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Almost three decades after its seminal discovery, our understanding of the remarkable
TOR pathway continues to expand. As a TOR complex, TORC2 lies at the nexus of
many signaling pathways and directs a diverse array of fundamental processes such as
cell survival, proliferation, and metabolism by integrating environmental and intracellular
cues. The dysregulation of TORC2 activity disrupts cellular homeostasis and leads to
many pathophysiological conditions. With continued efforts at mapping the signaling
landscape, the pace of discovery in TORC2 regulation has been accelerated in recent
years. Consequently, emerging evidence has expanded the repertoire of upstream
regulators and has revealed unexpected diversity in the modes of TORC2 regulation.
Multiple environmental cues and plasma membrane proteins that fine-tune TORC2
activity are unfolding. Furthermore, TORC2 signaling is intricately intertwined with other
major signaling pathways. Therefore, feedback and crosstalk regulation also extensively
modulate TORC2. In this context, we provide a comprehensive overview of revolutionary
concepts regarding emerging regulators of TORC2 and discuss evidence of feedback
and crosstalk regulation that shed new light on TORC2 biology.
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INTRODUCTION

In eukaryotes, the evolutionarily conserved Ser/Thr kinase target of rapamycin (TOR) functions
as a central integrator when growth factors, nutrients, and cellular energy status favor anabolism.
These stimuli activate TOR metabolic pathways and ultimately drive cell growth and survival
(Saxton and Sabatini, 2017). In mammalian cells, mTOR complex 2 (mTORC2) differs from
mTORC1 in many ways, such as accessory components and sensitivity to rapamycin, as well as
upstream inputs, downstream effectors, and cellular functions. Besides two shared subunits, mTOR
and mLST8, mTORC2 specifically consists of obligate scaffolds Rictor and mSin1 and, unlike
mTORC1, is insensitive to acute rapamycin inhibition (Saxton and Sabatini, 2017). For clarity,
TORC2 refers to TOR complex 2 in both yeast and a general situation, while mTORC2 refers
specifically to mammalian systems in this review.

TORC2 exerts pleiotropic effects on cellular metabolism and homeostasis primarily through
activation of downstream effectors. Therefore, TORC2 activity is defined as its ability to
phosphorylate downstream targets, which are currently well recognized as AGC kinases, including
Akt, PKC, and SGK1 (Zoncu et al., 2011). The most characterized and widely used TORC2 target is
Akt-S473 (in a hydrophobic motif of Akt), although this site can also be targeted by other kinases
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such as ILK and DNA-PK in a specific cellular context (Luo
et al., 2018). Akt-S473 is phosphorylated by a canonical
posttranslational mechanism, which can be recapitulated in
an in vitro kinase assay with immunoprecipitated TORC2. In
analogy to Akt, TORC2 also phosphorylates PKC and SGK1
at their corresponding hydrophobic motif residues. One recent
study convincingly identified a conserved motif termed TIM
(TOR-interaction motif) in the catalytic domain of AKT and
PKC as a new TORC2 target (Baffi et al., 2021). In this
model, the phosphorylation of TIM acts as the first rate-limiting
step that facilitates subsequent PDK1-mediated activation loop
phosphorylation and triggers intramolecular hydrophobic motif
autophosphorylation to fully activate the kinase. This important
finding reveals the long-elusive role of TORC2 in the regulation
of AGC kinase. Upon activation by TORC2, these AGC kinases
also selectively regulate multiple substrates, such as FoxO1/3a
and NDRG1, leading to downstream effects (Manning and Toker,
2017). Although TORC2 activity might specifically initiate a
downstream signaling axis in a cell/tissue-dependent manner
(discussed below), the rigorous approach to document TORC2
activity requires measurement of the phosphorylation status of
all these AGC kinases as well as their substrates. Some studies
discussed here indeed take this rigorous approach, and Akt-S473
was most widely used to track the changes of TORC2 activities
(Brown et al., 2011; Festuccia et al., 2014; Xu et al., 2019).

For proper maintenance of cellular homeostasis, the activation
of TORC2 should be precisely regulated inside the cell. There are
many indicators that dysregulation of TORC2 activity underlies
a wide spectrum of human pathologies, including cancer,
metabolic disorders, autoimmune diseases, aging, and neuronal-
related diseases (Tang et al., 2016; Guri et al., 2017; Chen et al.,
2019; Cook et al., 2020). Therefore, understanding the regulatory
basis for TORC2 activation is becoming important and may
hold the key to rethinking many fundamental pathophysiological
processes. Meanwhile, knowing how to modulate TORC2 activity
presents therapeutic opportunities for the treatment of a broad
range of diseases.

Partially due to the lack of acute pharmacological agents that
tease apart the two TOR complexes, the regulation of TORC2 is
relatively less studied and still poorly defined compared to that of
TORC1. However, emerging evidence in recent years has greatly
expanded the repertoire of upstream regulators of TORC2.
It is becoming clear that, unlike TORC1 activity that mainly
depends on lysosomes (Kim and Guan, 2019), the regulation
of TORC2 activity occurs at distinct cellular compartments.
For example, TORC2 activity is tightly linked to the plasma
membrane, where this kinase can be directly and extensively
regulated by diverse exogenous cues and membrane-bound
proteins. Meanwhile, TORC2 responds to multiple intracellular
cues, such as small GTPases, reactive oxygen species (ROS), and
ribosomes, and each shows distinct modes for TORC2 regulation.
As a typical cellular signaling program, TORC2 activity is also
subjected to feedback regulation from multiple downstream
nodes that spatiotemporally terminate or boost TORC2 signaling.
In addition, TORC2 signaling presents extensive crosstalk with
other major signaling pathways, such as Hippo, WNT, and
Notch pathways. These highly interconnected and coordinated

networks significantly influence TORC2 activity and signaling
relay, and greatly broaden its range of biological activities.

