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� Automated detection software can quantify lung metastases on initial staging chest CT in breast cancer patients.
� AI-detected lung metastases number and max diameter on CT at initial cancer staging were strong predictors of mortality.
� AI detection and segmentation tool contributes to accurate individualized prognostication in breast cancer patients.
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A B S T R A C T

Background: Determination of the total number and size of all pulmonary metastases on chest CT is time-
consuming and as such has been understudied as an independent metric for disease assessment. A novel artifi-
cial intelligence (AI) model may allow for automated detection, size determination, and quantification of the
number of pulmonary metastases on chest CT.
Objective: To investigate the utility of a novel AI program applied to initial staging chest CT in breast cancer
patients in risk assessment of mortality and survival.
Methods: Retrospective imaging data from a cohort of 226 subjects with breast cancer was assessed by the novel AI
program and the results validated by blinded readers. Mean clinical follow-up was 2.5 years for outcomes
including cancer-related death and development of extrapulmonary metastatic disease. AI measurements
including total number of pulmonary metastases and maximum nodule size were assessed by Cox-proportional
hazard modeling and adjusted survival.
Results: 752 lung nodules were identified by the AI program, 689 of which were identified in 168 subjects having
confirmed lung metastases (Lmetþ) and 63 were identified in 58 subjects without confirmed lung metastases
(Lmet-). When compared to the reader assessment, AI had a per-patient sensitivity, specificity, PPV and NPV of
0.952, 0.639, 0.878, and 0.830. Mortality in the Lmet þ group was four times greater compared to the Lmet-group
(p ¼ 0.002). In a multivariate analysis, total lung nodule count by AI had a high correlation with overall mortality
(OR 1.11 (range 1.07–1.15), p < 0.001) with an AUC of 0.811 (R2 ¼ 0.226, p < 0.0001). When total lung nodule
count and maximum nodule diameter were combined there was an AUC of 0.826 (R2 ¼ 0.243, p < 0.001).
Conclusion: Automated AI-based detection of lung metastases in breast cancer patients at initial staging chest CT
performed well at identifying pulmonary metastases and demonstrated strong correlation between the total
number and maximum size of lung metastases with future mortality.
Clinical impact: As a component of precision medicine, AI-based measurements at the time of initial staging may
improve prediction of which breast cancer patients will have negative future outcomes.
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1. Introduction

Breast cancer remains the most common cancer in females as recent
estimates report over 3.8 million women living with a history of invasive
breast cancer [1]. In the staging of a newly diagnosed breast cancer pa-
tient, prognostic factors such as cancer receptor type and distant organ
metastases are important in treatment decisions and survival [2]. The
specific organ site of any metastases is also important, with lung-only
involvement shown to have a 32% mortality within the first year [3].
Computed tomography (CT) is a primary tool for the initial staging of
pulmonary metastases; however, there is interobserver variability in the
detection of lung metastases with overall low sensitivities [4, 5, 6, 7]. As
documentation of the exact number and size of each pulmonary metas-
tases can be an arduous, time-consuming task, there have been limited
attempts to apply these metrics to clinical outcomes [8]. Although the
incorporation of artificial intelligence (AI) into chest CT examinations
has substantially improved the rate of detection of lung nodules, it still
lacks accuracy in overall nodule classification and morphology charac-
terization [9, 10, 11, 12]. By developing AI algorithms to detect lung
nodules and to quantify overall nodule volume, valuable time could be
saved and a more complete assessment of the overall volume of disease
could be elucidated aiding in characterization.

Given the prevalence of breast cancer and the varying treatment
options based on clinical, imaging, and cytologic markers, more infor-
mation is needed to help identify trends and prognostic indicators in this
population. Prior studies have suggested that imaging biomarkers
(radiomics) may play a greater role in disease characterization and
prognostication although many metrics are untapped due to lack of
reliable AI algorithms [10, 13, 14, 15]. This study will assess a novel AI
program for automated detection of the total number of lung metastases
and maximum size in breast cancer patients at initial staging CT and
correlate this with future mortality.

