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Adult cardiac progenitor cells (CPCs), isolated as cardiosphere-derived cells (CDCs), represent promising candidates for cardiac
regenerative therapy. CDCs can be expanded in vitro manyfolds without losing their differentiation potential, reaching numbers
that are appropriate for clinical applications. Since mechanisms of successful CDC survival and engraftment in the damaged
myocardium are still critical and unresolved issues, we aimed at deciphering possible key factors capable of bolstering CDC
function. In particular, the response and the phenotype of CDCs exposed to low concentrations of the multifunctional cytokine
tumor necrosis factor α (TNF-α), known to be capable of activating cell survival pathways, have been investigated. Furthermore,
differential biological responses of CDCs from male and female donors, in terms of cell cycle progression and cell spreading,
have also been assessed. The results obtained indicate that (i) the intracellular signaling activated in our experimental conditions
is most likely due to the prosurvival and proliferative signaling of TNF-α receptor 2 and that (ii) cells from female patients
appear more responsive to TNF-α treatment in terms of cell cycle progression and migration ability. In conclusion, the present
report highlights the hypothesis that TNF-stimulated CDCs isolated from females may represent a promising candidate for
cardiac regenerative therapy applications.

1. Introduction

Cardiovascular diseases remain the leading cause for morbid-
ity/mortality in the Western world [1, 2]. Translational
research and recent clinical trials suggest that adult stem/pro-
genitor cell (S/PC) transplantation into the damaged myo-
cardium (cell therapy) can improve cardiac function [3, 4].
To regenerate the heart and restore its function, many types
of S/PCs are currently being explored, each with their own
benefits and limitations. Cardiac cell therapy with S/PCs
from extracardiac tissues (e.g., mesenchymal stem cells and

bone marrow mononuclear cells) can decrease the death rate
of endogenous myocytes and improve neoangiogenesis,
probably by secretion of paracrine factors, such as several
cytokines, chemokines, and growth factors [5]. These factors
have been shown to reduce inflammation, decrease apoptotic
cell death, and improve overall myocardial function [6].
Direct regeneration has been shown to be more efficient with
the use of resident cardiac progenitor cells (CPCs) [7], which
nonetheless exert paracrine effects [6, 8]. Adult CPCs are
multipotent cells isolated from heart tissue obtained from
patients undergoing surgery or catheterization and can be
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isolated as spontaneous spheroids, named cardiospheres
(CSs) [9]. These cells can be expanded in vitro manyfolds
without losing their differentiation potential, reaching num-
bers that are appropriate for in vivo transplantation in
patients [10]. CSs can be efficiently isolated even from
advanced heart failure patients [11], and the only medical
parameter described so far to significantly impair CS isola-
tion efficiency and affect CS phenotype is beta-blocker
assumption by tissue donors [12]. Despite promising preclin-
ical and clinical results, several limitations still exist for
cardiac cell therapy. In particular, the need to improve sur-
vival, differentiation, and engraftment of the transplanted
stem cell population [13], even with resident CPCs [14],
has been envisaged. Thus, the first step to optimize the repair
of a damaged myocardium by transplanted S/PCs is to
increase their survival. Insufficient homing and engraftment
of transplanted cells into the ischemic milieu limit in fact
the full potential of cell-based cardiac repair, and several
approaches have been introduced to overcome these limita-
tions, such as tissue engineering [15] or pharmacological
pre-/postconditioning [16, 17].

Multiple molecules have been described to mediate the
complex and hostile signals in diseased cardiac tissue during
injury and remodeling. Among these, tumor necrosis factor
alpha (TNF-α) seems to play a critical role. This is a potent
multifunctional cytokine involved in a number of pathologies
in the cardiovascular system, including heart failure, and
associated with many diverse physiological and physiopatho-
logical opposite events, such as cell death by apoptosis, but
also cell growth, differentiation, and cell survival depending
on the dose [18]. In line with this, a dual role of TNF-α in
the attenuation or in the aggravation of cardiac injury has
been proposed. Paradoxically, it has in fact been reported
that low levels of TNF-α can trigger a cardioprotective pro-
gram via the well-described free radical signaling pathway
[19], whereas high concentrations of this cytokine are
responsible of its well-known proapoptotic and inflamma-
tory cascades [20]. Concerning CS biology, multiple signaling
pathways have been reported so far to affect their phenotype,
including those related to thrombin [21], EGF [22], IGF1 and
Wnt [23, 24], TGF-beta [25], and beta-adrenergic signaling
[12, 26]. However, the influence of TNF-α on the biology of
CPCs has not been thoroughly investigated yet.