In this review, we focus on current major developments in
TORC2 regulation that illustrate how the expanding spectrum
of emerging inputs influences its activity. We also discuss how
TORC2 signaling is rewired and intersects with other major
pathways through feedback and crosstalk regulation, which also
profoundly modulate TORC2 signaling.

DIVERSIFIED REGULATION OF TORC2
ACTIVITY

Regulation Through the Plasma
Membrane
TORC2 activity is tightly associated with the plasma membrane.
Although the precise subcellular localization of TORC2 is
still under debate, at least some TORC2 in both mammalian
cells and yeast appears to be on the plasma membrane
as detected by microscopy and biochemical fractionation
approaches (Partovian et al., 2008; Gao et al., 2011; Berchtold
et al., 2012). Therefore, signals generated at the plasma
membrane, such as receptor tyrosine kinase (RTK), oncogenic
Ras, cell adhesion receptors, membrane tension, as well as
bacteria-derived pathogens, effectively modulate TORC2 activity
through distinct mechanisms (Figure 1).

RTK Signaling
Growth factor signaling through RTK and PI3K pathways
has been well recognized as the major activating signal for
TORC2. In mammalian cells, the mTORC2-dependent mTOR
autophosphorylation at Ser2481, a marker for intact mTORC2
(Copp et al., 2009), and in vitro mTORC2 activity, using
Akt-S473 as a substrate, are stimulated by growth factors
(Frias et al., 2006; Yang et al., 2006). Furthermore, mTORC2
appears to phosphorylate SGK1 in response to growth factors
even though SGK1 lacks a pleckstrin homology (PH) domain
and is activated independently of membrane recruitment
(Garcia-Martinez and Alessi, 2008).

However, the regulatory mechanism governing growth factor-
induced mTORC2 activation is still under debate. One possible
mechanism might occur via mTORC2 recruitment to the
plasma membrane or specialized membranous structures where
mTORC2 could be modulated by RTK signaling with high
efficiency. One proposed PI3K-dependent model is that, upon
PI3K activation by RTKs, PIP3 interacts with mSin1-PH to
unmask the inhibition of mSin1 on the mTOR kinase domain,
while recruiting mTORC2 to the plasma membrane where
recruited Akt (via Akt-PH domain) gets phosphorylated (Liu
et al., 2015). In this study, only Akt-S473 was used in assays for
measurement of mTORC2 activity. However, it should be noted
that Akt-S473 phosphorylation by mTORC2 inside a cell requires
PIP3, which accumulates in response to PI3K stimulation by
many growth factor receptors (Manning and Toker, 2017).
An alternative interpretation of growth factor-induced Akt-
S473 phosphorylation is PIP3-dependent recruitment of Akt to
constitutively active membrane-associated mTORC2. Whether
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FIGURE 1 | The responses of mTORC2 activity to various environmental and intracellular cues. Schematic representation of mTORC2 activity in response to a wide
array of upstream regulators, including signals from the plasma membrane, metabolites, and pathogens as well as intracellular cues. Interference with membrane
tension activates mTORC2 through caveolin-1 and PLD2. RTK signaling activates mTORC2 via PI3K-dependent and -independent mechanisms. Oncogenic Ras
and CD146 associate with and activate mTORC2 at the plasma membrane. The activity of mTORC2 is regulated by nutrients, such as glucose, amino acids, and
folate. Several intracellular cues, such as AMPK, small GTPases, ribosomes, and ROS also regulate mTORC2 activity through distinct mechanisms.

and how PI3K is involved in growth factor-targeted mTORC2
activity is not clear.

Recent biochemical labeling and imaging studies using
a compartment-specific mTORC2 activity reporter, dubbed
LocaTOR2, revealed an alternative mechanism for mTORC2
activation. In mammalian cells, the activity and localization of
mTORC2 via mSin1-PH at the plasma membrane is PI3K- and
growth factor-independent, and membrane recruitment of Akt
is sufficient for mTORC2-mediated Akt-S473 phosphorylation in
response to growth factors (Ebner et al., 2017). This is supported
by the observation that myristoylated Akt at the plasma
membrane results in its hyperphosphorylation (Andjelkovic
et al., 1997) and yeast TORC2 localizes to the plasma membrane
and membrane-proximal vesicles where it promotes cell survival
(Berchtold and Walther, 2009). Nevertheless, mTORC2 activity
in the endosomal pool responds to PI3K (Ebner et al.,
2017), suggesting the existence of spatially separated mTORC2
populations with distinct sensitivity to growth factors. It is
therefore still unknown whether and to which extent growth
factors can directly modulate mTORC2 activity. Meanwhile,
how does mTORC2 at the plasma membrane stay constitutively

active? One possible explanation is that other membrane proteins
or extracellular cues might also account for mTORC2 membrane
anchoring and activity (see discussion below).

