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Abstract
Avian influenza (AI) is a contagious disease of birds with zoonotic potential. AI virus 
(AIV) can infect most bird species, but clinical signs and mortality vary. Assessing 
the distribution and factors affecting AI presence can direct targeted surveillance to 
areas at risk of disease outbreaks, or help identify disease hotspots or areas with in-
adequate surveillance. Using virus surveillance data from passive and active AIV wild 
bird surveillance, 2006−2020, we investigated the association between the presence 
of AIV and a range of landscape factors and game bird release. Furthermore, we as-
sessed potential bias in the passive AIV surveillance data submitted by the public, 
via factors related to public accessibility. Lastly, we tested the AIV data for possible 
hot-  and cold spots within Denmark. The passive surveillance data was biased regard-
ing accessibility to areas (distance to roads, cities and coast) compared to random 
locations within Denmark. For both the passive and active AIV surveillance data, we 
found significant (p < .01) associations with variables related to coast, wetlands and 
cities, but not game bird release. We used these variables to predict the risk of AIV 
presence throughout Denmark, and found high- risk areas concentrated along the 
coast and fjords. For both passive and active surveillance data, low- risk clusters were 
mainly seen in Jutland and northern Zealand, whereas high- risk clusters were found 
in Jutland, Zealand, Funen and the southern Isles such as Lolland and Falster. Our 
results suggest that landscape affects AIV presence, as coastal areas and wetlands 
attract waterfowl and migrating birds and therefore might increase the potential for 
AIV transmission. Our findings have enabled us to create risk maps of AIV presence 
in wild birds and pinpoint high- risk clusters within Denmark. This will aid targeted 
surveillance efforts within Denmark and potentially aid in planning the location of 
future poultry farms.
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1  | INTRODUC TION

Avian influenza (AI) is a contagious disease of birds with zoonotic 
potential. It is caused by Influenza A viruses (AIV), and can be clas-
sified as low pathogenic (LPAI) and high pathogenic (HPAI) subtypes 
based on their pathogenic phenotype. Only AIV of subtype H5 and 
H7 are known in the HPAI form. LPAI is a persistent problem world-
wide. LPAI is found in most bird species, and LPAI subtypes H5 and 
H7 have the potential to mutate into HPAI, which can cause great 
economic loss and animal welfare problems when farmed birds are 
infected (Monne et al., 2014; Rao et al., 2009). Furthermore, some 
AIV subtypes have zoonotic potential with high case- fatality for hu-
mans (Lai et al., 2016); thus, it is crucial to monitor and prevent the 
geographical spread of AIV in both wild and farmed birds. Control 
measures to prevent the dispersal of AIV include transport restric-
tions between areas at risk, contact tracing, hygiene measures and 
culling exposed animals (Stegeman et al., 2004).

Several countries have implemented surveillance programmes 
to monitor the distribution of AI and evaluate the spatio- temporal 
risk, both for wild and farmed birds (Bevins et al., 2014; Buscaglia 
et al., 2007; Hesterberg et al., 2009; Machalaba et al., 2015). Data 
obtained from these surveillance programmes can aid in developing 
statistical spatio- temporal models to identify high- risk areas and crit-
ical time periods, which can optimise surveillance for AI. Prediction 
models for AIV occurrence and risk of HPAI outbreaks have, to a 
large extent, focused on landscape use, which can indicate the den-
sity of specific birds with higher risk of transmitting AIV (Gilbert 
et al., 2008; Paul et al., 2010; Ward, Maftei, Apostu, & Suru, 2008, 
2009). Studies have also described continental hotspots for AIV sub-
types (Bevins et al., 2014), showing that it is possible to identify risk 
factors on a large geographical scale. Denmark has dense wild bird-
ing areas that intersect with many bird migration routes, including 
routes coming to and from Europe (Bregnballe et al., 1997), Africa 
(Tøttrup et al., 2018) and Siberia (Dick et al., 1987). Therefore, there 
is a high potential for AIV incursions from other regions. In particu-
lar, migratory birds from Siberia appear to be a risk factor, as Siberia 
has previously been identified as a major hub for AIV dispersal (Lai 
et al., 2016; Li et al., 2014). Additionally, a large number of game 
birds are released every year for hunting in Denmark (Gamborg 
et al., 2016; Kanstrup et al., 2009). Some of these game birds orig-
inate from other countries (Ministry of Environment & Food of 
Denmark, 2020; The Danish Hunting Association, 2020), increasing 
the potential of introducing AIV into Denmark.

Since 2002, the Danish authorities have carried out surveillance 
for AIV in wild birds. We obtained data from this surveillance system 
generated between 2006 and 2020 and explored potential patterns 
of AIV occurrence and spatial risk factors in Denmark. The aim of 
the study was to identify areas with high or low occurrence of AIV 
and possible factors associated with these occurrences, in order 
to optimize future surveillance for AIV. Furthermore, we aimed to 
assess bias in the Danish passive AIV surveillance data submitted 
by the public by assessing variables related to human accessibility. 
Potentially, our results can be applied to future planning efforts; for 

example, high- risk areas should be excluded when planning the loca-
tion of future poultry farms.

2  | MATERIAL S AND METHODS

2.1 | Passive and active AIV surveillance data

We obtained virus detection data from both passive (2006−2020) 
and active (2007−2019) wild bird AIV surveillance. Passive surveil-
lance data were from the EU mandatory passive surveillance pro-
gram in Denmark, in which dead and diseased wild birds are tested 
for AIV and particularly H5/H7 subtypes, whereas the active sur-
veillance data are based on samples from healthy birds, captured 
for sampling or ringing, submitted by hunters, or from bird dropping 
samples. Some of the observations in the active AIV surveillance 
data were pooled samples, whereas others were from individual 
birds, which had to be taken into account when analysing the data 
(Section 2.4).