Since abundant data from the literature underscore a sig-
nificant disparity between men and women for the incidence
and severity of cardiovascular diseases [27], several investiga-
tions aimed at elucidating the mechanisms underlying these
differences have been carried out. It has been observed that
men undergo more rapid progression of heart failure, less
preservation of myocardial mass as they age, and worse
age-matched cardiac contractility compared to women.
However, the possible implication of CPCs in this disparity
has been poorly investigated. For instance, sex-related differ-
ences in the abundance of resident CPCs have never been
detected so far [11, 12, 28], and sex-related differences in
the response to inflammatory signals have not been investi-
gated yet. However, interestingly, a differential cardioprotec-
tive role of TNF-α has been described in mesenchymal stem
cell (MSC) therapy based on the sex of MSC donors. In fact,

MSCs from males seem to be more sensitive to TNF-α-medi-
ated detrimental signals, that is, at high concentrations of the
cytokine, than their female counterparts [29]. On the basis of
these considerations, CPCs in the form of CS-derived cells
frommale and female donors have been exposed to low, non-
cytotoxic concentrations of TNF-α in order to investigate
their differential biological response.

2. Materials and Methods

2.1. Cardiosphere and Cardiosphere-Derived Cell Isolation,
Culture, and Treatments. Human auricola biopsies were
obtained from nine patients (five males and four females)
undergoing cardiac surgery for ischaemic cardiomyopathy,
after informed consent and under protocol number 2154/
15, approved by the Ethical Committee of the “Umberto I”
Hospital, “La Sapienza” University of Rome. Available
anthropometric and medical data are reported in Table 1.
Donors were all under beta-blocker treatment [12]. CPCs
were isolated with the standardized CS protocol, as previ-
ously described [30]. Briefly, after approximately 4 weeks of
explant outgrowth on fibronectin-coated Petri dishes (BD
Biosciences) in complete explant medium (CEM; IMDM
medium (Gibco) supplemented with 1% penicillin-strepto-
mycin, 1% L-glutamine, 0.1mM 2-mercaptoethanol (Gibco),
and 20% FBS (Lonza)), explant-derived cells (EDCs) were
collected every 7 days (up to 3 times from each explant)
and seeded on poly-D-lysine- (BD Biosciences) coated wells
(7000 cells/cm2) to obtain CSs in CS-growth medium
(CGM): 35% IMDM/65% DMEM/F-12 Mix (Gibco and
Lonza), 3.5% FBS, 1% penicillin-streptomycin, 1% L-gluta-
mine, 0.1mM 2-mercaptoethanol, 1 unit/ml thrombin
(Sigma-Aldrich), 1 : 50 B-27 (Invitrogen), 80 ng/ml bFGF,
25 ng/ml EGF (Peprotech), and 4ng/ml cardiotrophin-1
(Peprotech). After 1 week, CSs were collected and expanded
on fibronectin-coated surfaces in CEM as cardiosphere-
derived cells (CDCs) and expanded for not more than three
split rounds. Cells were treated with 100ng/ml TNF-α
(Sigma-Aldrich) for up to 48 hours.

2.2. Expression of TNF-α Receptors. To verify the expression
of TNF-α receptor 1 (TNFR1) andTNF-α receptor 2 (TNFR2)

Table 1: Main available morphometric and medical characteristics
of donor patients.