Oncogenic Ras
The majority of early studies suggest that mTOR is not
regulated by Ras through direct contact but, rather, distally
via Ras stimulation of PI3K and mitogen-activated protein
kinase (MAPK) pathways (Thorpe et al., 2015; Kim et al.,
2017). However, recent work combining biotin labeling of
proteins (BioID) proteomics with CRISPR screening identified
mTORC2 as a functionally direct effector of oncogenic Ras
mutants in human cancer cells (Kovalski et al., 2019). It was
found that active Ras directly and selectively interacted with
mTORC2 by binding the Ras-binding-domain (RBD) of mSin1
and mTOR kinase domain via the Ras effector interaction
domain. Therefore, oncogenic Ras increased mTORC2 kinase
activity, as indicated by LocaTOR2, in cells at the plasma
membrane but not at other cellular sites to positively regulate
cell proliferation. Blocking mTORC2 localization and association
with Ras at the plasma membrane by deleting the RBD and PH
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domains of mSin1 impairs mTORC2 enzymatic activity and Ras-
dependent tumorigenesis (Kovalski et al., 2019). Besides being
a downstream effector of Ras, mTORC2 might also feedback
to Ras signaling. For example, mSin1 expression inhibited the
activation of ERK and JNK signaling pathways by Ras, suggesting
that mSin1 was a mammalian Ras inhibitor and mTORC2
may contribute to negative feedback regulation of Ras activity
(Schroder et al., 2007).

Cell Adhesion Receptors
Our recent study identified an essential cell adhesion receptor
CD146 that directly linked mTORC2 activation with extracellular
growth factors to enable cell proliferation and survival (Xu
et al., 2019). The activation of RTKs phosphorylates the only
tyrosine residue, Y641, in the cytoplasmic tail of CD146, which
enables the juxtamembrane positively charged KKGK motif to
associate with Rictor. Through this interaction, CD146 activates
mTORC2 (as evidenced by increased phosphorylation of Akt,
PKCα/β, SGK1, NDRG1, and Foxo1/3) by protecting Rictor from
ubiquitin proteasome-mediated degradation, thereby promoting
cell proliferation. Mutation of Y641 or deletion of KKGK
disrupts the ability of CD146 to bind Rictor and activate
mTORC2 in response to multiple growth factors, including
VEGF, bFGF, insulin, and IGF-1, indicating that CD146 directly
links divergent environmental growth cues with mTORC2
activity. It is interesting to note that the regulation of mTORC2
activity by CD146 showed no effect on PI3K and mTORC1
activity, because the CD146-KKGK motif specifically targets the
mTORC2 unique subunit Rictor. This observation represents
a generic mechanism for mTORC2-selective regulation and a
strategy for specific inhibition of mTORC2 activity.

The observation that mTORC2 activation depends on its
association with juxtamembrane positively charged amino acid
cluster of CD146 might represent a general mechanism for the
regulation of mTORC2 activity at the plasma membrane. It
should be noted that several Ras proteins also contains a similar
polybasic motif in their juxtamembrane hypervariable region
(Simanshu et al., 2017), which might form a similar structural
basis for binding and subsequent activation of mTORC2 by
Ras. This was also supported by the finding that the reporter
LocaTOR2 system contains a similar positively charged motif
(Ebner et al., 2017) and Rictor downregulation drastically
reduced the interaction between Ras and mTORC2 components
(Kovalski et al., 2019). Meanwhile, a similar motif is also present
in the juxtamembrane portion of several other cell adhesion
molecules, such as L-selectin (Ivetic et al., 2002, 2004), ICAM-
1/2, CD43, CD44, and L1CAM (Yonemura et al., 1998; Cheng
et al., 2005; Oh et al., 2007). It will be interesting to see in the near
future whether these juxtamembrane motifs within these integral
membrane proteins can also serve as a default signal for Rictor
binding and mTORC2-specific regulation.

Syndecan-4
In endothelial cells, mTORC2 was observed localized to plasma
membrane raft domains. Syndecan-4, which is a single-pass
transmembrane proteoglycan, recruits PKCα to the membrane
raft to regulate PKCα activity; this, in turn, is required for

appropriate mTORC2 localization to rafts and subsequent
phosphorylation of Akt, PKC, GSK-3, eNOS, and Foxo1/3a
in response to FGF2 (Partovian et al., 2008). This proposed
mechanism for mTORC2 activation supports the concept of
rafts as dynamic signal transduction platforms whose transient
recruitment and stabilization of signaling complexes within
rafts produces a bulk and efficient cellular signaling response
(Lajoie et al., 2009). Nevertheless, the mechanism by which
PKCα regulates mTORC2 recruitment to rafts is unknown, and
discovery efforts are complicated by the fact that PKCα is known
to be a downstream target of mTORC2.

Membrane Tension
Membrane tension is generated as a response to any application
to the membrane surface of external forces (Kozlov and
Chernomordik, 2015). Localization to the plasma membrane
supports a downstream role of TORC2 in membrane tension.
The observation that membrane tension could regulate TORC2
activity originally comes from yeast. In yeast, interference
with plasma membrane tension activates TORC2 (Berchtold
et al., 2012). In this step, the PH domain-containing
plasma membrane protein Slm1/2 acts as an upstream
regulator of TORC2 activation. Upon plasma membrane
stress that reduces membrane tension, such as inhibition of
sphingolipid biosynthesis or mechanical stretching of the plasma
membrane, Slm proteins are partitioned away from membrane
compartments called eisosomes and relocalized to the specialized
membrane domain MCT (membrane compartment containing
TORC2), where Slm1/2 associates with and activate TORC2.
Slm1/2 also facilitates recruitment of the AGC kinase Ypk1
to proximity of TORC2 for phosphorylation and activation.
Activated Ypk1 in turn promotes biosynthesis of sphingolipids,
which leads to the resolution of plasma membrane stress and
ultimately TORC2 deactivation (Berchtold et al., 2012; Niles
and Powers, 2012). Therefore, membrane tension and TORC2
activity regulate each other through a feedback mechanism.