All data were manually checked for entry errors and plotted in 
ArcMap 10.6.1 (Environmental Systems Research Institute, 2017) to 
check for any errors in the coordinates (such as coordinates not being 
located within Denmark). The passive location data all had UTM co-
ordinates for where the birds were found. As the birds from the pas-
sive AIV surveillance data were found by the public, we suspected it 
to be biased due to varying detection probabilities as well as human 
accessibility to wildlife areas. To assess this, we compared various 
accessibility variables of the passive AIV surveillance location data 
to random locations within Denmark (section 2.3 and 2.4). The ac-
tive surveillance data only had precise UTM- coordinates from 2007 
to 2010. From 2011 to 2019 the active surveillance data only regis-
tered the postal code of where the sample was collected. To create 
one single dataset for the active surveillance data, we converted the 
2007−2010 coordinates to postal codes instead, and conducted all 
our analyses on active surveillance data at the postal code level. We 
also created a single wild bird AIV surveillance dataset by combining 
the passive and active AIV surveillance data, leaving us with three 
datasets on which to conduct our analyses— the passive AIV surveil-
lance data, the active AIV surveillance data, and a combined wild bird 
AIV surveillance dataset. When combining the active and passive 
AIV surveillance data, we converted all the passive surveillance data 
coordinates to postal codes, producing a combined dataset based on 
postal codes alone. We refer to this combined dataset as the wild 
bird AIV surveillance data throughout this paper.

2.2 | Data on game birds

We obtained data from 2018 to 2019 on game birds bred and re-
leased for hunting from the Danish.

Environmental Protection Agency. This data had addresses only 
and no coordinates, thus we used ArcGIS World Geocoding Service 
(Environmental Systems Research Institute, 2017) to transform all 
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addresses to UTM coordinates. In some cases, only a postal code 
was reported for the release site, and not a complete address. In 
those cases, we used the centroid coordinates of the total area of 
that particular postal code. These centroid coordinates were ob-
tained from a shape file of all Danish postal codes and their areas 
(Danish Map Supply; Kortforsyningen, 2020). There was no infor-
mation on the origin of the released birds in the data. To test if game 
bird releases affected AIV presence/absence in the passive and ac-
tive AIV surveillance data, we extracted observations from 2018 to 
2020 from the surveillance data. We included the year 2020, as we 
allowed for game bird release to have occurred up to 8 months prior 
to an observation in the surveillance data. For each observation in 
the passive AIV surveillance data, we then calculated the nearest 
game bird release within the last 8 months prior to the observation 
and identified the species released and the number of birds released. 
For the active and wild bird AIV surveillance data, we calculated the 
number of game bird releases and the total number of birds released 
up to 8 months prior to the observation within the same postal code 
as the observation.

2.3 | Landscape variables

As wild birds are natural reservoirs of AIV and the dispersal of AIV is 
thus linked to wild bird movement, we wanted to include landscape 
variables that could be associated with wild birds, such as breeding 
sites, feeding sites and overwintering sites. In particular, migrating 
birds have long been suspected to introduce AIV into naïve popula-
tions (Hill et al., 2012; Verhagen et al., 2014), thus we focused on 
landscape variables (coastal areas and wetlands) where migratory 
birds are known to gather in high numbers (Belkhiria et al., 2018).

We obtained Corine land cover data as a 100 m2 resolution 
raster consisting of 100 × 100 m pixels (European Environment 
Agency, 2018). For each observation in the passive AIV surveillance 
data, we extracted the land cover types for the UTM coordinates 
using the raster package (Hijmans, 2019) in R 3.5.2 (R Development 
Core Team, 2018). We furthermore calculated distance to coast and 
distance to wetlands for the passive surveillance data in ArcMap 
10.6.1 (Environmental Systems Research Institute, 2017). Distance 
to wetlands was calculated by selecting only Corine land cover types 
defined as wetlands (inland marshes, peat bogs, salt marches, sa-
lines, intertidal flats). We then calculated the closest distance from 
our observations to a wetland pixel centroid. To calculate distance to 
coast line, we obtained a shape file of the Danish coast line (Danish 
Map Supply; Kortforsyningen, 2020) and added a 1 km buffer. We 
then calculated the closest distance from our observations to this 
buffered coastline.

To assess the effect of accessibility on passive AIV surveillance 
locations, we furthermore calculated distance to roads and distance 
to cities as well as population density at each location. To calculate 
distance to roads, we obtained a shape file of all roads in Denmark 
(Danish Map Supply; Kortforsyningen, 2020) and calculated the 
closest distance to a road for each location. Population density 

at a location was extracted from the Gridded Population of the 
World dataset (raster with 1 km2 resolution; Socioeconomic Data & 
Applications Center, NASA, 2015). We also used this raster data to 
calculate distance to nearest city, defining a city to be a raster grid 
cell with ≥ 200 inhabitants/km2. Distance to nearest city pixel cen-
troid was then calculated for each location in the passive AIV sur-
veillance data. All distance calculations were completed in ArcMap 
10.6.1 (Environmental Systems Research Institute, 2017).

