 11 characteristic chromatographic peaks were selected for the
assisted methodological validation.

3.3.3. Similarity Analysis of Fingerprints

The GC–MS data (including peak areas and retention times) were exported from
MassHunter Qualitative Analysis Software version B.10.00 (Agilent Technologies, Santa
Clara, CA, USA) as “.txt” document. In addition, peaks whose peak area accounted for
no less than 0.1% of the total peak area participated in the matching. Then, these data
were imported into the Similarity Evaluation System for Chromatographic Fingerprint
of Traditional Chinese Medicine version 2004 A (Chinese Pharmacopoeia Commission,
Beijing, China). Fingerprints were matched automatically and established. The reference
fingerprint (R) was generated with the median method, and the similarity values between
the entire chromatographic profiles of volatile oil samples and the reference fingerprint (R)
were calculated.
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3.4. Principle Component Analysis and Partial Least Squares Discriminant Analysis

The principal component analysis (PCA) was applied for analyzing the correlation
of samples by reducing the dimensions of the original data. In this work, the peak area
ratio of 45 components in volatile oils of 12 batches of samples were imported into the R
software version 4.1.2 (R Core Team, Vienna, Austria) for conducting PCA.

Partial least squares discriminant analysis (PLS-DA), a supervised method, was in-
troduced to group classification. It takes advantage of class information to attempt to
maximize classification. In this work, we used the same data as input data to perform
PLS-DA for RCL and RHCL volatile oil samples using R software version 4.1.2 (R Core
Team, Vienna, Austria). The variable importance for the projection (VIP) values were
employed to find chemical constituents that can help discriminate different samples.

3.5. Total Antioxidant Capacity Assay with FRAP Method

The FRAP assay was carried out by following the instruction manual. Working
standards were obtained by diluting 10 mM FeSO4·7H2O with anhydrous ethanol. A series
of solutions with known FeSO4·7H2O concentration (0.15, 0.3, 0.6, 0.9, 1.2, and 1.5 mM)
were used for calibration. Volatile oil was diluted with anhydrous ethanol. Then, 5 µL of
volatile oil sample solution (containing 3 µL of volatile oil) was mixed with 180 µL of newly
prepared FRAP reagent. After incubation at 37 ◦C for 5 min, the absorbance of each mixture
was monitored at 593 nm. Results were expressed as reduced mM FeSO4 per milliliter
volatile oil. All determinations were conducted in triplicates, and the mean ± standard
deviation values were finally expressed.

4. Conclusions

In this study, the volatile oils in RCL and RHCL samples were extracted by hydrodis-
tillation and analyzed by GC–MS. The chemical constituents in the volatile oils were
characterized based on a mass spectra database, previous literature, and reference stan-
dards. In addition, these components mainly included monoterpenes and sesquiterpenes.
Among them, turmerone, (−)-zingiberene, and β-turmerone were dominant compounds
detected in both RCL and RHCL. The GC–MS fingerprints showed the holistically chro-
matographic similarities among sample batches, whereas chemometrics revealed the minor
chemical differences for discrimination of the RCL and RHCL samples. Moreover, the
FRAP results indicated that the RCL and RHCL had slightly different antioxidant levels,
which deserved attention for screening the related antioxidative volatile compounds in
future studies. To some extent, this study complemented the material basis of RCL and
RHCL, which could facilitate further pharmacological research and quality control.
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