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Abstract
Carriers of a pathogenic germline mutations in the PTEN gene, a well-known tumor suppressor gene, are at
increased risk of multiple benign and malignant tumors, e.g. breast, thyroid, endometrial and colon cancer. This is
called PTEN Hamartomous Tumor Syndrome (PHTS). PHTS patients may also have an increased risk of
immunological dysregulation, such as autoimmunity and immune deficiencies. The effects of PTEN on the
immune system have been studied in murine knockout models demonstrating that loss of PTEN function leads to
dysregulation of the immune response. This results in susceptibility to autoimmunity, impaired B cell class
switching with subsequent hypogammaglobulinemia. Additionally, a decreased ability of dendritic cells to prime
CD8+ T cells was observed, leading to impaired tumor eradication. Immune dysfunction in PHTS patients has not
yet been extensively studied but might be a manageable contributing factor to the increased cancer risk in PHTS.
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troduction
he role of the immune system in carcinogenesis and cancer
ogression has been widely established, but an association between
reditary tumor syndromes and immunological dysfunction has not
t been demonstrated. Hereditary tumor syndromes are caused by
rmline mutations in tumor suppressor genes or proto-oncogenes,
e of such tumor syndromes is PTEN hamartoma tumor syndrome
HTS). PHTS is an autosomal dominant tumor syndrome, caused
loss of function mutations in the phosphatase and tensin homolog
ne (PTEN). PTEN is a negative regulator of the PI3K/Akt pathway,
ereby acting as a tumor suppressor gene. Through the PI3K/Akt
thway, PTEN has a regulating effect on cell proliferation, cell
etabolism, cell survival and angiogenesis [1–3].
PHTS is a collective term that replaces previously used syndrome
ames, such as; Cowden syndrome, Bannayan-Riley-Ruvalcaba
ndrome and Proteus-like syndrome. It is associated with an
creased risk of benign and malignant tumors of the breast, thyroid,
dometrium, colon and other forms of tumors. Additionally, PHTS
tients may have many different features ranging from macro-
phaly, developmental delay and autism specter disorders to benign
in and organ lesions such as trichilemmomas and dysplastic
ngliocytoma [4–7]. The current estimate is that 1 in 200,000
dividuals has PHTS. However, because several PHTS features are
ite common in the general population, such as benign lesions of the
east uterus and skin, these patients may not have been recognized as
HTS. This means that the incidence of PHTS in the general
pulation may be higher than the earlier estimates [8]. Clinical
aracteristics of PHTS show high penetrance and it is estimated that
age 30, nearly 100% of germline PTEN mutation carriers exhibit
me features associated with PHTS. De novo mutations make up for
–40% of diagnosed cases [4].
Involvement of the immune system in carcinogenesis is widely known
d accepted. During cancer development, regulatory cellular processes
e lost and genetic alterations accumulate [9]. This leads to the
pression of neoantigens by cancer cells that can eventually be
cognized by the immune system as foreign and consequently elicit a
D8+ T cell mediated response [10]. In recent years, evidence of
mune dysregulation in PHTS patients has emerged with the
blication of small case series as well as more extensive cohorts
1–17]. Nevertheless, a possible relationship between immune
sregulation and cancer risk has not been established in PHTS. This
view aims to elaborate on known immunological phenomena in PHTS
dividuals and PTEN knockout mice and to identify directions for
ture research. We hypothesize that intervening in the immunological
sregulation may lead to new treatment options for PHTS patients.