As the active and wild bird AIV surveillance data were at the 
postal code level, instead of distances, we calculated the area of 
wetlands, coast and city within a postal code. We chose the area 
of city as a measure of whether the area within a postal code was 
mostly rural with a low density of people or if it was more densely 
inhabited. Area of wetland and coast were calculated using the 
100 m2 resolution Corine land cover data (European Environment 
Agency, 2018), whereas area of city was calculated using the 
Gridded Population of the World dataset (raster with 1 km2 reso-
lution; Socioeconomic Data & Applications Center, NASA, 2015). 
Similar to the passive AIV surveillance data calculations, a city was 
defined as having > 200 inhabitants/km2. These calculations were 
completed in R 3.5.2 (R Development Core Team, 2018), using the 
raster package (Hijmans, 2019).

2.4 | Bias in the passive AIV surveillance data

To assess any potential bias in data submitted by the public, we com-
pared our passive AIV surveillance data locations to random loca-
tions within Denmark in regard to accessibility. We created random 
locations and extracted distance to coast, distance to roads, dis-
tance to cities, and population density for each of these locations, 
using the same methods as in section 2.3.

2.5 | Statistical analysis

To test for bias in the passive AIV surveillance data, we compared 
accessibility variables from these locations to the random gen-
erated locations using a Kolmogorov– Smirnov test in R 3.5.2 (R 
Development Core Team, 2018).

We used mixed generalised linear models (GLMs) in the lme4 
package (Bates et al., 2015) in R 3.5.2 (R Development Core 
Team, 2018) to test for associations between landscape and game 
bird variables and passive, active and wild bird AIV surveillance data. 
For the passive AIV surveillance data, we used year and month of 
the observations as random effects, since we knew that observa-
tions varied over the months and years. We could not estimate prev-
alence due to the nature of the data, and our focus was on whether 
AIV was present at a location or not. Thus, if multiple birds from 
the same location were observed on the exact same date (meaning 
they were probably found together), we aggregated these multiple 
observations into a single observation with presence of AIV if any 
of the observations were AIV positive (see section 3.1 regarding the 
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differentiation of subtypes in the data). Exact locations very rarely 
reoccurred on separate dates (see Section 3.1), and thus location 
was excluded as a random variable. For the active and wild bird AIV 
surveillance data, we also used year and month as random variables. 
These data were based on postal codes and the same postal codes 
did reoccur between months and years, thus postal code was also 
used as a random variable. In the active AIV surveillance data, an 
observation could be anything from a single bird, to a pooled sample 
of multiple birds. To avoid any errors or misrepresentations arising 
from this— and as we were only interested in whether AIV had been 
confirmed within a postal code in a given month— we summarized 
observations from the same month and postal code into one obser-
vation. If any of the multiple observations within the same month 
and postal code were AIV positive, the summarized observation was 
classified as positive (see Section 3.1). This procedure was also used 
on the wild bird AIV surveillance data.

Effect of game bird release was analysed for the years 
2018−2020, and we included the year and month of the observa-
tions as random variables. As above, we aggregated multiple obser-
vations from the same location or postal code on the exact same 
date (passive AIV surveillance) or from the same month and year (ac-
tive and wild bird AIV surveillance) into one single presence/absence 
observation. For the active and wild bird AIV surveillance data, we 
then calculated the number of releases and the total number of birds 
released up to 8 months prior to the summarized data for that month 
and postal code. For active and wild bird AIV surveillance data, we 
also included postal code as a random effect. We only used the GLM 
with variables pertaining to game birds, as we wanted to investigate 
any possible association.

When needed, for all GLMs, we used backwards stepwise elimi-
nation by removing the variable with highest P- value, and re- running 
the mixed GLM. We also performed an ANOVA between the original 
and the reduced model to check whether reduction in the residual 
sum of squares (SS) was statistically significant or not, and compared 
AIC- values between models. Lastly, we checked the final models for 
spatial autocorrelation by plotting the residuals.

If the landscape variables were found to be associated with AIV 
presence, we wanted to use these variables and the GLM models 
to predict the probability of AIV presence throughout Denmark. To 
measure predictive power of our GLM models, we reran the mod-
els using a leave- one- out cross validation (LOOCV) scheme. This 
method fits the model as many times as there are observations and 
each time, withholds one location. We then used the model to pre-
dict the withheld location. By withholding all locations, one- by- one, 
we achieved a measure of predictive power— that is, how well we 
could predict the AIV status of each location based on the other lo-
cations. As the models could not predict using unknown factor lev-
els in the LOOCV (for example unique postal code or unique Corine 
land cover), we had to exclude observations whose factor level only 
appeared once in the dataset. We did this because when leaving 
out an observation with a unique factor level in the LOOCV, the 
model based on the remaining factor levels does not recognize the 
one left out, and thus cannot predict using this factor level. We also 

investigated the predictive power by estimating accuracy, sensitivity 
and specificity to assess the validity of using the model to predict 
unknown locations.

For the passive AIV surveillance models, we wanted to predict a 
map of Denmark in a 1 km2 resolution. To do so, we created three 
1 km2 raster maps that each covered the entire area of Denmark. 
We obtained Corine land cover data in a 1 km2 raster resolution 
(European Environment Agency, 2018), and removed land cover 
types not observed in the location data, as we would not predict to 
unobserved land covers. For the other two rasters, for each raster 
pixel centroid within the rasters, we calculated the distance to coast 
or to wetlands, and thus created two rasters that for each 1 km2 in 
Denmark depicted the distance to coast and the distance to wet-
lands respectively. We used Corine land cover (1 km2, European 
Environment Agency, 2018) to calculate the distances to coast and 
wetlands. For the active and wild bird AIV surveillance data, we cre-
ated data on the area of coast, wetlands and city for each postal 
code in Denmark (based on Corine land cover 100 m2 resolution ras-
ter, thus the units are in 100 m2). All calculations were completed in 
R 3.5.2 (R Development Core Team, 2018).