The regulation of TORC2 activity by membrane tension is
conserved in mammalian cells. Vertebrate-specific membrane
invaginations called caveolae has been suggested to function
analogously to eisosomes. Mechanical stretch, which leads to
rapid disassembly of caveolae, triggers mTORC2-dependent
phosphorylation of Akt-S473 (Kippenberger et al., 2005; Sinha
et al., 2011). This process requires caveolin-1, the defining protein
of caveolae, in epithelial cells and vascular smooth muscle cells
(Sedding et al., 2005; Zhang et al., 2007). Similarly, TORC2
activity (as indicated by Akt phosphorylation) is increased
following hypo-osmotic shock-induced stretching of the plasma
membrane in both mammals and yeast (Chen et al., 2011; Muir
et al., 2014). During neutrophil chemotaxis, acute stretching
of the plasma membrane leads to an increase in mTORC2
activity mediated by phospholipase D2 (PLD2) to limit actin
nucleation, leading to cell polarity and migration (Diz-Munoz
et al., 2016). Collectively, it can be concluded that TORC2 activity
responds to membrane tension in both mammals and yeast.
Since most of these studies have been limited to cell models,
the pathophysiological consequences of TORC2 regulation by
membrane tension remain to be determined.
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Bacteria-Derived Pathogens
The engagement of Toll-like receptors (TLRs) by their cognitive
ligands [such as lipopolysaccharide (LPS)] acutely activates
mTORC2 as indicated by the phosphorylation of Akt, PKCα/β,
SGK1, NDRG1, and Foxo1/3, and mTORC2 negatively feedbacks
to TLR signaling to suppress the pro-inflammatory response in
multiple types of mammalian cells (Brown et al., 2011; Festuccia
et al., 2014; Sato et al., 2018). However, the mechanism regulating
mTORC2 activation by TLRs remains unclear. In macrophages
and epithelial cells, LPS-induced mTORC2 activity could be
modulated by other bacteria-derived pathogens. For example,
the recognition of β-barrel outer membrane proteins (OMPs)
of Gram-negative bacteria by the cell surface receptor SlamF8
could reduce the phosphorylation of mTOR at S2481 to inhibit
mTORC2 and Akt activation in response to LPS (Chaudhary
et al., 2018). Therefore, OMPs counteract LPS-induced mTORC2
activity to inhibit intracellular bacterial replication through
unknown mechanisms.

Regulation Through Metabolites
TORC1 activity is mainly dependent upon sensing amino acids
and tightly regulated by other nutrient inputs to support cell
metabolism and growth throughout evolution; TORC2 activity
is not as tightly coupled to nutrient availability. In recent
years, emerging evidence has suggested that TORC2 activity
also responds to and can be modulated by distinct nutrients
and metabolites. However, the robustness and pathophysiological
implications will require further validation.

Glucose
TORC2 activity is regulated by glucose. In human glioblastoma,
for example, extracellular high glucose conditions activate
mTORC2 (as indicated by Akt-S473 and NDRG1-T346) via
acetyl-CoA-dependent acetylation of Rictor. Rictor acetylation
is maintained to form an autoactivation loop of mTORC2 even
in the absence of growth factor receptor signaling (Masui et al.,
2015), nominating mTORC2 as a central node for integrating
growth factor signaling with nutrient availability. p300, a
histone acetyltransferase, and SIRT1 modulate the acetylation
of Rictor, which is critical for insulin-stimulated Akt activation
(Glidden et al., 2012). However, whether mTORC2 activity
responds to glucose in other types of cells and the physiological
consequence remain unclear.

Amino Acids
Amino acids can both activate and inhibit TORC2 activity
depending on the cellular context. For example, amino acids
positively regulate mTORC2 activity (as indicated by increased
phosphorylation of Akt-S473 and GSK-3), together with
mTORC1, via class I PI3K and only mTORC2 is required for
purine synthesis in multiple human cells (Tato et al., 2011;
Saha et al., 2014). On the other hand, amino acids can also
exert inhibitory effects on mTORC2. For example, amino acids
can release the restraint of T cell proliferation by mTORC2,
and Rictor-deficient T cells continue to proliferate despite the
inadequate amino acids (Van de Velde and Murray, 2016; Van
de Velde et al., 2017). It is possible that amino acids activate the

cell cycle by inhibiting mTORC2. However, the reason for the
opposite role of amino acids in mTORC2 activity and how amino
acids regulate mTORC2 remain largely unknown.

Folate
TORC2 activity (together with TORC1) responds to folate
stimulation without a clear mechanism (Silva et al., 2017). Folate
deficiency in pregnant mice and trophoblasts caused a marked
inhibition of mTORC2 signaling (as evidenced by decreased
phosphorylation of Akt-Ser473, PKC-Ser657, and SGK-Ser422)
and decreased activity of key amino acid transporters, resulting
in restricted cell growth (Rosario et al., 2017a). In turn,
mTORC2 signaling is critically involved in folate availability
and cell growth and proliferation. It has been shown that
folate sensing and uptake in trophoblasts involves both mTOR
complexes and requires the proton coupled folate transporter
(PCFT; solute carrier 46A1) (Rosario et al., 2017b). Although
the mechanism remains unexplored, the responsiveness of both
mTOR complexes to folate might explain the linkage between low
maternal folate and restricted fetal growth.

