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Abstract: Background and Objectives: This study evaluated and compared the cognitive function
(CF) and aerobic fitness (AF) of 15 normal-weight (NW) and 15 overweight (OW) children, aged
6–12 years. In addition, the relationship between CF and AF was evaluated. Materials and Methods:
The ANAM4 battery was used to evaluate CF, and a constant treadmill walking exercise (6 km/h
for 6 min) and a progressive treadmill exercise (modified Balke test) were used to assess pulmonary
oxygen uptake (VO2). Results: The OW children displayed worse attention and visual tracking
(88.95 ± 4.45% and 93.75 ± 3.16%), response inhibition (90.27 ± 1.54% and 93.67 ± 2%), and speed
of processing (93.65 ± 1.5% and 94.4 ± 1.54%) than the NW children (p < 0.05). The VO2 max was
higher and the time constant of VO2 kinetics was shorter in NW children (56.23 ± 3.53 mL/kg/min
and 21.73 ± 1.57 s, respectively) than in OW children (45.84 ± 1.89 mL/kg/min and 33.46 ± 2.9 s,
respectively; p < 0.05). Conclusion: The OW children aged 6–12 years demonstrated poorer CF and
lower AF than their NW peers. An association between AF and CF indicators was identified in
both groups.

Keywords: children; oxygen uptake; weight; cognitive function

1. Introduction

It has been almost two years with the world living in pandemic restrictions. Work-
ing from home, studying has become the new normal. The World Health Organization
released new recommendations for physical activity and sedentary behavior in 2020 [1].
At least 60 min per day of moderate to vigorous, mostly aerobic, physical activity is rec-
ommended for children to keep healthy musculoskeletal and cardiovascular systems. It is
recommended to spend as little as possible sedentary time, because sedentary behavior
is associated with the following poor health outcomes: poorer sleep quality, increased
adiposity, decreased cardiovascular and musculoskeletal fitness, and also poorer mental
health. Runacres et al. [2] found that children increased their sedentary time by more than
five hours per day during the pandemic period. Stavridou et al. [3] reported that during the
pandemic period overweight and obesity among children increased. A total of 1.27 million
new childhood obesity cases were captured in the US during 2020 year [4]. As the number
of overweight and obesity is increasing, it is important to understand the negative impact
of obesity not only for physical, but also for mental health.

Peak oxygen uptake (VO2 peak) has become the most researched variable in pediatric
exercise science, and the kinetics of oxygen uptake (VO2) is an important parameter of
aerobic fitness (AF) in children [5]. VO2 peak relative to body weight was lower in obese
than normal-weight (NW) children aged 9–14 years [6], and lower estimated VO2 max
was detected in overweight (OW) children aged 8–16 years compared with their non-OW
peers [7]. Obese children aged 10–13 years had higher absolute VO2 peak, lower VO2 peak
corrected for mass, and lower VO2 peak corrected for fat-free mass, compared with their
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NW peers [8]. Furthermore, a higher absolute VO2 peak, but lower relative VO2 peak, was
detected in obese compared with non-obese children aged 10–12 years, while performing
both incremental and supramaximal constant-load verification tests [9].

Some studies have reported that OW children demonstrate similar VO2 on-kinetics
during submaximal exercise [10–12]. However, more recent studies reported that OW
children and obese adolescents displayed slower oxygen uptake kinetics than NW children
while performing both medium and vigorous exercise [13–15].

Significant changes in brain structure and function occur during infancy and childhood.
OW and obesity have a negative impact on cognitive function (CF), and CF is poorer
between the OW and obese populations than the non-obese population [16]. The term
CF covers multiple mental abilities, including specific academic skills, scores and school
achievements, thinking, problem solving, memory, language, intelligence quotient, and
others [17].

OW or obese children demonstrate lower self-esteem, depression, and other emotional
consequences [18], which may have an impact on their cognitive achievements in school.
Children with a high body mass index have meaningfully lower scores in mathematics and
reading in the third grade [19,20]. However, some researchers reported that there are no
associations between body mass index and academic results [21,22], while others reported
a negative association between higher body mass and academic results for boys, but not
girls [23].

The rate of executive dysfunction in obese and OW children was twice that in the
normal weight population [24]. Obese or OW youth demonstrated slower cognitive pro-
cessing speed on cognitive functioning compared with NW peers. In addition, NW children
aged 8–11 years displayed better CF than peers with lower or higher weights [25]. One
of the most important cognitive skills that develop during childhood is working memory,
and children with a higher body mass index are characterized as having worse working
memory than NW children [26].

Our previous research revealed that OW youth demonstrate worse CF and AF than
NW and sport-trained youth [27]. In a further investigation of CF and AF, here, we analyzed
data from children aged 6–12 years who participated in our study. The aim of this study
was to evaluate and compare cognitive function and aerobic fitness of normal weight and
overweight children, aged 6–12 years.