2. Methods

This retrospective cohort study was approved by the local Institu-
tional Review Board with a waiver of informed consent.

2.1. Subjects

Clinical and imaging data were obtained from the single institution
electronic medical record (EPIC, Madison Wisconsin) between January
2014 and January 2019 from a population-based cohort of subjects
diagnosed as having breast cancer with (study) and without (control)
lung nodules on CT. Exclusion criteria included lack of available initial
staging chest CT, age less than 18-years-old, or pregnancy. Demographic
information including age, sex, ethnicity, and comorbidities such as hy-
pertension, diabetes, lung disease, and smoking status were recorded.
Other information recorded included breast cancer type, breast biopsy
results, lymph node biopsy results, hormone receptor status and Amer-
ican Joint Committee on Cancer (AJCC) TNM staging at initial diagnosis.
Data from the clinical imaging reports at initial staging (CT, MRI, PET/
CT, bone scan) were recorded including presence and location of meta-
static disease, and lung biopsy results, if performed, were collected. The
specific oncologic treatments were not recorded. Finally, patient out-
comes including cancer-related death and development of extrapulmo-
nary metastatic disease were noted.

2.2. Image acquisition

All CT examinations were performed on one of two clinical scanner
types (SOMATOM Flash or Force; Siemens, Forchheim, Germany) from
the lung apices through the bases, with or without intravenous contrast,
and during breath-hold at end-inspiration. Acquisition parameters
included 100-110kVp tube-voltage, CareDose mA, 192 � 0.6mm colli-
mation, gantry-rotation time of 0.5 s, pitch of 0.7, and effective slice
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thickness of 0.5 mm. Images were reconstructed with a sharp body kernel
to achieve a lung-window setting and reformatted to an axial slice
thickness of 1 mm. Axial thick slice (10mm) lung-window maximum
intensity projection (MIP) images were reconstructed.

2.3. Image interpretation and reference standard

All CT studies were assessed by one of four experienced, blinded ra-
diologists reading independently, with one quarter of the subjects
randomly assigned to each interpreter. The radiologists were tasked with
measuring up to 5 identified lung metastases �4 mm per patient, quan-
tifying the total number of metastasis per patient, and recording the
location and greatest axial 2D-diameter of the five largest metastasis per
patient.

2.4. AI algorithm

A deep convolutional neural network software prototype (AI-RAD
Companion Chest CT VA10A, Siemens Healthineers, Malvern PA) pro-
vided by Siemens Healthineers was used to detect lung nodules on chest
CTs performed for initial staging and follow-up. This algorithm is a
software-platform that provides automatic AI-based multi-organ image
analysis, visualization, and quantification and has been previously tested
and validated on chest CT scans from multiple centers across the USA,
Europe, and Asia [16, 17, 18, 19]. No pre-processing of the CT images
was required prior to algorithm application for nodule detection. The AI
algorithm reported the lobar location and axial 2D-diameter of the five
largest AI-detected nodules for each subject and collected up to 30 total
nodules. A pre-data analysis of numbers of nodules associated with
simple mortality was conducted. There was no statistically significant
difference in survival curves in any tested AI nodule number threshold,
thus the AI reported number of nodules was capped at 30 for ease of
reporting. Only the top 5 largest nodules were evaluated for
inter-observer agreement.

2.5. AI validation

AI results were reviewed and validated based on ground-truth
observation. Validation was performed on a per-patient and per-nodule
basis. The following definitions were used on a per-nodule basis:

- True positive (TP): Both AI and reader identified the same nodule
- True negative (TN): Both AI and reader did not identify the nodule
- False positive (FP): AI identified a nodule but was determined by the
reader to not be a nodule

- False negative (FN): Nodule was identified by the reader but not by AI

2.6. Definition of pulmonary metastasis

Based on criteria determined from a large meta-analysis, subjects
were labelled as “lung metastases” if they had two or more noncalcified
solid nodules �6 mm or at least one noncalcified solid nodule >10 mm
on initial staging chest CT [20].