Methylglyoxal
Methylglyoxal provides another example that potentially links
cellular metabolic status with TORC2 activity with unknown
mechanisms. As a typical reactive intermediate derived from
glycolysis or gut microbes, methylglyoxal stimulates mTORC2
activity, which is responsible for the phosphorylation of Akt-
S473 and GSK3β-S9 in human colorectal cancer cells (Bellier
et al., 2020). The activation of this kinase by methylglyoxal
is also conserved in lower organisms with more diversified
downstream outputs. In Saccharomyces cerevisiae, methylglyoxal
activates TORC2-PKC as well as TORC2-Akt signaling (Nomura
and Inoue, 2015), while methylglyoxal promotes longevity by
activating the TORC2-SGK-1/DAF-16 signaling axis in C. elegans
(Shin et al., 2020). Preferential activation of the TORC2 signaling
axis by methylglyoxal is currently unclear. One possibility is that
methylglyoxal might activate distinct TORC2 pools that localize
to specific cellular compartments or mediate the recruitment
of distinct effectors to TORC2 in different cellular contexts.
The common physiological significance of TORC2 activation by
methylglyoxal also remains unknown.

Regulation Through Virus
The evidence that TORC2 activity responds to viruses or
viral proteins is mainly from studies of mammalian cells.
Viruses employ elaborate strategies for their replication and
survival during infection by regulating mTORC2 through distinct
mechanisms. In macrophages, HIV-1 infection initiates an
interaction of POTEE with the viral protein Nef to activate
mTORC2, leading to dissemination of macrophages in other
systems (Vekariya et al., 2018). In hepatocytes, a high level
of HBV protein HBsAg deactivates mTORC2 by increasing
endoplasmic reticulum stress, leading to enhancement of Fas-
mediated apoptosis (Jing et al., 2018). In neuronal cells, Zika
virus (ZIKV) infection activates mTORC2 through unknown
mechanisms. The activation of mTORC2 facilitates ZIKV
replication by negatively regulating autophagy (Sahoo et al.,
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2020). Upon influenza virus infection, the viral protein NS1
promotes mTORC2-mediated Akt-S473 phosphorylation, which
inhibits cell apoptosis (Kuss-Duerkop et al., 2017). Poxvirus
protein F17 binds and sequesters both Rictor and Raptor
to disrupt the mTORC1-mTORC2 regulatory circuit, thereby
blocking the STING-IFNγ antiviral response without affecting
mTOR-mediated viral protein synthesis (Meade et al., 2018). It
should be noted that only Akt-S473 was used for documenting
mTORC2 activity in most of these studies. Therefore, it is still
unclear how and to what extent viruses modulate mTORC2
activity. Collectively, the regulation of mTORC2 by viruses would
form a core strategy during evolution to facilitate viral survival in
host cells, simultaneously dampening host cytosolic sensing and
immune responsiveness.

Regulation Through Intracellular Cues
AMPK
AMP-activated protein kinase (AMPK) is an energetic stress
kinase that promotes catabolic and suppresses anabolic
metabolism coordinately to restore energy balance (Lin and
Hardie, 2018). Given such intimate regulation of metabolism
by AMPK, it may play a role in TORC2 regulation. Indeed,
various AMPK activators promote phosphorylation of Akt-
S473 in an AMPK-dependent manner in cultured mammalian
cells (Kazyken et al., 2019). This AMPK-mediated activation
of mTORC2 occurs independently of mTORC1-mediated
negative feedback. AMPK associates with mTORC2 and
directly phosphorylates mTOR and possibly Rictor to increase
mTORC2 activity. Thus, in addition to the role of AMPK in
inhibiting mTORC1, AMPK also activates mTORC2 by direct
phosphorylation of mTORC2 components during energetic
stress to enhance cell survival (Lin and Hardie, 2018; Kazyken
et al., 2019). Therefore, the emerging concept is that mTORC2
is the convergent point for anabolic (e.g., insulin/PI3K) and
catabolic (e.g., AMPK) signals to coordinate cellular metabolic
homeostasis. It will be important to identify where in the
cell AMPK activates mTORC2, and specific AMPK-mediated
regulatory sites in mTORC2 components that reflect its activity,
localization, and/or substrate specificity.

Small GTPases
GTPases play essential roles in regulating TORC2 activity.
Rictor and mSin1 contain RasGEFN (N-terminal to Ras
guanine nucleotide exchange factor) and Ras binding domain,
suggesting a correlation with GTPase (Gaubitz et al., 2016).
Indeed, Rit, a Ras-family GTPase, activates mTORC2 (Akt-S473
phosphorylation) in response to ROS by binding mSin1 (Cai
and Andres, 2014). GTPases in both GTP- and GDP-bound
forms regulate TORC2 activity by physically interacting with
TORC2. For example, the GTP-bound form of Rhy1, a Rab-
family GTPase, is shown to bind and activate yeast TORC2
(Tatebe et al., 2010; Hatano et al., 2015). GTPases also regulate
TORC2 activation in GDP-bound forms. Rac1, a Rho-family
GTPase, in its GDP-bound form activates mTORC2 (Akt-S473
phosphorylation) in response to growth factors by interacting
with mTOR (Saci et al., 2011). Moreover, Rho-GDP promotes

Akt phosphorylation by assembling a supercomplex with Ras-
GTP and mTORC2. This supercomplex formation is controlled
by chemoattractant-induced phosphorylation of Rho-GDP at
S192 by GSK-3 (Senoo et al., 2019). The requirement of Rho-
GDP and Ras-GTP dimer for direct mTORC2 activation is
distinct from that of mTORC1, which depends on RagA/B-
GTP and RagC/D-GDP dimers for lysosome localization and
Rheb-GTP for subsequent stimulation of mTORC1 enzymatic
activity (Saxton and Sabatini, 2017). These studies demonstrate
a critical role of GTPases as an upstream component of TORC2
signaling, and challenge the prevailing view that GTPases are
downstream effectors of TORC2 that control remodeling of the
actin cytoskeleton.