2.6 | Cluster analysis

To identify potential clusters of AIV within Denmark, we used the 
program SatScan and the package rsatscan (Kleinman, 2015) in R 
3.5.2 (R Development Core Team, 2018). For passive, active and wild 
bird AIV surveillance data, we performed spatial scan analyses for 
summarized years and for separate years with an elliptical scanning 
window, using the Bernoulli probability model and a maximum spa-
tial window size of less than or equal to 50% of the total popula-
tion at risk. This form of analysis identifies significant spatial clusters 
where there is a higher (hotspots) or lower (cold spots) number of 
positive cases within the scanning window than expected based on 
the Bernoulli probability of the entire study area. SatScan then re-
ports the ODE, which is the ratio of observed number of positive 
cases within a cluster to the expected number. Interpretation of 
an ODE of 1 means that there is no difference from the expected 
number of cases. We used the Gini coefficient (Han et al., 2016) for 
cluster selection, as it measures the heterogeneity of the cluster col-
lection, aiding us in which clusters to report (multiple smaller clus-
ters versus large joint clusters). All analyses focused on presence or 
absence of AIV at a specific site or postal code— not the number of 
cases reported.

3  | RESULTS

3.1 | Passive and active AIV surveillance

As only a few wild birds in the passive AIV surveillance data tested 
positive for AIV, we did not differentiate the positive data by AIV 
subtype, but rather we categorised the data as AIV detected at a 
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location or not. The different AIV subtypes detected are summa-
rised in Table 1. For the same reason, we did not differentiate the 
data by bird species. The passive AIV surveillance dataset con-
sisted of 2,089 observation entries and 1,601 unique site locations 
(Figure 1). Of these 2,089 entries, 189 were AIV positive (Table 1). 
When summarizing same- date and same- location observations for 
the mixed GLMs, 208 of the 1,601 unique sites had multiple entries 
ranging from 2−55 birds. The summarized dataset used in the GLM 
contained 1,614 observations, as 11 locations had multiple entries 
on different dates within the same year (9 locations with 2 dates, and 
2 locations with 3 dates, Figure S1). Of the 1,614 observations, 144 
were AIV positive. We found significant differences for all acces-
sibility variables when the 1,601 unique locations were compared to 
1,601 random locations (all p < .0001, Figure 2), but as positive and 
negative AIV locations were equally biased, we proceeded with our 
analyses described in Section 3.3 and 3.4.

The active AIV surveillance dataset consisted of 8,912 observa-
tions within 234 unique postal codes (Figure 3). There were 1,066 
observations in this dataset that tested positive for AIV (the AIV sub-
types are summarised in Table 1). Summarizing over month, year and 
postal codes for the GLMs produced 873 observations, of which 319 
were AIV positive (Figure S1). Combining all wild bird AIV surveil-
lance data resulted in 11,001 observations within 480 unique postal 
codes, and 1,255 AIV positive observations (Figure 4). Summarizing 
this dataset over month, year and postal code produced 1,977 ob-
servations, of which 426 were AIV positive (Figure S1).

The number of observations in both the passive and active AIV 
surveillance data differed over the years (Figure S2) and over the 
months (Figure S3). For the passive surveillance, most observations 
were from January to April with a small peak in November and most 
of the positive observations were in March and November. In the ac-
tive AIV surveillance data, most observations were from September 
to December, which were also the months with the most positive 
observations. Several different bird species in the surveillance data 
tested positive for AIV, most often duck species, swans and raptors 
(Figure S4).

3.2 | Data on game birds

A total of 2,268 game bird releases were recorded from 2018−2019 
at 1,179 unique locations. The total number of birds released was 
1,558,302; of these 92.7% were pheasants (Phasianus colchicus), 
6.6% were mallards (Anas platyrhynchos) and 0.7% were grey par-
tridges (Perdix perdix).

3.3 | Landscape and AIV presence/absence

For the passive AIV surveillance data, distance to coast and 
distance to wetlands were significant (p < .01, odds ratio 
(OR) = 0.9994 and 0.9992, respectively), whereas land cover at the 
location was not. However, we kept the land cover variable in the 
model, since a comparison of the full and reduced model showed 
significant differences in the residual SS (p < .0001) and remov-
ing land cover increased the AIC and reduced the R2 (Table 2, 
Figure S1). The OR indicates that for every meter increase in the 
distance from the coast, the likelihood of AIV presence decreases 
by 0.06%. This decrease in likelihood was 0.08% for wetlands 
(Table 2). Accounting for both fixed and random variables, the R2 
for the full model was 0.86. For the active surveillance data, only 
city was significant (p < .01, OR = 0.9822, Table 2); the OR indi-
cated that for every increase in the area of city (in units of 100 m2), 
the likelihood of AIV decreased by 1.78%. We selected the final 
model that included area of city and area of coast as variables, 
because this model was not significantly different from the full 
model (no significant differences in the residual SS, p <.05, same 
R2 and a reduction in AIC, Table 2, Figure S1). R2 was 0.52 for 
the final model. In the wild bird AIV surveillance data, we found 

TA B L E  1   Amount of observations in the passive and active AIV 
surveillance data divided into AIV subtypes. In some cases, only 
H5/H7 was screened for in a test positive for Influenza A virus, thus 
no further subtyping was performed (‘not H5/H7’)