2.7. Statistical analyses

A power analysis was performed (Figure 1). All univariate calcula-
tions were performed in XLSTAT, and data visualization was completed
in R version 3.6.3. Univariate statistics were calculated using appropriate
parametric and nonparametric tests. Medians and interquartile ranges
were reported for variables with non-normal distributions and all sur-
vival functions. Unweighted Cohen's kappa and diagnostic parameters
were calculated on contingency tables with 95% confidence intervals
using the efficient-score method. Correlation statistics were calculated
using spearman's method and reported with spearman's rho and
Intraclass-correlation coefficients for agreement between observers.



Figure 1. Post-hoc power analysis for log-rank testing of secondary outcomes (Survival by nodule characteristics). A. Power as a function of the total patients. A post-
hoc power of 0.75 was achieved for secondary outcomes at a sample size of 226. B. Log-rank coefficient limit of detection assuming a power of 0.8. A sample size of
226 patients gives the lower limit of detection to be a log-rank coefficient of 1.54.

Table 1. Patient demographics and pathologic diagnoses.

N ¼ 226 Lung Metastases
(N ¼ 168)

No Lung Metastases
(N ¼ 56)

P
(α ¼ 0.05)

Median IQR Median IQR

Age 62 53.5–67 53 43–63 <0.001

BMI 29.8 24.0–33.3 29.3 24.3–34.5 0.779

BSA 1.87 1.70–1.99 1.83 1.69–2.14 0.630

Initial Breast Lesion
Size

2.5 1.75–4.75 2.8 2.1–5.1 0.466

Count Frequency Count Frequency

Sex (Female) 162 96.4 54 93.1 0.244

Race

White 118 70.2 35 60.3 0.133

Black 45 26.8 21 36.2

Hispanic 1 0.6 2 3.4

Other 4 2.4 0 0

Hypertension 88 54.0 22 38.6 0.064

Hyperlipidemia 35 21.2 19 32.8 0.002

Diabetes 31 19.5 12 20.6 1.000

Current Smoker 7 4.2 4 6.9 0.486

COPD 8 4.9 4 6.9 0.515

ILD 3 1.9 1 1.7 1.000

Hx Lung Cancer 2 1.2 0 0 1.000

IDC 131 90.4 43 76.8 0.019

ERþ 127 81.4 43 75.4 0.702

PRþ 100 67.6 36 63.2 0.213

HER2þ 40 28.4 12 22.2 0.570

Clinical variables, demographics, pathologic variables, and imaging character-
istics associated with mortality. α ¼ 0.05, Bonferroni correction not applied.
Continuous variables assessed with Mann-Whitney U Test and categorical vari-
ables with Fisher's Exact Test. (BMI¼ body mass index, BSA¼ body surface area,
COPD ¼ chronic obstructive pulmonary disease, ILD ¼ interstitial lung disease,
IDC ¼ invasive ductal carcinoma, ERþ ¼ estrogen receptor positive, PRþ ¼
progesterone receptor positive, HER2þ ¼ human epidermal growth factor re-
ceptor 2 positive). Bolded values indicate statistical significance.
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Kaplan-Meier survival calculations and cox-proportional hazard model-
ling were performed in R with the Survminer package. Tests of signifi-
cance were achieved using the log-rank test. Cox-proportional hazard
modeling and adjusted survival was determined based on AI measure-
ments including total number of pulmonary metastases and maximum
nodule size. Survival prediction classification by hormone positivity
status was also performed.

3. Results

A total of 226 breast cancer subjects with lung nodules were included
in the analysis after 14 subjects were excluded for failed AI processing.
Another 24 were also excluded due to lack of adequate follow-up (n ¼
17) or lack of breast cancer histopathological diagnosis in the electronic
medical record (n ¼ 7). The study group consisted of 168 confirmed
subjects with pulmonary metastases (total of 689 metastases) and 58
without pulmonary metastases. A power analysis to detect univariate
mortality with a type 1 error of 0.05 and type II error of 0.20 revealed
659 nodules were needed, indicating the study was appropriately pow-
ered. The median clinical follow-up was 28 months (range ¼ 3–58
months). Subjects ranging from 25-87 years old at initial diagnosis were
included in the study (See Table 1 for full demographics).