Sex Age BMI Diagnosis Diabetes Smoke

(1) F 79 27,7 IC N N

(2) M 58 22 IC Y Y

(3) M 64 27,4 MI N Y

(4) F 72 32,5 IC, AS, MI Y N

(5) M 58 28,4 IC Y Y

(6) F 63 32,9 IC, AS Y N

(7) M 73 28 IC N N

(8) M 54 30 IC N Y

(9) F 78 21 IC, AD N Y

BMI: body mass index; IC: ischaemic cardiomyopathy; AS: aortic stenosis;
MI: mitral insufficiency; AD: aortic dissection.
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on the cell surface, cellswere incubatedwithR-phycoerythrin-
conjugated murine antibodies against human TNFR1 and
TNFR2 (Caltag Laboratories, Burlingame,CA,USA). Samples
were analyzed on a FACScan flow cytometer by using the
Cell Quest software (Becton Dickinson, Mountain View,
CA, USA).

2.3. Evaluation of the Redox State. Cells (5× 105) were incu-
bated with 1μmol/l of dihydroethidium (DHE, Molecular
Probes) or 10μmol/l of dihydrorhodamine 123 (DHR 123,
Molecular Probes) for 15 minutes at 37°C. After washing,
samples were analyzed on a FACScan flow cytometer by
using the Cell Quest software (Becton Dickinson, Mountain
View, CA, USA).

2.4. Evaluation of Apoptosis. Quantitative evaluation of apo-
ptosis was performed by flow cytometry after double staining
using fluorescein isothiocyanate-conjugated annexin V and
0.05% trypan blue for 10 minutes at room temperature
and analyzed by flow cytometry in the FL1 and FL3 chan-
nels to determine the percentage of dead cells [31]. Samples
were analyzed on a FACScan flow cytometer by using the
Cell Quest software (Becton Dickinson, Mountain View,
CA, USA).

2.5. Cell Cycle. Cell cycle analyses were conducted after 48
hours of TNF-α treatment. Cultured cells were treated with
1mmol/l bromodeoxyuridine (BrdU; BD Immunocytometry
Systems) for 30 minutes and fixed in 70% ice-cold ethanol.
1× 106 fixed cells were incubated in 3N HCl for 20 minutes.
After washing with 0.1mol/l Na2B4O7 (pH 8.5) to stop acid
denaturation, cells were washed twice with 1% bovine serum
albumin and 0.5% Tween-20 and then labeled with an anti-
BrdU FITC-conjugated antibody (BD Immunocytometry
Systems) for 30 minutes at 4°C. Cells were then stained with
40μg/ml PI (Sigma-Aldrich) in the presence of 10μmol/l
RNase (Sigma-Aldrich) for 30 minutes at 37°C. Sample
analysis was performed on a FACScan flow cytometer by
using the Cell Quest software (Becton Dickinson, Mountain
View, CA, USA).

2.6. Analytical Cytology. For nuclear factor kappa B (NF-κB)
detection, cells were fixed in acetone/methanol 1/1 (v/v) for
10 minutes at room temperature and air dried. After 1 hour
of preincubation with PBS containing 10% of AB human
serum, cells were incubated for 1 hour at room temperature
with the rabbit polyclonal antibody toNF-κB (SantaCruzBio-
technology). Following three washes in PBS, cells were incu-
bated for 1 hour at room temperature with FITC-labeled
anti-rabbit secondary antibody. Morphometric analyses were
also employed to evaluate NF-κB nuclear translocation.
The cells with positive nucleus were evaluated by counting
300 cells at high magnification (500x). The nuclei were
stained with Hoechst 33258 (Sigma-Aldrich) at 37°C for
15 minutes. For actin filament detection, cells were fixed with
4% paraformaldehyde, permeabilized with 0.5%Triton X-100
(Sigma-Aldrich), and stained with fluorescein-conjugated
phalloidin (Sigma-Aldrich) at 37°C for 30 minutes.

All samples were mounted on glass cover slips with glyc-
erol/PBS (2 : 1) and observed by intensified video microscopy

(IVM) with an Olympus Microphot fluorescence microscope
(Olympus Corporation, Tokyo, Japan) equipped with a Zeiss
CCD camera.