Data Totals AIV subtype # observations

Passive AIV 
surveillance 
data

H3 N2
H5
H5 N1
H5 N6
H5 N8
H7
not H5/H7

1
24
22
43
81
1
17

Total AIV 
positive

189

Total AIV 
negative

1900

Total 
observations

2089

Active AIV 
surveillance 
data

both H5 and 
H7

H1 N1
H1 N2
H3 N2
H3 N8
H5
H5 N2
H6 N1
H6 N2
H7
H7 N1
H11 N9
H12 N5
not H5/H7

3
1
1
1
3
177
1
1
4
9
2
1
2
860
8,912

Total AIV 
positive

1,066

Total AIV 
negative

7,980

Total 
observations

8,912
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that the area of coast (p <.01, OR = 1.0008) and the area of city 
(p <.01, OR = 0.9887) were significant. We used the reduced 
model without the wetlands variable, because a comparison of the 
full and reduced models showed no significant differences in the 
residual SS (p >.05, Table 2, Figure S1) and we observed a smaller- 
AIC value and no change in the R2. The OR for area of coast indi-
cates that for every unit the area of coast increases (here unit is 
100 m2), the likelihood of AIV presence increases by 0.08%. For 
area of city, the OR indicates that for every increase in a unit area 
of city (unit is 100 m2), the likelihood of AIV presence decreases 
by 1.13%. R2 was 0.43 when both fixed and random variables were 
included. Detailed results for all mixed GLMs are shown in Table 2, 
and an overview of the data used and the final GLMs are shown 
in Figure S1. Residual plots of all final models indicated that the 

active AIV surveillance model had spatial autocorrelation in the 
residuals (Figure S5), which was further confirmed with Moran's I 
(I = 0.05, z = 5.70, p <.0001). Spatial autocorrelation of the residu-
als (Moran's I: I = 0.04, z = 4.71, p <.0001) was still present when 
postal code centroid coordinates were included as independent 
variables in the model, therefore coordinates were excluded from 
the final model. However, a spline (cross- ) correlogram of the final 
model residuals showed that the spatial autocorrelation was gen-
erally weak, with a weak negative autocorrelation (correlation co-
efficients <−0.20) at distances of 300 km (Figure S6). Although 
the spatial autocorrelation was weak, these results indicate that 
we did not account for all of the spatial variation within the data.

We ran the LOOCV for the passive AIV surveillance data on 
1,612 out of the 1,614 observations in the summarized dataset, 

F I G U R E  1   Passive AIV surveillance data and estimated clusters for the combined years 2006– 2020. Clusters were analysed using 
SatScan on presence/absence of AIV and only significant clusters with the maximum Gini coefficient are depicted. Satscan calculates ODE, 
which is the observed AIV cases divided by expected AIV cases based on the Bernoulli probability of the entire study area

Relative risk

0.06
11.8
12.23

AIV

Negative
Positive
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as two land cover types were only found once in the dataset. The 
LOOCV produced an accuracy of 0.91 when using the default 
threshold value of 0.5 for classification (probability of AIV pres-
ence above 0.5 is classified as a presence, whereas anything below 
or equal to 0.5 is classified as an absence). However, this accuracy 
equalled the proportion of AIV negative observations in the data, 
meaning that the model was not better than predicting all obser-
vations to be AIV negative. Hence, the model sensitivity was 0 and 
the specificity was 1, meaning that none of the positive observa-
tions were classified as positive. We could change the threshold to 
obtain a higher sensitivity (which would then lower the specificity), 
but we were not able to obtain an accuracy higher than the pro-
portion of absences (0.91). Thus, predictions for this model should 
be viewed with caution.

For the active AIV surveillance model, the LOOCV was per-
formed on 801 observations, as 72 of the observations in the 
summarized dataset (n = 873) had postal codes that appeared only 
once. With a threshold of 0.5, the active model had an accuracy of 
0.77, a sensitivity of 0.62 and a specificity of 0.85. As the propor-
tion of absences (majority class) was 0.65, this model performed 
better than if all observations were predicted to be absences. We 
performed LOOCV on 1,836 out of the 1,977 observations in the 
summarized wild bird AIV surveillance dataset, as 141 postal codes 
only appeared once in the summarized dataset. With a default 
threshold value of 0.5, the accuracy was 0.82, with a sensitivity 

of 0.32 and a specificity of 0.96. Here the proportion of absences 
was 0.78, thus the model was more informative than a model only 
predicting absences.

For the full passive AIV surveillance model, we used the 
Corine 1 km2 land cover data and the coast-  and wetlands- 
distance rasters to predict the probability of AIV throughout 
Denmark. We set the random effects to zero to predict over all 
the years and the months. We found high- risk areas along the 
coast and around the fjords (Figure 5a). We also used the active 
AIV surveillance model to predict the probability of AIV pres-
ence based on postal code level area of coast and area of city. 
We selected the active AIV surveillance model— rather than the 
wild bird surveillance model, as the sensitivity was higher, thus 
predicted positive postal codes were more likely to be correctly 
classified in this model than in the wild bird surveillance model. 
Again, we set the random variables to zero to predict over all the 
years, months and postal codes. Here we also found the highest 
probabilities of AIV presence in postal codes with coastline or 
along fjords (Figure 5b).

For the game bird release data, we found no significant associa-
tion with distance to bird release site, bird species released or num-
ber of birds released in the passive AIV surveillance data (Table 2). 
We also did not find any significant association with number of re-
leases and total number of birds released in the active and wild bird 
AIV surveillance data (Table 2).