munological Phenomena in PHTS Patients
spite of the heterogeneous phenotypes of PHTS individuals, the
munological symptoms reported in literature seem quite consis-
nt. Recurring upper respiratory tract infections are reported in
ultiple case reports and case series [11,12,18]. In one of these case
ports, one individual developed a skin manifestation compatible
ith a reactive cutaneous lymphocytic vasculitis that fully resolved
ter tonsillectomy [12]. A larger retrospective study with 34 PHTS
tients, did not report any susceptibility to infections [14].
In all of the cases with recurrent upper respiratory tract infections,
perplasia of the adenoids and/or tonsils were present [11,12,18]. In
e individual diagnosed with PHTS, extreme pharyngeal papilloma-
sis and tonsillar hypertrophy triggered by Epstein–Barr viral infection
used extensive airway obstruction necessitating tracheotomy. Obser-
tions from biopsies revealed only benign lymphofollicular hyperplasia
ithout malignancy. The son of this individual carried the same PTEN
utation and presented himself at the age of 4 with sleep apnea due to
tensive tonsillar enlargement. Pathological examination revealed
pillomatous changes with lymphofollicular hyperplasia, similar to the
dings in the father's case [16].
Lymphoid hyperplasia in PHTS patients is not restricted to
enoid and tonsillar lymphoid tissue, Tsujita et al. used PET-scans
determine lymphoid hyperplasia in two PHTS individuals and
monstrated increased cervical and abdominal lymph nodes [18].
astrointestinal polyps with follicular lymphoid hyperplasia has been a
ported finding in independent case series. In 34 PHTS patients, 16
0%) had gastro-intestinal lymphoid hyperplasia, located in the colon
d rectosigmoid without signs of mucosa-associated lymphoid tissue
ALT) lymphoma. Investigation of MALT tissue in controls and

HTSpatients revealed reduced apoptosis and increased proliferation of
D10+ pre-B cells. There were no differences detected between control
d PHTS T cell populations [14]. In a more recent publication, 7 out
12 (58%) PTEN patients with confirmed PTEN mutations had
martomous polyps with hyperplastic lymphoid follicles [19]. It must
stressed, however, that polyposis is a possible feature of PHTS that
s not been studied extensively and large studies have not yet been
blished.
Abnormalities in the humoral response of the adaptive immune
stem have also been reported. Hypogammaglobulinemia has been
ported in several publications [11,20]. Further analysis of the
munoglobulin subtypes in PHTS patients show impaired class
itch recombination (CSR) leading to a disrupted IgG and IgA
bclass distribution with increased IgG1 and decreased IgG2

ncentrations. Similar results were described for IgA [20]. In a
rger study, hypogammaglobulinemia was not observed in 34 PHTS
tients, although PHTS immunoglobulin levels were reported to be
the lower level of normal [14]. In one case report of a 5- year old
y, within 15 months long-term humoral response to Haemophilus
fluenzae B and pneumococcal vaccination declined to nearly
seline levels [11]. Further study of this phenomenon is warranted.
Lymphopenia has also been reported in a few case series [11–13,18].
creases in the absolute number of peripheral transitional B cell subsets
mbinedwith a reduction of circulating CD4+ T cells with subsequent
version of the CD4+/ CD8+ ratio is shown in multiple studies
3,14,20]. The increase of transitional B cells appears to be more
onounced in patients with hypogammaglobulinemia [20].
In patients with PHTS, dysregulation of the immune system is also
flected by hyperinflammation leading to an increased incidence of
sorders. In 34 patients described by Heindl et al., 7 (21%) displayed
toimmune disorders such as autoimmune lymphocytic thyroiditis
d autoimmune haemolytic anemia [14]. More recently, autoim-
unity related phenomena were seen in 27% of 79 PHTS patients,
cluding thyroiditis, colitis, celiac disease, haemolytic anemia and
rnicious anemia [13]. These results imply that autoimmunity may
a feature of PHTS and therefore, it warrants further investigation.

n overview of the immunological features previously observed in
HTS patients is depicted in Table 1.
In some primary immunodeficiency syndromes, the pathway in which
EN has a function, the PI3K/Akt1/mTOR pathway, is known to be
regulated and is a well-known causal factor of immunodeficiency.
ctivated PI3Kδ syndrome (APDS) leads to a plethora of immunological
enomena such as recurrent sinopulmonary infections, inability to clear



vi
[2
tid
Lo
re
de
PH
cl
in

P
In
de
em
m
im
pr
tu
co
hu
ra
sy

N

de
PT
ha
co
gi
A

PT
N
T
w
fin
im
th

M

tu
m
ge
fu
cl
an
m
re
pr
fu
to
m
pe
ar
of
pr
m
ar
du
su
re
fu
de
of
th

M

su
In
ce
th
PI
in
al
PI
of
co
tu

D

ha
D
su
PT
in
in
cr

Table 1. Immunological clinical features in PHTS patients.