No statistically significant difference was found regarding size of the
primary breast cancer (p ¼ 0.466) or hormone status (HER2þ p¼ 0.570,
ER þ p ¼ 0.702, PR þ p ¼ 0.213) between the Lmetþ and Lmet-groups.
Subjects with lung metastases were more likely to have a pathological
diagnosis of infiltrating ductal carcinoma (IDC; p ¼ 0.019) and be older
(median age 62 vs 53, p < 0.001). The populations were similar con-
cerning the presence of extrapulmonary metastases (including liver,
bone, and brain metastases) except for the extent of axillary lymph node
metastases, which was higher in the population without lung metastases
p ¼ 0.049.

3.1. AI performance

The AI model had a per-patient sensitivity, specificity, PPV, and NPV
of 0.952, 0.639, 0.878, and 0.830, respectively, with a Cohen's Kappa of
0.637 and an intraclass correlation for nodule size of 0.76 (Table 2 and
Figure 2A). On a nodule-to-nodule basis, correlation between the true
positive, AI-measured nodule maximal diameter and expert nodule
diameter demonstrated a Spearman's rho ¼ 0.79 (Figure 2A) and a mean
nodule size differences of -1.44 mm (95% CI for any size difference
-20.38–17.50) (Figure 2B). Of note, nodule size discrepancy increased
after a size cutoff of 20 mm. Nodule-level concordance for detection of
lung lesions with a true negative lesion defined as a control patient where
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both the AI and expert determined there was no lesion had a sensitivity of
0.975 and specificity of 0.612 with a Kappa of 0.626 (Table 3).

3.2. Analysis of false positives

Analysis of the patients with false positives revealed a bias towards
increased false positives in patients with lower BMI (26.9 vs 29.7, p ¼



Table 2. Patient-level concordance for detection of lung nodules.

N ¼ 227 Expert – Nodule Expert – No Nodule

AI - Nodule 158 22

AI - No nodule 8 39

Value 95% CI

Sensitivity 0.952 0.904–0.977

Specificity 0.639 0.506–0.755

PPV 0.878 0.819–0.920

NPV 0.830 0.687–0.919

Cohen's Kappa 0.637 0.516–0.758

If a patient had any falsely positive or falsely negative nodules as determined by
expert review, the patient was classified as a false positive or false negative,
respectively. Unweighted Cohen's kappa ¼ 0.637 (0.516–0.758)95% confidence
intervals for testing parameters calculated using the efficient-score method. (PPV
¼ positive predictive value, NPV ¼ negative predictive value). Table 3. Nodule-level concordance for detection of lung lesions.

N ¼ 752 Expert - Nodule Expert - No Nodule

AI - Nodule 672 24

AI - No nodule 17 39

Value 95% CI

Sensitivity 0.975 0.960–0.985

Specificity 0.612 0.488–0.736

PPV 0.966 0.948–0.977

NPV 0.696 0.557–0.808

Kappa 0.626 0.521–0.737

Unweighted Cohen's Kappa ¼ 0.626 (95% CI 0.516–0.758). 95% confidence
intervals calculated using the efficient-score method.

Table 4. Cohort characteristic analysis of patients with false positives.

False Positive
Patient (N ¼ 22)

All other
patients (N ¼ 204)

P

Age 60 12.7 58.5 12.3 0.593

BMI 26.9 4.7 29.7 6.9 0.015

BSA 1.8 0.2 1.9 0.3 0.136

Pack Years 2.7 6 3.2 9.5 0.783

Female Sex 21 95.5 195 95.6 1

Hypertension 6 28.6 104 52.3 0.066

Hyperlipidemia 7 31.8 47 23.4 0.560

Diabetes 2 9.5 42 21.0 0.334

COPD 2 9.5 10 5.0 0.720

Current Smoker 2 9.1 9 4.5 0.667

Lung Cancer 0 0 2 1.0 1

Patients with false positives nodules were more likely to have a lower BMI than
all other patients. Bolded value indicates statistical significance.
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0.015). Table 4 contains the cohort characteristic analysis of the false
positives. Table 5 is a frequency table describing the sources of the false
positive measurements. The most common causes of false positive nod-
ules included vessels, atelectasis, and osteophytes (20.8%, 16.7%, 16.7%,
respectively). The most common locations for false positive nodules were
the right upper lobe, right middle lobe, and left upper lobe (29.2%,
20.8%, 20.8%, respectively). Generally, false positives were more com-
mon in the upper segments and decreased towards the lower segments.
Figure 3 contains a few images of the false positive results.