F I G U R E  2   Density plots of locations recorded through passive AI surveillance in Denmark, 2006– 2020 (red) and random locations in 
Denmark (blue) in relation to population density, distance to nearest city (≥200 inhabitants/km2), distance to coast and distance to nearest 
road. All x- axes have been truncated to omit low density observations. As the kernel density calculations replace each observation by a small 
probability density, negative values around observation zeroes will occur
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3.4 | Cluster analysis

The SatScan analysis detected several significant clusters for the 
passive, active and wild bird AIV surveillance data. For all the AIV 
surveillance data, hotspots were mostly found in the southern parts 

of Denmark (Southern Zealand, Lolland/Falster and Funen), whereas 
cold spots were found in northern Zealand and Jutland (see sum-
marised results in Figures 1, 3 and 4). For the individual years, not 
all years had detectable clusters or the amount of data were insuf-
ficient to perform cluster analysis (See Figures S7, S8 and S9 and 

F I G U R E  3   Active AIV surveillance data and estimated clusters for the combined years 2007– 2019. Clusters were analysed using SatScan 
on presence/absence of AIV and only significant clusters with the maximum Gini coefficient are depicted. Satscan calculates ODE, which 
is the observed AIV cases divided by expected AIV cases based on the Bernoulli probability of the entire study area

# AIV Cases within zip code
0.0

0.0 - 6.0

6.0 - 13.0

13.0 - 26.0

26.0 - 49.0

49.0 - 172.0

Not sampled

ODE
0.34

1.52
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Table S1). The summarized presence/absence data used for the clus-
ter analyses are shown in Table S1.

4  | DISCUSSION

We analysed 11,001 observations from the Danish AIV surveil-
lance program collected from 2006 to 2020 and found associations 
between landscape variables and AIV presence. Furthermore, 
we detected spatial hot and cold spots of AIV presence within 

Denmark. We found differences in AIV presence across months 
of the year and between years. A higher number of positive sam-
ples in the active AIV surveillance were found from September to 
November; however, these were also the months in which most 
observations occurred. Many of the observations in the active AIV 
surveillance data originated from hunted birds, thus the higher 
number of observations from September to December was ex-
pected as this time period coincides with the hunting season of 
many Danish bird species (The Danish Hunting Association, 2020). 
For the passive AIV surveillance data, most positive samples were 

F I G U R E  4   Wild bird AIV surveillance data and estimated clusters for the combined years 2006– 2020. Clusters were analysed using 
SatScan on presence/absence of AIV and only significant clusters with the maximum Gini coefficient are depicted. Satscan calculates ODE, 
which is the observed AIV cases divided by expected AIV cases based on the Bernoulli probability of the entire study area

# AIV Cases within zip code

0.0
0.0 - 6.0
6.0 - 13.0
13.0 - 26.0
26.0 - 49.0
49.0 - 173.0
Not sampled

ODE
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found between March and November. This coincides with the tim-
ing of bird migration, when migratory birds are in transit through 
Denmark (DOF BirdLife, 2020). We found the largest number of 

observations in 2006. This coincides with the first outbreak of 
HPAI in wild Danish birds (Bragstad et al., 2007), an outbreak 
that occurred in several European countries and caused the EU 

TA B L E  2   Mixed logistic GLM results for passive, active and wild bird AIV surveillance data. The Corine land cover variable is not shown 
for the full passive model, as this factor variable had over 20 classes, none of which were significant. The ANOVA p- values are from 
comparing the reduced model to the full model. The R2- values depicted are Nakagawa and Schielzeth's R2 for mixed models from the MuMIn 
package (Barton, 2009) in R 3.5.2 (R Development Core Team, 2018). These values show the R2 for fixed variables only as well as the R2 for 
fixed and random variables combined. Abbreviations are explained in the footnote