Study (number of
cases reported)

Described clinical features (number of cases with features)

Heindl et al.(34) [14] -lymphoid hyperplasia (26/34)
-Autoimmunity (11/34)

Browning et al. (2) [11] -Recurrent (upper) respiratory tract infections (2/2)
-Panhypogammaglobulinemia (1/2)
-Decreased long term antibody response to specific vaccines (1/2)
-Lymphoid hyperplasia (2/2)
-Increased amount of transitional B cells

Driessen et al.(9) [20] -Hypogammaglobulinemia(3/9)
-Increased absolute number of transitional B cells
-Affected class switch recombination, increasing IgG1, and
decreasing IgG2

Mauro et al.(1) [12] -Recurrent upper respiratory tract infections
-Reactive cutaneous lymphocytic vaculitis
-Lympohopenia

Sharma et al.(2) [16] -Recurrent upper respiratory tract infections in childhood (2/2)
-Lymphoid hyperplasia (2/2)

Tsujita et al. (4) [18] -High serum IgM (1/4)
-Recurrent pulmonary opportunistic infections(2/4)
-Lymphopenia (1/4)
-CD4+/CD8+ ratio inversion (1/4)
-Lymphoid hyperplasia(2/4)

Shaco-Levy et al. (12) [19] -Hamartomas with lymphoid follicles 7/12
-Juvenile hamartoma inflammatory intestinal polyps(12)

Boccone et al. (1) [17] -Lymphoid hyperplasia
Chen et al. (79) [13] -Lymphoid hyperplasia (18/79)

-Autoimmunity (21/79)
-Significant reduction of peripheral blood lymphocytes
-Increased number transitional B-cells
-CD4+/CD8+ ratio inversion

Autoimmunity includes Hashimoto's thyroiditis and autoimmune haemolytic anemia.
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ral infections, benign lymphadenopathy, and autoimmune diseases
1,22]. It is caused by gain-of-function mutations in the phosphoinosi-
e 3 kinase (PI3Kδ) gene, a leukocyte specific subunit of PI3K [23,24].
ss of function in the downregulating gene PIK3R1, coding for the
gulatory PI3K subunit p85α, has also been reported to cause immune
ficiencies [25]. Symptoms correlate with the symptoms observed in
TS patients, although APDS symptoms tend to be more severe. The

inical similarities and implication of the same pathway underscore the
volvement of PTEN in immune system function.

TEN and the Immune System
cancer development failure of the immune system to recognize and
stroy malignant cells is mandatory for tumor survival. Tumors can
ploy numerous tactics to escape immune surveillance [26,27]. By
odulating their own micro-environment, tumors can evade the
munological anti-tumor response by the secretion of immunosup-
essing cytokines and chemokines. Information on this so-called
mor micro-environment (TME) in PTEN deficient organisms
mes almost exclusively from murine models, as gathering sufficient
man PHTS related tumors is complex due the fact that PHTS is a
re disease. The interplay between different cells of the immune
stem has not been studied extensively in PTEN −/− mice.

atural Killer Cells
Natural killer (NK) cells have functions in the finding and
struction of infected, foreign or malignant cells [28,29]. The role of
EN and the PI3K/Akt pathway in NK function and maturation
s been a point of interest for some time [30–33]; Briercheck and
lleagues reported that an NK cell lineage specific deletion of PTEN
ves rise to NK cells with increased cytolytic function [34].
dditionally, the migration of NK cells towards distal tumors in
EN-deleted NK cells in mice is impaired and the migration of
K cells from the bone marrow to the bloodstream is increased.
umor cells that were introduced into the peripheral bloodstream
ere cleared more effectively than in wild type mice [35]. If these
dings are translatable to human PHTS physiology, this would
ply a decreased ability of NK cells to target cancer cells in tissue and
us an increased cancer risk.