ROS
ROS functions as an TORC2 activating factor in protecting cells
from oxidative stress from yeast to mammalian cells. In yeast,
ROS can activate TORC2 through an unknown mechanism and
in turn, TORC2 regulates ROS metabolism to control cell growth
and survival (Niles and Powers, 2014; Niles et al., 2014). The
activation of mTORC2 activity by ROS is also conserved in
mammalian cells. For example, perturbation of mitochondrial
energy metabolism due to deficiency of DNA polymerase
gamma (Polγ) causes an increase in mitochondrial ROS, which
elevates Rictor expression to initiate Rictor-dependent pro-
survival autophagy (Dhar et al., 2018). Different mechanisms
have been documented for ROS-induced TORC2 activity. In
lung cancer, glutamine deprivation stimulates the formation
of ROS, and subsequently upregulates expression of Sestrin2,
which activates mTORC2 activity (Akt-S473 phosphorylation)
and enables cancer cell survival under glutamine depletion (Byun
et al., 2017). The ability of ROS to activate mTORC2 is also
mediated by Rit and p38 MAPK depending on the cellular context
(Cai and Andres, 2014).

Regulation Through Feedback
Mechanism
A hallmark of signaling networks is the presence of multiple
nodes with feedback loops. The TORC2 signaling network
provides many typical examples of feedback control, a common
feature of cellular signaling systems. Similar to other signaling
pathways, TORC2 signaling is subjected to negative feedback
regulation, which ensures switch-like behavior from initiation
of stimulatory signals to termination of the signaling relay in
a spatially and timely controlled manner. Therefore, several
downstream signals of TORC2 function as negative regulators as
TORC2 signaling. Besides negative feedback regulation, TORC2
is also regulated by positive feedback, which acts as a booster for
TORC2 signaling (Figure 2).

Feedback From TORC2-IRS
Feedback of TORC2 signaling is regulated at the level of TORC2-
IRS (insulin receptor substrate). TORC2 responds to insulin
signaling through IRS-mediated PI3K activation (Sun et al., 1991;
Yang et al., 2006). TORC2 can negatively feedback to IRS1
to decrease insulin receptor signaling (Kim et al., 2012). In
fibroblasts, phosphorylation of the F-box protein FBW8 (an E3
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FIGURE 2 | Feedback regulation of mTORC2 activity. Several downstream signals of mTORC2, such as FBW8-IRS, mTORC1-GRB10-IRS, mTORC1-S6K-IRS, Akt,
and FoxO, function as negative or positive regulators that impact mTORC2 signaling relay. Upon insulin stimulation, mTORC2 phosphorylates FBW8 to allow the
translocation of FBW8 to the cytosol, which mediates ubiquitylation and proteasomal degradation of IRS1, thereby preventing chronic insulin signaling and mTORC2
activation. Insulin-induced mTORC1 phosphorylates and activates Grb10 to inhibit mTORC2 and Akt downstream. The mTORC1 effector S6K1 promotes
phosphorylation-dependent degradation of IRS or phosphorylation of Rictor-T1135 and mSin1-T86/398 to dampen mTORC2 signaling. Akt promotes mTOR-T2173
phosphorylation to impair mTORC2 activity. Akt also positively regulates mTORC2 activity by phosphorylating mSin1-T86. Prolonged inhibition of Akt promotes
FOXO-dependent transcription of RTK and Rictor.

ligase component) at Ser86 by mTORC2 allows the translocation
of FBW8 to the cytosol upon insulin stimulation. Cytosolic FBW8
mediates ubiquitylation and proteasomal degradation of cytosolic
IRS1, thereby preventing chronic activation of insulin signaling
and mTORC2 activation (Kim et al., 2012).

Feedback From Grb10/S6K
Among mTORC2 downstream effectors, mTORC1 functions as
a negative feedback regulator that acutely inhibits mTORC2

signaling through several distinct mechanisms in mammalian
cells. First, short-term treatment with rapamycin enhances the
activity of Akt in response to insulin and IGF1, suggesting
mTORC1 inhibits mTORC2 signaling via feedback regulation
between mTORC1 and insulin/PI3K signaling (Manning, 2004).
Indeed, insulin can activate both mTORC1 and mTORC2.
Activated mTORC1, however, phosphorylates and activates
Grb10, a negative regulator of insulin/IGF-1 receptor signaling
and thus inhibits downstream mTORC2 and Akt. Second,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 July 2021 | Volume 9 | Article 713806

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-713806 July 26, 2021 Time: 18:17 # 8

An et al. Emerging Regulations of TORC2

mTORC1 effector S6K1 promotes phosphorylation-dependent
degradation of IRS-1/2, thereby dampening mTORC2 signaling
(Hsu et al., 2011; Yu et al., 2011). On the other hand,
S6K1 mediates phosphorylation of mTORC2 components
Rictor (T1135) and mSin1 (T86/398), which directly decreases
mTORC2-dependent phosphorylation of Akt-S473 (Dibble et al.,
2009; Julien et al., 2010; Liu et al., 2013).

Feedback From Akt
Akt exerts both positive and negative feedback regulation of
mTORC2 signaling depending on distinct phosphorylation of
mTORC2 components. In human cells, the mTOR protein
is phosphorylated at T2173 of the ATP-binding site in the
kinase domain in an Akt-dependent manner, which impairs

mTORC2 activity; this functions as a negative feedback to directly
control mTORC2 signaling (Halova et al., 2013). In contrast,
Akt also positively feedbacks to mTORC2, thereby directly
potentiating mTORC2 signaling (Yang et al., 2015). The first step
is the phosphorylation and activation of Akt-T308 by PDK1,
which is followed by an increase in mTORC2 activity upon
Akt phosphorylation of mSin1-T86. These subsequent events
ensure the phosphorylation of Akt-S473 by mTORC2, thereby
establishing positive feedback regulation of mTORC2 signaling
(Yang et al., 2015).