Data Fixed variables z- value p- value
Random variables, 
variance/stdev

ANOVA, 
p- value OR

R2 fixed only/
all AIC

Passive AIV Corine LC
DistToCoast, 

DistToWetlands

−3.31
−2.48

< 0.001
<0.05

Month: 0.0055/0.074
Year: 1.81/1.35

0.9994
0.9992

0.79/0.86 820.3

DistToCoast, 
DistToWetlands

−3.98
−2.78

p <.0001
p <.01

Month: 0.03/0.18
Year: 1.85/1.36

< 0.0001 0.9999
0.9999

0.065/0.40 842.2

Active AIV Coast
Wetlands
City

1.50
1.07
−2.30

0.13
0.29
p <.01

Month: 2.00/1.42
Year: 2.12E−10/1.42
PC: 1.79/1.34

1.0007
1.0002
0.9823

0.033/0.52 985.7

Coast
City

1.70
−2.70

0.089
p <.01

Month: 1.55/1.24
Year: 0.00/0.00
PC: 1.82/1.35

0.29 1.0008
0.9822

0.028/0.52 984.8

Wild birds AIV Coast
Wetlands
City

2.54
0.18
−2.69

<0.05
0.86
<0.01

Month: 1.05/1.02
Year: 0.26/0.51
PC: 1.01/1.01

1.0008
1.0000
0.9887

0.020/0.43 1702.7

Coast
City

2.62
−2.69

<0.01
<0.01

Month: 1.05/1.02
Year: 0.26/0.51
PC 1.02/1.01

0.85 1.0008
0.9887

0.020/0.43 1,700.7

Game birds 
versus. passive 
AIV

Pheasant
Mallard
NearestRL
NumBirds

−0.05
0.70
−0.35
0.28

0.96
0.48
0.73
0.78

Month: 
3.37E−10/2.52E−5

Year: 0.62/0.79

0.9487
2.3342
1.0000
1.0001

0.036/0.19 86.6

NearestRL
NumBirds

−0.18
0.29

0.86
0.78

Month: 0.00/0.00
Year: 0.60/0.78

0.47 1.0000
1.0001

0.006/0.16 84.1

NumBirds 0.35 0.73 Month: 
6.99E−10/2.64E−5

Year: 0.62/0.79

0.65 1.0001 0.003/0.16 82.2

Game birds 
versus. active 
AIV

TotBirds
NumRL

−1.27
1.06

0.20
0.29

Month: 1.07/1.04
Year: 0.00/0.00
PC: 0.28/0.53

0.9999
1.0641

0.026/0.31 139.9

TotBirds −0.77 0.44 Month: 1.10/1.05
Year: 0.00/0.00
PC: 0.21/0.46

0.32 1.0000 0.096/0.29 138.9

Game birds 
versus. wild bird 
AIV

TotBirds
NumRL

−1.66
1.58

0.10
0.11

Month: 0.51/0.71
Year: 0.14/0.37
PC: 0.40/0.64

0.9999
1.0743

0.016/0.25 339.5

TotBirds −0.68 0.50 Month: 0.55/0.74
Year: 0.13/0.36
PC: 0.39/0.63

0.18 0.1000 0.003/0.25 339.3

NumRL 0.10 0.92 Month: 0.53/0.73
Year: 0.13/0.36
PC: 0.38/0.62

0.13 1.0025 5.21E−5/0.24 339.8

N<del author="Lene Jung Kjær" command="Delete" timestamp="1614687738812" title="Deleted by Lene Jung Kjær on 2.3.2021 13.22.18" 
class="reU3">ote</del>: Abbreviations: and NumBirds, the number of birds released there. TotBirds, total amount of birds released within the postal 
code (up to 8 months prior to an observations) and NumRL, number of releases within that postal code; City, area of city within postal code (in units 
of 100 m2); Coast, area of coast within postal codes (in units of 100 m2); DistToCoast, distance to coast in meters; DistToWetlands, distance to 
wetlands in meters; LC, land cover; NearestRL, distance to nearest release site; OR, odds ratio; PC, postal code; stdev, standard deviation; Wetlands, 
area of wetland within postal code (in units of 100 m2).
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to fund compulsory passive surveillance for AIV in dead or sick 
wild birds and active surveillance in apparently healthy wild birds 
in all member countries (European Commisson, 2020; Hesterberg 
et al., 2009). The compulsory active surveillance in apparently 
healthy wild birds lasted until 2011, after which the Danish au-
thorities continued active AIV surveillance in wild birds, albeit at a 
smaller scale (Hjulsager et al., 2018). The increase and decrease in 
the intensity of surveillance efforts can be seen in the increasing 
number of observations in the active AIV surveillance data from 
2007−2010, and the subsequent decrease in the number of ob-
servations from 2011−2020. The most sampled species were buz-
zard, swans and mallards, and the distribution of sampled species 
showed large variation, reflecting public interest and accessibility 
to bird habitats. Therefore, it was not possible to quantify the risk 
of testing positive for AIV for the different species.

We found that the passive AIV surveillance data were biased 
regarding the geographical location of sample sites. The majority 
of recorded locations were within 35 km of a larger city and within 
500 m of roads. Public access to Danish beaches might also explain 
numerous records close to the coast, suggesting that accessibility to 
wildlife areas biases the Danish passive surveillance data. However, 
passive surveillance is not easy to control as it depends on the will-
ingness and efforts of the general public. Implementation of infor-
mation campaigns can be of great assistance to reinforce sampling in 
areas with sparse information or hotspots, and would be a valuable 
contribution to the ongoing surveillance programme.

For the passive AIV surveillance data, we found that distance to 
coast and distance to wetlands were significantly associated with 
the presence of AIV. For the active AIV surveillance data, we fur-
thermore found an association with the area of coast and the area 

of city. Other studies have found effects of landscape variables and 
anthropogenic factors on AI presence in both wild and domestic 
birds. In Thailand, Paul et al. (2010) found a positive effect of free 
grazing ducks, high rice- cropping intensity areas, densely populated 
areas, short distances to a highway junction, and short distances to 
large cities on AIV presence in poultry. Gilbert et al. (2008) identified 
duck abundance, human population density, and rice cropping inten-
sity as risk factors in South East Asia. In Romania, Ward et al. (2008, 
2009) found associations between distance to migratory waterfowl 
sites, distance to major roads and distance to rivers or streams and 
HPAI outbreaks. Using a machine learning (ML) approach, Belkhiria 
et al. (2018) found spatial risk areas for AIV in wild birds in California, 
where land cover and distance to coast were some of the most im-
portant predictors in their model. The poor performance of our pas-
sive AIV surveillance model and the relatively low sensitivity of our 
active and wild bird AIV surveillance models, indicate that other fac-
tors not considered in this study might be important for predicting 
AIV presence. We did attempt to use ML methods on the summarised 
data and included environmental MODIS variables. However, this 
did not improve the models, and thus the simple GLMs were chosen 
to make prediction maps of AIV (See Data S1 for the ML description 
and results). Migratory birds have long been suspected of spreading 
AIV between regions (van der Kolk, 2019; Sullivan et al., 2018) and 
adding data on bird migration to our models could potentially be of 
value. However, no fine- scale data are available on bird migration 
routes within Denmark that would enable us to distinguish between 
individual locations within the same region. We found no significant 
association between game bird releases and the passive and active 
surveillance. This could mean that the current legislation with test-
ing and quarantine for imported game birds is effective to prevent 

F I G U R E  5   Predicted probabilities of AIV presence, based on the a) the passive AIV surveillance data model with variables land cover, 
distance to coast and distance to wetlands, and b) the active AIV surveillance data with variables area of coast and area of city

Predicted probability of AIV

High : 0.29
Mid: 0.06
Low : 7.19-11

Predicted probability of AIV

0.03 - 0.14
0.14 - 0.20
0.20 - 0.25
0.25 - 0.34
0.34 - 0.47

(a) (b)
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transmission of AIV to wild birds. Our results could also be explained 
by a lack of data from other years, as we could only perform our 
analyses for the years 2018−2020.