acrophages
Macrophages are important players in the TME, and in certain
mors as much as 50% of tumor mass can be tumor associated
acrophages (TAMs) [36]. Infiltration of tumors by TAMs is
nerally associated with poorer prognosis [37–39]. To describe their
nctional programming and activation status, macrophages have
assically been divided in the proinflammatory M1 type macrophage
d the anti-inflammatory, proliferation supporting M2 type. M1
acrophages are equipped for the “eradication phase” of the immune
sponse, while M2 macrophages are essential in the tissue healing
ocess [40]. Nevertheless, macrophages are characterized by a high
nctional plasticity and therefore a wide range of variety with respect
their pro- and anti-inflammatory activity is observed. Studies in
yeloid PTEN deficient mice report an increase in M2-like
ritoneal and bone marrow-derived macrophages with an increased
ginase I activity [41]. Importantly, the TAMs infiltrating the TME
many malignant tumors, including breast cancers which are

evalent in PHTS patients, show a preponderance of M2-like
acrophages that are regarded as tumor promotors [42]. Increased
ginase production by TAMs can lead to impaired T cell function
e to arginine depletion in the TME, thereby reducing immune
rveillance [41]. Moreover, the PI3K/AKT/mTOR is one of the key
gulators of the cell metabolism. Emerging evidence indicates that
nctional reprogramming of macrophages/TAMs is highly depen-
nt on changes in the immune cell metabolism linked to activation
the Akt/mTOR pathway, which is in turn essential for reshaping
e epigenetic landscape and functional program of the cell [43–47].

yeloid Derived Suppressor Cells (MDSCs)
MDSCs comprise a heterogeneous group of immune cells with
ppressive functions in chronic inflammatory conditions [48,49].
filtration of tumors with MDSCs is associated with attenuated T
ll function and decreased effect of immune checkpoint inhibition
erapy (ICI) [50–52]. By selectively inhibiting the myeloid specific
3K in murine models, De Heneau et al. restored sensitivity for ICI
tumors with high MDSC infiltration [53]. Sensitisation to ICI was
so achieved in head and neck cancers by selective inhibition of
3Kδ and PI3K isoforms [54]. With PTEN as a negative regulator
the PI3K/Akt pathway, (partial) loss of PTEN function may
ntribute to MDSC dependent suppression of T cells and inhibit
mor surveillance.

endritic Cells
Dendritic cells (DCs) are the professional antigen presenting cells and
ve a pivotal role in the priming of the adaptive immune system [55].
ysfunction of DCs could theoretically lead to decreased tumor immune
rveillance through impaired activation of CD8+ cytotoxic T cells. In a
EN−/− myeloid lineage murine model, PTEN deletion led to an
creased colon cancer tumor load and decreased survival. However, an
creased number of CD8α+ DCs was found in the spleen. CD8α+

oss-presentingDCs are a uniqueDC subset specialized in cross-priming
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Figure 1. Overview of effect of loss of PTEN on the murine immune system.
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CD8+ cytotoxic T cells and essential for tumor immune-surveillance
6]. However, in myeloid PTEN−/− mice this cross-priming of
ogenous antigens was deficient. If these findings are translatable to
TS, deficient priming ofCD8+ cytotoxic T cellsmay lead to decreased

mor cell killing activity, promoting tumor growth. Additionally,
EN−/− DCs with increased programmed death-ligand 1(PD-L1) and

D-L2 expression were observed. These molecules are known to induce
ergy in T cells at ligation [57], providing an additional means for the
mor to escape surveillance.