Feedback From FOXO
The role of FOXO in the feedback regulation of TORC2 signaling
comes from cancer studies. In some cancer cells, prolonged

FIGURE 3 | Regulation of mTORC2 activity through crosstalk with other signaling pathways, including Hippo, WNT, and Notch, which act both upstream and
downstream of mTORC2. During Hippo inactivation, active and hypophosphorylated YAP translocates to the nucleus and promotes expression of miR-29. The
miR-29 targets PTEN mRNA and inhibits its translation, which leads to increased levels of PIP3 and activation of both mTORC1 and mTORC2. Another key
component of the Hippo pathway, Mst1, phosphorylates and inactivates FOXO1 and substrates of mTORC2-Akt, and thereby regulates mTORC2 downstream
signaling. mTORC2 is activated by WNT in a manner dependent on the small GTPase RAC1. Notch signaling promotes mTORC2 activation possibly through PINK1
and mitochondria.
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inhibition of Akt signaling relieves feedback suppression
of RTK expression and activity through FOXO-dependent
transcriptional induction, thereby enhancing PI3K-Akt signaling
(Chandarlapaty et al., 2011). On the other hand, pharmaceutical
inhibition of the PI3K-Akt pathway promotes FOXO-dependent
upregulation of Rictor expression and thereby directly feedbacks
to mTORC2 activity (Lin et al., 2014).

Regulation Through Crosstalk With
Other Signaling Pathways
In addition to the independent signaling program of TORC2
that provides compensatory mechanisms, the TORC2 signaling
network is extensively intertwined and has several points of
crosstalk with other major signaling pathways. These signaling
pathways, which include Hippo, WNT, and Notch, act both
upstream and downstream of TORC2 pathways (Figure 3;
Tumaneng et al., 2012; Esen et al., 2013; Lee et al., 2013;
Shimobayashi and Hall, 2014).

Hippo Pathway
There is a particularly intimate relationship between the
TORC2 and Hippo tumor-suppressor pathways, which engage
in bilateral cross-regulation at multiple levels. The Hippo
pathway determines precise control of cell size by inhibiting
phosphorylation of the transcription co-activator Yes-associated
protein (YAP). Upon Hippo inactivation, the active and
hypophosphorylated YAP translocates into the nucleus to trigger
the transcription of genes encoding cell proliferation (Zhao
et al., 2011). It has been demonstrated that YAP upregulates
the microRNA (miR) miR-29, which in turn inhibits the
expression of PTEN in breast cancer cells. YAP-mediated PTEN
downregulation leads to the accumulation of PIP3, which
potentiates PI3K signaling and thereby positively activates both
mTORC1 and mTORC2 (Tumaneng et al., 2012). On the
other hand, mTORC2 also exhibits feedback control to the
Hippo pathway via AMOTL2-mediated inactivation of YAP. The
mTORC2 phosphorylates AMOTL2 and blocks its ability to bind
and repress YAP, leading to glioblastoma cell growth and survival
(Artinian et al., 2015). Therefore, the mutual crosstalk between
Hippo and mTORC2 tightly controls the balance between cell
growth and proliferation.

The bilateral cross-regulation of Hippo and mTORC2 is also
mediated by Mst1 kinase, another key component of the Hippo
pathway. Mst1 has been shown to phosphorylate and inactivate
FOXO1, substrates of mTORC2-Akt, and thereby regulates
mTORC2 downstream signaling and cell death in neuronal cells
(Lehtinen et al., 2006). In cardiac cells, however, mTORC2
phosphorylates Mst1 kinase and functions as a direct negative
regulator of Mst1 activity (Sciarretta et al., 2015).

WNT Pathway
Another major signaling pathway that exhibits cross-regulation
with TORC2 is the WNT pathway. During osteoblast
differentiation, the non-canonical ligand WNT3A activates
mTORC2 and therefore induces aerobic glycolysis known as the
Warburg effect. This mTORC2-mediated glucose metabolism
requires the binding of WNT3A with its co-receptor low-density

lipoprotein receptor-related protein 5 (LRP5) but not canonical
WNT signaling. Moreover, WNT3A-mediated mTORC2
activation requires RAC1 (Esen et al., 2013). The mTORC2
signaling has another point of cross-regulation with WNT
signaling. Activation of the WNT pathway upregulates cyclin
D and c-Myc in cancer cells, which eventually activates FOXO
to enhance Rictor levels and therefore mTORC2 activation
(Chen et al., 2010).

Notch Pathway
The Notch pathway is another example of crosstalk with
TORC2 signaling. Notch plays critical roles in the control
of proliferation and cell fate decisions (Bray, 2006). Notch
receptor engagement by cell surface-tethered ligands (Delta and
Jagged) on neighboring cells initiates cleavage of the receptor
to release the Notch intracellular domain (NICD), which acts
as a transcriptional coactivator that promotes gene expression.
In multiple cell types including neuroblasts, thymocytes, and
leukemia, Notch signaling promotes mTORC2 activation and
Akt-S473 phosphorylation, leading to cell survival and an
anti-apoptotic response (Perumalsamy et al., 2009; Lee et al.,
2012, 2013). Although PTEN-induced kinase 1 (PINK1) and
mitochondria have been proposed (Lee et al., 2013), the detailed
mechanism for Notch in activation of mTORC2 signaling
remains largely unexplored.