3.3. Outcomes

Compared with the Lmet-group, Lmet þ group was more than twice
as likely to develop extrapulmonary metastases, including bone (p <

0.001) and brain (p < 0.001). There was a negative correlation between
survival from initial imaging and increasing total number of nodules as
detected by AI (R ¼ -0.32, p < 0.00004)).

The Lmet þ group had a four times greater mortality in the follow-up
period (p ¼ 0.002) as compared to the Lmet-group (Figure 4).

Presence of AI-detected lung metastases was negatively associated
with survival in the setting of ERþ, PR þ disease (p ¼ 0.00059)
(Figures 5A-D). The presence of AI-detected lung metastases was not
associated with a difference in survival in subjects with triple negative
breast cancer (TNBC), triple positive breast cancer (TPBC), and HER2þ
disease (P ¼ 0.55, 0.18, 0.079, respectively). Presence of AI-detected
lung metastases was negatively associated with survival in subjects
with non-TNBC, non-TPBC, and non-HER2þ Breast cancer (p¼ 0.00011,
0.01, 0.015, respectively).

Figures 6A–D demonstrate the Cox-proportional hazard modelling
and adjusted survival from imaging based on quantitative AI measure-
ments including total metastases and maximum metastasis size. Subjects
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were divided into groups based on number of AI lung metastases detected
at initial staging (0–10, 10–20, and 20–30 nodules) overall demon-
strating decreased survival time based on number of metastases. There
was a disproportionate decrease in survival rates as number of metastases
increased. All groups demonstrated a plateau in survival rate at
approximately 18 months (Figure 6A). All groups demonstrated a pro-
portional decrease in survival rate based on maximal metastasis size
(Figure 6B). Maximum AI diameter (mm) of metastases was indepen-
dently associated with an increased risk of death. For every 1 mm in-
crease in maximum lung metastasis diameter there was a 3% increase in
mortality. For every added lung metastasis identified by AI, there was a
7% increase in total mortality (Figure 6C). These findings coincided with
results for expert numbered and measured lung metastases (Figure 6D).
Figure 2. (A) Correlation of true positive
maximum AI and expert metastasis mea-
surements. FP were removed from analysis to
determine accurate lung metastasis size
concordance. There is a strong correlation
between both methods (Spearman's rho ¼
0.79). 2-way average fixed raters ICC ¼ 0.76
(p ¼ 3.0e-18, 95% CI ¼ 0.69–0.82). (B)
Bland-Altman plot for quantitative compari-
son of difference between all AI and expert
maximum metastasis size. Mean metastasis
size difference was 1.44mm (95% CI for any
size difference 20.38–17.50). Metastasis size
discrepancy notably increases with sizes of
greater than 20 mm as evidenced by bland-
altman dispersion.



Table 5. Frequency table of the false positives.

False Positive nodules (N ¼ 24)

Identity N (%) Mean size (mm) (SD)

Osteophyte 4 (16.7) 13.0 (6.1)

Bowel 3 (12.5) 22.0 (9.6)

Vessel 5 (20.8) 14.0 (4.5)

Fluid in Fissure 1 (4.2) 23.7

Azygos Vein 3 (12.5) 24.1 (5.8)

Atelectasis 4 (16.7) 12.3 (6.6)

Diaphragm 1 (4.2) 16.1

Scar 1 (4.2) 20.1

Other 2 (8.4) 11.0 (4.0)

Location N (%) Mean size (mm) (SD)

Right upper lobe 7 (29.2) 17.5 (8.3)

Right middle lobe 5 (20.8) 17.0 (9.7)

Right lower lobe 4 (16.7) 15.6 (4.5)

Left upper lobe 5 (20.8) 14.9 (6.7)

Left lower lobe 3 (12.5) 15.6 (6.5)

The most common identities of false positive nodules were vessels (20.8%),
osteophytes (16.7%), and atelectasis (16.7%). The right upper lobe had the
highest predominance of false positive nodules (29.2%). Generally, the lowest
frequency of false positives occurred in the lower lobes bilaterally.