Our cluster analyses identified several hot and cold spots for 
AIV presence within Denmark. We generally found hotspots in the 
southern parts of Denmark, whereas cold spots were found in north-
ern Zealand and Jutland. The southern parts of Denmark lie on the 
main migration routes of duck and geese (Bregnballe et al., 2003), 
and the Wadden Sea along the south western coast of Denmark is 
also a well- known stop- over for migratory birds (Lotze, 2005). Thus, 
it is surprising that we found no hotspots in the western part of the 
country. This could be due to biased sampling, as only few people 
venture into the Wadden Sea region, and dead birds are quickly 
washed away. It could potentially also be due to the origin of mi-
grating birds in the different regions of Denmark (for example from 
Siberia, which is known to be a hot spot for the dispersal of AIV, Lai 
et al., 2016; Li et al., 2014). However, as Denmark is embedded in the 
East Atlantic Flyway, with many different migrating birds of different 
origins (Bregnballe et al., 2003; Lotze, 2005), it can be difficult to de-
termine these origins as there is no precise information on migration 
routes within the country.

Our predictive maps of AIV in Denmark identified high- risk 
areas located around the coast and fjords in Denmark. This sug-
gests that any potential risk- based surveillance in wild or domestic 
birds should be concentrated in these areas, particularly high- risk 
areas that are not extensively covered in the present Danish AIV 
surveillance, such as the coast and Fjords in northern Jutland. The 
cluster analysis found hotspots in the southern parts of Denmark, 
areas that our predictive maps also highlight as being high- risk. 
These areas should also be included in risk- based surveillance. 
Knowing which parts of Demark constitute high- risk areas for po-
tential AIV introduction might aid the selection of sites for new 
poultry facilities. Organic-  or free- ranging poultry farms— where 
the farmed birds can come into contact with wild birds— are of par-
ticular concern and any location of such farms in high- risk areas 
should be avoided. It is important to note that although we did 
not divide any of our analyses into AIV subtypes, the majority 
of subtypes in the passive AIV surveillance data belonged to the 
HPAI types, whereas the majority of subtypes in the active AIV 
surveillance data belonged to the LPAI types (Table 1). Thus, our 
separate passive and active AIV data models can approximately 
be interpreted as predicting the risk of HPAI and LPAI occurrence 
respectively.

At the beginning of November 2020, a HPAI positive peregrine 
falcon (Falco peregrinus) was found dead near Sakskøbing on the is-
land of Lolland in the southern parts of Denmark, an observation 
not included in our datasets (Ministry of Environment & Food of 
Denmark, 2020). This finding marked the beginning of a series of 
HPAI virus detections in wild birds in Denmark that are still continu-
ing in 2021. The area where the falcon was found coincides with 
high- risk areas predicted by both our passive and active AIV surveil-
lance models. Furthermore, mid- November 2020, there was an out-
break of HPAI in a poultry farm east of Randers in Jutland (Ministry 

of Environment & Food of Denmark, 2020), also an observation not 
included in our datasets. This particular poultry farm kept all their 
animals indoors, with little risk of contact to wild birds. The area, 
where the poultry farm was situated, coincides with predicted low 
risk areas in both the passive and active surveillance model, but it 
is important to emphasize that prediction maps based on wild bird 
surveillance are not expected to accurately predict the AIV risk in 
poultry farms, especially farms with no direct wild bird contact.

The results of our study highlight some of the deficiencies in the 
current Danish AIV surveillance program. The aim of the active AIV 
surveillance programme is mainly to study LPAI virus epidemiology 
whereas the aim of passive AIV surveillance programme is the early 
detection of HPAI viruses. Despite the different objectives of the 
programs, more knowledge on the epidemiology and transmission 
of both LPAI and HPAI demands thorough coverage of Denmark in 
order to be able to determine variables important for transmission 
and dispersal. Both our passive and active AIV surveillance models 
predicted high probabilities of AIV occurrence in the north- western 
parts of Denmark; an area that is one of the least covered areas in 
the active surveillance program. More knowledge on AIV presence 
in these areas is needed, and our findings may elicit implementa-
tion of more thorough surveillance in these north- western parts 
of Denmark. A new Animal Health Law (Regulation (EU) 2016/429, 
European Union, 2019) takes effect on 21 April, 2021 within the EU. 
Some of the main changes to the Danish AIV surveillance are that 
LPAI is no longer a notifiable disease, while surveillance is still man-
datory. Furthermore, a risk based approach can be used for surveil-
lance of HPAI in species not showing obvious clinical signs (duck, 
geese and gamebirds of the order Anseriformes), or for LPAI in poul-
try. For HPAI, the focus is on specified high- risk zones, while for LPAI 
the focus is on areas with poultry farms, where clusters of LPAI have 
previously been found. Prediction maps, as presented in this paper 
for Denmark, can be used to pinpoint areas with elevated risk of 
LPAI and HPAI and thus aid in adjusting the surveillance program to 
adhere to the new Animal Health Law, potentially by dividing regions 
into high- risk and low- risk HPAI zones. However, the sparse data on 
AIV occurrence in Denmark and the variation in surveillance over 
the years, makes generalising over our results difficult. Moreover 
we were not able to conduct analyses of individual subtypes of AIV. 
More comprehensive studies and analysis demand more consistent 
sampling and a stratified sampling scheme for the future surveillance 
of AIV.
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