2.7. Scratch Assay. Cell migration was examined by scratch
assay according to Liang et al. [32]. Approximately 2.5× 105
cells were seeded in 35mm Petri dishes. When cells reached
confluence, dishes were scratched with a sterile 200μl pipette
tip, treated or not with TNF-α, and incubated at 37°C.

Migration of cells towards wound closure of the same
region at 0 and 24 hours was monitored, and images were
acquired using a digital camera system coupled with an
inverted microscope (Olympus IX-71). Repopulation by
migrating cells of the wound region was then analyzed and
quantified using the ImageJ v1.48 software (http://imagej.
nih.gov/ij/).

2.8. DataAnalysis and Statistics.Cytofluorimetric results were
statistically analyzed by using the parametric Kolmogorov–
Smirnov test using Cell Quest software. A least 20,000 events
were acquired. The median values of fluorescence intensity
histograms were used to provide a semiquantitative analysis.
The results are displayed as average value± standard devia-
tion, unless otherwise specified. Significance of difference
between any two groups was assessed by two-sided Stu-
dent’s t-test. A threshold value of p < 0 05 was considered
to be significant.

3. Results and Discussion

3.1. Antiapoptotic Response of Cardiac Progenitor Cells to
TNF-α. In order to rule out any significant baseline difference
in the differentiation potential of male versus female CDCs,
we performed a preliminary real-time PCR gene expression
screening for a panel of markers of cardiovascular commit-
ment, stemness, and epithelial-to-mesenchymal transition.
No statistically significant differences could be detected
between CDCs from males and females (Supplementary
Figure 1A available online at https://doi.org/10.1155/2017/
4790563).

Then, we investigated possible gender-related differences
in TNF-α responsiveness. The effects of TNF-α are mediated
by two receptors called TNFR1 and TNFR2. To evaluate the
expression of TNF receptors in male/female CDCs, flow
cytometry analysis was performed. Interestingly, we found
that both TNFR1 and TNFR2 are expressed by CDCs from
male and female patients (Figure 1(a), left histogram), albeit
in a lower percentage of female cells (Figure 1(a) right histo-
gram) and/or at a global lower expression level, as suggested
by the homogeneous peak shift in the representative histo-
gram panel (Figure 1(b)). TNFR1 activation generates reac-
tive oxygen species (ROS) and induces apoptosis [33].
Conversely, TNFR2, although generating ROS-mediated
signaling pathways, does not contain a death domain and
cannot transmit proapoptotic signals. Its activation leads to
cell survival, proliferation, and growth factor production
[29]. TNFR1 is expressed ubiquitously on almost all cell
types. TNFR2 expression, instead, is restricted to certain cell
types including endothelial cells, myocytes, thymocytes, and
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human mesenchymal stem cells. Recently, published data
have revealed that these two receptors not only function
independently but can also influence each other via cross talk
between the different signaling pathways initiated by TNFR1
and TNFR2 stimulation [34].

Next, we investigated the effects of TNF-α treatment.
CDCs have been reported to release low levels of TNF-α
in culture [8], but the in vitro concentration of 100 ng/ml
used in the present study far exceeds the amount due to
autocrine production. Considering that ROS appear to
serve as key mediators involved in TNF-α-induced cellular
responses [19], superoxide anion (O2

−) and hydrogen per-
oxide (H2O2) levels were measured by flow cytometry at
different time points (3, 6, and 24 hours) after TNF-α treat-
ment. After 3 hours of TNF-α treatment, a higher increase
of O2

− levels was detectable in stimulated female versus
male cells, compared to control (Δ=6% in males and
Δ=15% in females, p < 0 05 versus control), while H2O2
levels were comparable (Δ=4% in cells from males and
Δ=6% in cells from females) (Figures 1(c) and 1(d)). Gene
expression levels for different NADPH oxidase isoforms,
which are the main ROS-producing enzymes [35, 36], were
comparable between male and female CDCs (Supplementary
Figure 1B), thus excluding any baseline difference between
the two.