Figure 4. Survival from imaging between subjects with and without lung me-
tastases as determined by AI. Significant survival difference detected using the
log-rank test (p ¼ 0.002). Follow-up period defined as 2.5 years. This figure
reflects cancer-related mortality.
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Using classification and regression trees (CART), Figure 7 delineates
deceased subjects via initial staging (clinical, pathologic and imaging),
hormone receptor status, and AI-determination of the number/size of
metastasis (es). Only significant (p < 0.05) CART nodes were included in
the graphical depiction. The most important classifier was total number
of lung metastases. Risk-groups were found to be < 7 metastases (11%
mortality), 7–13 metastases (31% mortality), and >13 metastases (82%
mortality). A best fit logistic regression model for prediction of mortality
in this cohort is shown in Figure 8A. Variables included in the final model
included axillary LNþ, other LNþ, liver metastases, AI determined total
number of metastases and max lung metastasis diameter (mm) (AUC
0.857, McFadden R2 0.323). Figure 8B describes the logistic regression
model using only AI generated parameters for prediction of mortality
(total metastases and max diameter (mm)) (AUC ¼ 0.826, McFadden R2

¼ 0.243), and Table 6 explains the model parameters in detail.

4. Discussion

The utility of biomarkers for detecting future outcomes at initial
staging cannot be understated. AI detection of maximum axial diameter
and number of lung metastases in the context of breast cancer at initial
Figure 3. (A) CT with AI-RAD measurements after AI processing demonstrating a fals
as a 2.3 cm nodule. (B) Additional CT with AI-RAD measurements that measured an

5

staging CT is a strong predictor for future mortality. The use of AI to
detect and quantify pulmonary metastases in breast cancer patients has
the potential to improve characterization efficiently and accurately. The
AI model facilitates a rapid assessment, especially in direct comparison to
the manual detection and measurement of up to 30 lung nodules. On a
per-patient level, the AI model performed with a sensitivity of 0.952 and
a specificity of 0.639. This is similar to multiple prior studies, for example
Cui et al reported a sensitivity of 0.934 with a third-party database [21],
Jin et al reported a sensitivity of 0.912 [22], and Gupta et al reported a
sensitivity of 0.856 [23]. Armato III et al reported that mean expert
thoracic radiologist nodule-detection sensitivities range from 0.51-0.83%
and mean FP rates range from 0.33-1.39 per case [4]. While not highly
specific, the utility of the algorithm lies in overall detection of all pul-
monary nodules present. Additionally, our results are concordant with
prior studies that lung nodule size is an independent predictor of survival
[24, 25].

After analysis of the false positive nodules, it was clear that the low
specificity comes with the low number of patients with no nodules. The
pre-test probability in this cohort was high (78% of patients with nod-
ules) and it would be more accurate to describe a false positive rate of
9.7% per patient. Most false positives were identified as atelectasis,
vessels, and osteophytes. Atelectasis and infection were commonly mis-
identified as nodules, likely because of their relative mass-like and
hyperdense appearance with adjacent normal lung parenchyma. Addi-
tionally, the lobular contour of the protruding osteophytes from the
e positive result where the algorithm detected a part of the colon and measured it
osteophyte extending from the thoracic vertebral body.