Cells
B cells are vital for mounting a humoral response against infection
d tumors. By recognition of (neo)antigens they can produce
tigen specific immunoglobulins. In B cell-specific PTEN−/− mice,
cells show increased proliferation and decreased apoptosis in the
arginal zones of the spleen. Additionally, they have an increased
mber of peritoneal B cells [58]. These cells produce polyreactive
M that can react weakly to autoantigens [59]. A deficient class
itch recombination was observed in another B cell specific PTEN−/−

ouse model, with decreased IgG and IgA levels and a fourfold increase
IgM [60]. Dysfunction of a B cell antibody response leads to
creased tumor surveillance and an increase in peritoneal B cells could
sult in autoimmune disease.

cells
The role of T cells in counteracting tumor growth by recognition
tumor-expressed antigens and subsequent activation of effector T
lls has been widely established [61,62]. The PI3K/Akt pathway has
central role in T cell development [63]. In thymocyte restricted
TEN−/−, CD3 −/− mice models, thymocytes missing the functional
chain receptor were not adequately removed during β-selection [64].
he failure to induce apoptosis in these TCRβ- cells could explain
mphoid hyperplasia in PHTS patients. Lymphoid hyperplasia and
toimmunity was also demonstrated in PTEN+/− mice and was
tributed to a decreased response to CD95 (Fas) induced apoptosis
5]. Binding to the Fas receptor is a major pathway for CD8+ cells to
duce cell death in tumor cells. Decreased response to Fas-induced
optosis is often seen in cancer, promoting tumor growth [66].
In T helper (Th) cell specific PTEN knockout mice, Th cells show
improved stimulatory function and increased excitability by sole

CR activation. Production of proinflammatory IL-2 by these
TEN −/− T helper cells, and proliferation, is increased [63,67].
lthough not reported in all studies with T cell specific knockout
odels, the downside of this increased immune response is the loss of
lf-tolerance and the induction of auto-reactive T cells [68]. The
thophysiological link between autoimmunity remains largely
clear, but autoimmune disease is associated with increased cancer
sk [69–71]. The increased proliferation of T cells in T cell specific
urine knockout models does not apply to the Th17 subset, Th17
lls are associated with autoimmune disorders such as arthritis.
ownregulation of IL-2 by PTEN is required for Th17 cells to
velop. Loss of PTEN reduces severity of Th17-associated
toimmunity disorders [72]. In antigen presenting cells specific
TEN −/− mice, there was a marked decrease in autoimmune arthritis
d autoimmune encephalomyelitis. IL-17 and IL-22 production was
so reduced compared to wild-type mice. Direct administration of
thritogenic serum, thereby circumventing the adaptive immune
sponse, did not lead to a diminished phenotype. Most likely, in
ice, PTEN is essential in antigen presenting cells to induce
nctional programming towards Th17 cell development [73,74].
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CD4+ FoxP3+ regulatory T cells (Tregs) have an important role in
e creation of an immunologically suppressed tumor environment.
umors actively recruit Tregs to create an immunosuppressive TME.
he ablation of Tregs in mice drastically decreases tumor load that may
me at a price of lethal autoimmunity [75,76]. In tumors, Tregs
aintain their immunosuppressive phenotype by interaction with the
munoregulatory enzyme indoleamine 2,3,-dioxygenase (IDO) (over)
pressed in tumor cells and in immune cells often present in the TME,
ch as DCs [77]. Downregulation of the Akt pathway is important for
regs to maintain stability. Consequently, PTEN was shown to be an
portant regulator of Treg function [77]. In Treg specific PTEN
ockout mice, phosphorylation of Akt was increased after IDO
imulation leading to a switch in phenotype from Tregs to
perinflammatory ex-Tregs. As a result, proinflammatory cytokines
ch as IL-2 and IL-17 were expressed in the TME and facilitated an
fective anti-tumor response. This suggests that loss of PTEN in Tregs
duces an immunogenic TME [77]. Other studies have also
monstrated this effect in murine Foxp3+ PTEN−/− models [78,79].
recent study in PHTS individuals, using biopsies ofmucosa associated
mphoid tissue, shows that Tregs have a normal phenotype. Suggesting
at residual PTEN activity in PHTS is sufficient to sustain the
munosuppressive Treg phenotype or that there is compensatory
osphatase activity [13].
The effects of PTEN deletion on the adaptive immune system are
ell documented in mouse models (Figure 1). These models show
anges to B- and T cells that can result in hypogammaglobulinemia
d autoreactivity. Changes to the TME in Treg PTEN−/− mice
monstrate the important regulatory role PTEN has in regulating
e anti-cancer immune response.