To determine whether ROS production after TNF-α
treatment of CDCs exerted an apoptotic or antiapoptotic
cell response, apoptosis and cell cycle progression were
assessed by flow cytometry. We found that 24 hours after
TNF-α treatment, no difference in the percentage of apo-
ptotic cells was detected in both cell lines (Figure 1(e)).
Conversely, a significant (p < 0 001) increase in the per-
centage of cells in S phase of the cell cycle compared to
untreated controls was detected in CDCs from females
48 hours after TNF-α treatment whereas no significant
changes were observed in CDCs from males after the
same treatment protocol (21.0± 0.4% versus 19.0± 0.5%)
(Figure 1(f)). On the basis of these data, we hypothesized
that TNF-α, at the concentration here considered, did not

exert a proapoptotic effect in CDCs from both male and
female patients, suggesting that TNF-α signaling through
TNFR2 could be dominant.

This hypothesis was further supported by the analysis
of nuclear localization of nuclear factor kappa B transcrip-
tion factor subunit p65 (NF-κB p65). In fact, nuclear local-
ization is a ROS-dependent process of cell activation that
was observable in cells from both male and female patients
3 hours after TNF-α treatment. At this time, NF-κB p65
subunit was found in 44.0± 1.9% of cells from males
and in 60.0± 1.5% of cells from females, with a statisti-
cally significant difference between them (Figure 1(g)).
Figure 1(h) shows two representative images obtained
by fluorescence microscopy, indicating control cells with
cytoplasmic labeling of NF-κB p65 subunit and cells
after 3 hours of TNF-α treatment characterized by
nuclear positivity. Interestingly, we found that the per-
centage of cells from female patients with NF-κB p65
subunit was significantly (p = 0 001) higher than that
obtained from male patients. This was in line with the
literature suggesting that, in the absence of NF-κB activity,
cellular susceptibility to TNF-induced apoptosis increases,
whereas enforced activation of NF-κB is able to protect
cells from apoptosis [37]. Overall, the results showed
that (1) both TNFR1 and TNFR2 were expressed by
CDCs from both male and female patients, (2) low levels
of ROS were generated by TNF-α treatment in CDCs
from both male and female patients, (3) no differences
in apoptosis were detected after 3 and 24 hours of
TNF-α treatment in cells of both genders, (4) a significant
(p < 0 001) percentage of cells in S phase was detected
after TNF-α in CDCs from female patients with respect
to those from males, and (5) a significant (p = 0 001)
increase of cells with NF-κB was detected in cells from
females with respect to those from male patients 3 hours
after TNF-α.

3.2. Effect of TNF-α on Actin Filament Organization and
Migration. The actin cytoskeleton, a dynamic filamentous
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TNF-α treatment with NF-κB p65 localization. ∗p < 0 05. ∗∗p < 0 001.
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network, contributes to cell shape maintenance, cellular con-
tractility, and motility. It exists in a dynamic equilibrium
between monomeric G-actin and polymeric F-actin forming
actin fibers. Sex differences in actin filament morphology
were detectable in CDCs at basal conditions (Figure 2(a)).
Numerous ventral stress fibers were clearly visible by static
cytometry, that is, fluorescence microscopy, in cells from
males whereas transverse arcs were detected in cells from
females. Ventral stress fibers generate strong traction forces
at the cell base. They lie along the base of the cell, being usu-
ally parallel to the direction of migration, and they are
attached to the focal adhesions at both ends [38]. Transverse
arcs, instead, are curved stress fibers found parallel to the
leading edge and are assembled from shorter actin filaments
that originate in the lamellipodium. They are contractile and
do not attach to focal adhesions [38]. Interestingly, short
exposure (3 h) to TNF-α at low concentration induced a
clear redistribution of actin filaments, including stress fibers
loss and intense lamellipodia formation in both male and
female cells (Figure 2(b)). After a longer exposure time
(24 h) to TNF-α, these peripheral structures progressively
disappeared, whereas stress fibers reappeared (Figure 2(c)).
We cannot rule out the possibility that differences in cyto-
skeletal network between cells from males and females could
modulate the cytoplasmic trafficking of molecules such as
NF-κB [39].