Figure 5. Survival from initial staging in months as classified by presence of AI-detected lung metastases and clinically relevant tumor isotypes. (A) Survival curves
adjusted for the presence or absence of lung metastases and triple-negative breast cancer status (TNBC; HER2-, ER-, PR-). (B) Survival curves adjusted for the presence
or absence of lung metastases and triple-positive breast cancer status (TPBC; HER2þ, ERþ, PRþ). (C) Survival curves adjusted for the presence or absence of lung
metastases and ERþ, PRþ (ERPR) status. (D) Survival curves adjusted for the presence or absence of lung metastases and HER2þ status. Presence of a histological
subtype indicated by “1”, and absence defined by “0”. 95% confidence intervals given by the shaded area. P-Values calculated using the log-rank test (α ¼ 0.05). (TNBC
¼ triple negative breast cancer, TPBC ¼ triple positive breast cancer, ERPR ¼ estrogen receptor positive receptor).
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thoracic vertebral bodies in direct contact with the lung parenchyma
likely led to their misidentification as nodules.

In the workup of breast cancer, desirable biomarkers to determine
effective treatments are relatively inexpensive, accessible, highly repro-
ducible, and cause no harm to the patient. Initial staging CT examinations
also fit these criteria, as they are a pre-existing step in the cancer work-up
and their findings can be easily reproduced – especially with the appli-
cation of AI and a standardized protocol. Radiomics allows for the
combination of patient data and clinical features in addition to extracted
imaging features to extrapolate prognostic outcomes and predict
response to treatments [15]. Prior studies have shown the utility of
including radiomic data when assessing response to treatment [13].
Here, the AI algorithm performed at a high level and was comparable to
expert radiologist performance.

This study showed that the total number and size of lung metastases
at initial staging CT is an effective and readily available biomarker that is
not commonly employed in the standard of care, but perhaps could be
with the efficiency that AI offers. In our study, number and size of lung
metastases was a stronger predictor of mortality than breast mass size
with the Lmetþ group four times as likely to die in the 2.5-year follow-up
period compared to the Lmet-group. There was a strong association of
lung metastases and subsequent brain metastases as well.

Survival in metastatic breast cancer patients is influenced by the
hormone-receptor positivity status of the tumor, for which there are
targeted treatments depending on tumor isotype [26]. The exact influ-
ence of individual hormone receptor status on survival in patients with
metastatic lung lesions is unspecified. Furthermore, the accurate diag-
nosis and quantification of metastatic burden in the lungs is prone to type
II error and inter-observer variance. We determined that the presence of
lung metastases detected by AI specifically impacted survival in patients
with ERþ, PR þ breast cancer (p ¼ 0.00059) and HER2-tumors (p ¼
6

0.015) as well as patients with disease other than TNBC, TPBC, and
HER2þ tumors in general. This suggests that accurately quantifying the
lung metastasis tumor burden is critical in determining an accurate
prognosis in patients with ERþ, PR þ breast cancer and HER2-tumors.
Other isotypes do not necessarily reflect this trend and may reflect the
lack of efficacy for treatment in such tumor isotypes (e.g. TNBC; ER-, PR-)
or the relative rarity of specific isotypes (e.g. TPBC). Survival curves for
HER2þ and TPBC tumors are suggestive of an influential effect of
AI-detected metastases, but either lack sufficient follow-up, sample size,
or combination of both. A 5-year longitudinal follow-up study would be
helpful to adequately discriminate for these tumor isotypes.

4.1. Future applications

The use of radiomic biomarkers, specifically number and size of lung
nodules, may play a yet unrealized role in cancer imaging and subsequent
treatment. The potential benefit of directing more aggressive therapy to
those with certain imaging criteria at initial staging requires further
research. Radiomic data is currently being explored at a single time point
in the patient's work-up, and likely will play an even larger role when
applied in a longitudinal fashion (also known as delta radiomics) [14]. In
this way, subtle nodule biology and nodule responses to therapy can be
assessed and monitored more accurately. Further investigation could be
made into the application of an AI algorithm in international and un-
derserved populations that may have a scarcity of radiologists.