CONCLUSION AND PERSPECTIVES

Exciting progress has been made over the last few years in
elucidating the complex network of TORC2 signaling and its
broad implications in human physiology and pathology. Basic
investigations into the genetics, cellular biology, biochemistry,
and structural biology of TORC2 have yielded a sophisticated
view of how the activity of this multi-protein kinase is regulated.
As discussed above, TORC2 acts as a central signaling node
that is precisely and exquisitely regulated by a variety of
upstream inputs to exert widespread control over many biological
processes and maintenance of cellular homeostasis. A natural
question is why TORC2 has evolved such diversified modes
of regulations. To this end, it is helpful to first consider
the biological functions of TORC2, as it centrally controls
many fundamental requirements and processes for life, such as
cell proliferation, survival, and metabolism. In principle, any
perturbation or interference with these processes might converge
on this kinase and profoundly impact its activity. Another
possible explanation might lie in the molecular composition and
structural features of TORC2. TORC2 is a multi-protein kinase
consisting of multiple accessory subunits, such as Rictor and Sin1,
in addition to the catalytic subunit TOR. These components are
large and possess a number of regulatory domains, interactive
interfaces, and modifiable sites. These unique compositional
and structural features allow TORC2 to respond to a wide
array of inputs, and at the same time, permit interactions
and post translational modifications that fine-tune TORC2
integrity, assembly, or, perhaps substrate recruitment. Thirdly,
like many other protein kinases, the activity of TORC2 heavily
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relies on its subcellular localization, especially to membranous
structures. Therefore, signals that guide TORC2 distribution to
specific cellular compartments could also extensively modulate its
activity, which permits the sensing of TORC2 to diverse inputs
or allow access to distinct substrates at the right time and at
the right place. Last but not least, TORC2 signaling has multiple
connecting nodes that allow both compensatory feedback control
from within TOR signaling, as well as crosstalk with other
signaling pathways. These new connections have significantly
complicated the regulation of TORC2 activity and its possible
biological impacts.

The identification of many emerging upstream inputs and
feedback as well as crosstalk mechanisms is revealing the
broad scope of TORC2 regulatory modes and is also raising
interesting and challenging questions about the regulation
of this complex. Signals generated at the plasma membrane
are emerging regulators for TORC2 signaling. However, the
regulatory mechanisms governing TORC2 activation at the
plasma membrane are still incompletely understood. For
example, are growth factors and PI3K signaling indeed required
for TORC2 activation, and to which extent? How exactly do
they control TORC2 membrane targeting and activation? How
does membrane tension act on the plasma membrane to regulate
TORC2 activation in mammalian cells? Does it involve the
dynamics of the cytoskeleton? Could other exogenous agents,
such as viral or bacterial pathogens signal TORC2 through
their cognitive receptors in a host cell? How do metabolites
and extracellular nutrients regulate TORC2 activation at the
plasma membrane? Could this pathway be explored for the
development of new therapies for metabolic disorders and
cancer?

Compared with the well characterized lysosome localization
of TORC1 activity, the localization of TORC2 is more
ambiguous. There could be multiple pools of TORC2, each at
a distinct subcellular location. Indeed, TORC2 localization and
activity have been observed at several specialized membranous
structures, including mitochondria, endosomes, endoplasmic
reticulum (ER), and mitochondria-associated ER membrane
(MAM), in addition to the plasma membrane (Betz and Hall,
2013). Therefore, it will be important to determine why TORC2
has so many subcellular distributions and what are the main
upstream inputs that modulate TORC2 localization. How is
TORC2 activation controlled by these inputs? Does one common
intracellular input exist that regulates TORC2 activation or
does TORC2 sense distinct inputs to enable cell survival in a
spatiotemporal manner? It will also be interesting to determine
if posttranslational modifications, such as phosphorylation
and lipid modifications, of TORC2 components regulate its
subcellular targeting to and activation at membranous structures?
How are localization and activation of TORC2 coordinated inside
the cell?

Dysregulation of TORC2 activity has been linked to
many disease processes; this has been firmly established
in metabolic diseases and cancer. Efforts are underway to
develop selective strategies for targeting TORC2 that are
directly involved in disease progression. Because specific and
acute small-molecule inhibitors of this kinase are currently

unavailable, the identification of TORC2-targeted strategies
should be facilitated by the availability of novel mechanisms
of TORC2 regulation. One possible approach for TORC2
selective inhibition will be via disruption of complex-specific
protein-protein interactions, e.g., the association of mTORC2
with CD146 or other membrane proteins. These targeting
approaches would not affect other signaling of TOR pathways
or TORC1-dependent negative feedback loops. Alternatively,
the rational design of TORC2-specific inhibitors might also be
facilitated by the availability of a high resolution 3D structure
of TORC2 (Chen et al., 2018; Stuttfeld et al., 2018; Scaiola
et al., 2020). The ideal chemical compound might disrupt
TORC2 complex assembly, suppress substrate recruitment to
the TOR active site, prevent the interaction of upstream
regulators, or even inhibit membrane association (e.g., via the
PH domain of Sin1). In addition, other novel approaches
targeting TORC2 will also hopefully be developed and used
in vivo. Indeed, a short, synthetic, single-stranded antisense
oligonucleotide (ASO) targeting Rictor specifically has been
shown to inhibit mTORC2 activity and reverse the behavioral
and neurophysiological abnormalities in PTEN-deficient mice
(Chen et al., 2019). Therefore, the development of selective
and acute TORC2 inhibitors in future studies might not only
provide a firm basis for studying TORC2 signaling but also
provide feasible therapeutic strategies for treating TORC2-
mediated diseases.

As these ongoing mysteries being revealed and our
understanding of these questions becomes increasingly
sophisticated, it will not only advance our current view of
many vital physiological processes but also provide an important
context for therapeutically countering the effects of pathogenic
TORC2 in cancer and many other diseases, ultimately improving
the quality of human life.
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