3.3. TNF-α Influences Cardiac Progenitor Cell Migration
Ability. CPCs’ ability to migrate towards a damaged site
plays an important role in their regenerative response.

To this regard, 24 hours after the scratch on confluent
CDC cultures, a significant difference was found between
cells from males and females (p < 0 05; 36 cells/mm2 for
males and 21 cells/mm2 for females) (Figures 3(a) and
3(b)). In particular, treatment with TNF-α at low concentra-
tion promoted migration of CDCs. However, this “booster”
effect was significant (p = 0 001) only for cells from female
patients (Figure 3(c)).

4. Conclusions

Modern surgical and medical therapies have been proven to
be still unsatisfactory in the optimal prevention and treat-
ment of heart failure. Moreover, in the perspective of person-
alized medicine, significant insights are gradually suggesting
differential pathophysiological responses based on the
patient’s sex [40, 41]. This is particularly true for cardiovas-
cular diseases [3, 42] and cardiac regenerative medicine
[43], which may ultimately mirror, at least in part, a different
potential and/or responsiveness of resident S/PC pools in
terms of function and repair. Genetic (e.g., sex chromo-
somes), epigenetic (e.g., microRNA), or metabolic (e.g.,
redox regulation) mechanisms should be taken into consid-
eration in order to explain differences between cells from
males and females [44–47].

In the present work, we investigated in vitro the differen-
tial sex-related biological response of human resident CPCs
in the form of CDCs to TNF-α, an inflammatory cytokine
implicated in ischemia/reperfusion, whose effects are bidirec-
tional and dependent on the activation of its receptors and on

Male

Female

(a) (b) (c)

Controls 3 h TNF-�훼 24 h TNF-�훼

Ventral stress �bers 
Transverse arcs

10 �휇

Figure 2: Effect of TNF-α on actin filament organization. Static cytometry analysis of actin cytoskeleton in cells stained with
fluorescein—phalloidin. Numerous ventral stress fibers in control cells from males and transverse arcs in control cells from females (a) are
detectable; stress fiber loss and intense lamellipodia formation are visible 3 hours after TNF-α treatment (b) and reappearance of stress
fibers after 24 hours of TNF-α treatment (c).
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cytokine levels. TNFR1 activation generates ROS and induces
apoptosis, while TNFR2 activation leads to cell survival, pro-
liferation, and growth factor production [19, 48]. In our
work, we found that, although both TNFR1 and TNFR2 are
expressed by male and female CDCs, the intracellular signal-
ing mostly activated in our experimental conditions is appar-
ently due to TNFR2, since cell cycle progression and cell
spreading seem to be improved, whereas cell death remains
negligible at the TNF-α concentration considered here. More
importantly, we also found that the response to TNF-α
significantly differed between CDCs from females and males.
In particular, CDCs from females appear more responsive
to TNF-α treatment in terms of cell cycle progression and
cell migration ability. Our results are in line with reported
data, such as greater myocardial protection capacities
exerted by female versus male MSCs [43] or paracrine
potentiation of MSCs and CPCs by estradiol treatments
[49, 50]. Considering the differences in the incidence of
cardiovascular diseases in men versus women, these results
suggest that cell therapy protocols should take into
account the donor sex in order to improve their efficacy.
Allogeneic CDC transplantation has been shown to combine

beneficial therapeutic effects with negligible effects due to
immune issues [17, 51].

Hence, in view of difficulties encountered in the devel-
opment of this area of research (e.g., difficulties in S/PCs
culture, as well as in transplantation protocols and engraft-
ment efficiency), the present report supports the conclu-
sion that TNF-α-stimulated CDCs isolated from heart
biopsies of female donors could represent an improved
and promising candidate cell population for cardiac regen-
erative therapy applications.
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