4.2. Limitations

There are some limitations to our study. AI algorithm limitations are
secondary to model training as well as application. As demonstrated by
Figure 1, nodule size measurements and discrepancies became more



Figure 6. Cox-proportional hazard modelling and adjusted survival from imaging based on quantitative AI measurements including total metastases and maximum
metastasis size. A. Adjusted survival curve for AI detected metastasis counts using 0–10, 10–20 and 20–30 nodules as breakpoints. Survival decreases disproportional
to total nodule count. B. Adjusted survival curve for AI detected metastasis size. Survival decreases roughly proportional to metastasis size. C. Cox-proportional hazards
model controlled for presence of lung metastases for AI-based measurements of total metastases and maximum first-dimension size (MaxFAI). Increase in MaxFAI and
total nodule count is independently associated with probability of death (HR-MaxFAI ¼ 1.03 (95% CI 1.01–1.05, p ¼ 0.0076); HR-total metastases ¼ 1.07 (95% CI
1.05–1.09, p < 0.001). D. Cox-proportional hazards model controlled for presence of lung metastases for expert-based measurement of maximum first-dimension
metastasis size (MaxFExp) and AI collection of metastases count. Increase in MaxFExp and total metastasis count is independently associated with probability of
death (HR-MaxFExp ¼ 1.03 (95% CI 1.01–1.05, p ¼ 0.01), HR-total metastases ¼ 1.06 (95% CI 1.03–1.08, p < 0.001)).

Figure 7. Classification and regression tree for explanation of deceased subjects using initial clinical, pathologic, and imaging staging, hormone receptor status, and
AI-determination of the number/size of metastasis(es). The first factor establishing mortality risk is total nodule count. >13 nodules found by AI correlated strongly
with overall mortality. 1 ¼ Event (Death), 0 ¼ No event (Alive). Size refers to number of patients who fall into the specified node.
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variable, likely because the model was initially trained on lung nodules
measuring up to 20–25 mm.

Due to the large number of nodules and the potentially limitless
measurements, we only characterized the top 5 nodules by two-
dimensional sizes, thus any agreement statistics are extrapolated
beyond those five per patient. Therefore, we were unable to analyze the
agreement between the experts and AI algorithm in terms of number of
7

detected nodules per patient or use 3D measurements as this would be
time prohibitive to the experts and is not commonly used in practice. In
practice radiologists would describe 30 nodules as “innumerable” so the
evaluation of 30 nodules automatically could be add value.

Our study was performed at a single center and reflects the findings of
the population encountered at our institution. However, it should be
noted that this AI algorithm was previously tested and validated at



Figure 8. (A) ROC curve for prediction of mortality using initial clinical, pathological, and image-based staging characteristics as well as AI-determined quantitative
lung metastasis measurements (McFadden R2 ¼ 0.323). (B) ROC curve for prediction of mortality by MaxFAI and total nodule count (R2 ¼ 0.243).

Table 6. Logistic regression parameters for prediction of mortality at 2.5 years
amongst subjects in this cohort.

Variable P OR (95% CI)

Total Metastases (AI) <0.001 1.11 (1.07–1.15)

Max AI (mm) 0.002 1.06 (1.02–1.10)

Axillary LN þ 0.044 0.429 (0.189–0.977)

Other Nodes þ 0.043 6.97 (1.061–45.8)

Liver Metastases 0.006 8.79 (1.84–42.0)

P-values represent log-likelihood significance testing for importance of the var-
iable inclusion in the model.

M.R. Kocher et al. Heliyon 8 (2022) e08962
multiple centers across the USA, Europe, and Asia. A multi-center study
of breast cancer patients would allow generalization of our findings to a
wider population.

Due to this being a retrospective analysis, pathologic confirmation
was not available for all disease that met our metastatic criteria. In the
future it would be ideal to confirm AI findings with tissue samples for all
subjects.

There was a significantly increased incidence of axillary lymph node
metastases in the patient group without lung nodules (p ¼ 0.033). The
patients who presented with distant metastases were less likely to be
specifically evaluated for axillary disease likely resulting in this finding.
Not assessed does not necessarily equivocate to the absence of disease,
but it is noteworthy that there was a predominance in the population
without nodules. It is important to note that our findings may represent a
reporting bias due to lack of specific assessment of the axilla in certain
patients.
4.3. Conclusions

Automated AI-based detection of lung metastases in breast cancer
patients at initial staging chest CT performed well at identifying pul-
monary metastases and demonstrated strong correlation between the
total number andmaximum size of lung metastases with future mortality.
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