TEN-Deficient Tumors
Limited data is available on the immune cell populations in PTEN-
ficient tumors. Peng and colleagues report that human melanoma
mples lacking PTEN contain less tumor infiltrating lymphocytes
d achieve less tumor reduction with anti-PD1 antibodies compared
PTEN-expressing tumors [80,81]. Similar results were reported in
case report of a female with metastatic uterine leiomyosarcoma who
hieved near total remission after anti-PD1 monotherapy. There was
e treatment resistant lesion which was removed surgically. The
sistant lesion showed post treatment biallelic PTEN mutations and
gnificant up-regulation of immunomodulatory molecules such as
EGF and CCL2 was observed in PTEN null tumors [80]. VEGF
s been known to contribute to an immunosuppressive TME by
cruiting MDSCs, Tregs and immature DCs [82]. These data show
at PTEN deletion in tumors may lead to an immunotolerant TME
the inhibition of lymphocyte infiltration and the upregulation of
munomodulatory molecules.

onclusion and Perspective
urrent studies suggest that immune dysregulation is one of the
atures of PHTS. This dysregulation is reflected in autoimmune
sorders, lymphoid hyperplasia, hypogammaglobulinemia and
anges in T- and B- cell subsets. The role of immune dysregulation
carcinogenesis in PHTS patients has not yet been extensively
plored. The effects of PTEN-loss have almost exclusively been
vestigated in mouse knockout models. In murine PTEN knockout
odels, PTEN-null myeloid cells show dysfunction that could be
nducive to an increased cancer risk and a less immunogenic TME.
these mouse models, the effect of different cell types carrying
EN mutations interacting with each other cannot be studied
equately. Additional models need to be developed to study the
fect of PTEN mutations on human physiology (e.g. organoids).
Targeting dysfunctional immune cell types could lead to new
eatment strategies for cancer in PHTS patients. A viable candidate
ll type to target could be the CD141+ DC subset, improving tumor
tigen cross presentation to CD8+ T cells [83]. Tumor character-
tics, such as up-regulated VEGF expression, can also be a treatment
rget. Future investigation may focus on studying tumors of PHTS
tients and translating aforementioned findings from animal models
humans. This could achieve greater insight in PHTS pathophys-
logy and help identify possible targets for therapy.
By means of this review, we have demonstrated that signs of
mune dysregulation have been reported consistently in PHTS
tients. Clinical phenomena differ among patients, but three clinical
llmarks can be identified from current available literature. Firstly,
increased susceptibility to viral and bacterial infection is observed
1,12,16,18]. Secondly, an increased frequency of autoimmune
sorders is reported in PHTS patients, ranging from autoimmune
yroiditis to haemolytic anemia [13,14].
PHTS has previously been characterized as a genetic tumor risk
ndrome with macrocephaly caused by a germline mutation in the
EN gene. Literature suggests that immune dysregulation is also a

ature caused by pathogenic germline PTEN mutations. Combined
ith the knowledge that the immune system has an instrumental role
carcinogenesis, immune dysregulation and increased cancer risk
uld be considered as two features of PHTS that are not merely co-
curring but interdependent.
Linking immunological dysregulation to pathological germline
utations in PTEN and increased cancer risk might have
plications for future treatment of PHTS patients. Uncovering
e ways by which the immune system contributes to carcinogenesis
PHTS may provide manageable targets for further treatment of this
ave disease.
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