2. Experimental Section

Participants fifteen healthy (15) NW and 15 OW boys aged 6–12 years participated in
this study (Table 2). OW status was established using age, height, and weight (BMI between
84th and 95th percentiles—overweight for 6–15 years old). The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the Kaunas
Regional Ethics Committee, Nr BE-2-27, 24 May 2017. Written informed consent was
obtained from the parents of the participants and verbal agreement was obtained from the
participants. Participants of NW and OW groups did not have any specific physical educa-
tion, except for physical education lessons in school (2 times/week, 45 min/time), which
are obligatory for all healthy pupils in Lithuania. Potential participants were excluded
from the study if they had musculoskeletal problems, chronic diseases, epilepsy, asthma,
heart disease, or diabetes. The characteristics of the participants are presented in Table 2.

2.1. Measurements

We used a TBF-300 body composition analyzer to measure body mass to the nearest
0.1 kg beam, and a Stadiometer was used to measure height to the nearest 0.01 m. Body
mass index (BMI) was calculated as body mass (kg) divided by height squared (m2).

An Oxycon Mobile portable telemetric system (Munich, Germany) was used to record
the pulmonary gas exchange parameters during exercise. The gas analyzer and the flow-
volume sensor were calibrated before each test session using the automatic calibration
procedure provided by Jaeger.
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A Polar system was used to measure heart rate (HR). Children wore a pediatric
wireless chest strap containing a sensor. The heart’s electrical signals were used to detect
and record HR data.

Progressive treadmill exercise (PTE). We used a modified Balke test [28] to collect
oxygen uptake data. Each participant stood on the treadmill for 1 min to register their
initial gas exchange, then the participant began a stepping protocol (3-min; 3 km/h; 0%
grade). Thereafter, the speed of stepping increased to 6 km/h and the grade of the treadmill
increased from 0% to 2%. From 4 min onward, the grade of the treadmill increased by
2% every minute of the test, until the participant reached exhaustion. Participants were
verbally encouraged to make their maximum effort throughout the test. The test was
performed 2 times with 45 min brake between fulfillments. The average of the results were
used for the processing of statistical data. Oxygen uptake data was recorded during the
test and while the participant was resting.

CF was evaluated using the Automated Neuropsychological Assessment Metrics
Version 4 (ANAM4). Data were recorded for four tests: 2-Choice Reaction Time test
(2CRT), Code Substitution–Learning (CSL), Go/No-Go test, and Simple Reaction Time
(PRO) (Figure 1). From all recorded data we analyzed the percent of correct responses.
Participants learned to do tests twice, and then the real tests were recorded for evaluation.
Participants took about 20–15 min to complete the tests [29].
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Figure 1. Descriptions of the cognitive tests. 2CRT—2-Choice Reaction Time test; CSL—Code
Substitution–Learning, PRO—Simple Reaction Time.

2.2. Study Design

Participants were asked to come to the laboratory twice.
The first time, participants performed the PTE–Balke test. The treadmill angle rose

2% every min, and the speed was constant during the test—6 km/h. Participants were
asked and encouraged to continue the exercise until exhaustion. The test was performed
2 times with 45 min brake between fulfillments. The average of the results were used for
the processing of statistical data. Oxygen uptake data was recorded during the test and
while the participants were resting. All oxygen uptake parameters were recorded during
the first visit.

The CF of participants was tested during the second visit. The participants initially
performed two trials to learn how to do cognitive tests, and thereafter the four tests were
conducted. Participants took about 20–30 min to complete the CF battery.
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2.3. Data Analysis

To determinate VO2 parameters and cognitive function results, we used formulas
given in Table 1.

Table 1. Formulas used for determination of VO2 parameters and CF.

Parameter Formula

Determination of VO2 kinetics [30] VO2(t) = VO2(b) + A1(1 − e−t/τ1 ) + A2(1 − e−t/τ2 )
Determination of VO2 peak The highest VO2 within a 20-s period during the PTE.
Determination of CF [29] #((NumCorr/(NumCorr + Numinc + NumLapse)))

VO2(t)—VO2 at any time point; VO2(b)—VO2 during 30 s before exercise; A1—amplitude of the phase I; A2—
amplitude of the phase II of the VO2 response; (1 − e−t/τ)- (1 − e−t/τ1 ) exponential function describing the rate
at which the VO2 is rising toward the amplitude; t—time; τ1 and τ2—the time constant of phase I and phase II,
respectively; #NumCorr—number correct response; Numinc—number of incorrect response; NumLapse—number
of no response.

2.4. Statistical Analysis

We used SPSS version 22.0 (IBM Corp., Armonk, NY, USA) for statistical analysis. The
Kolmogorov–Smirnov test was used to assess the normal distribution of the data; we found
all data normally distributed. For significant effects, Sidak’s post hoc adjustment was used.
Sample size (n = 15), standard deviations, and changes in the average level of the data were
assessed for all indicators. The statistical power (SP, as a percentage), based on an alpha
level of 0.05, was also performed for all indicators. The significant effect of SP was >80%.
The partial eta squared (ηp2) was estimated.

To determine any association between oxygen uptake parameters and CF and weight
status, Pearson correlation analysis was used. The closer the Pearson correlation coefficient,
r, is to either +1 or –1 indicates whether the relationship is positive or negative, respectively.
The correlation was considered as strong within the range of 0.5 to 1. Results were consid-
ered statistically significant when the p-value was <0.05. All values are expressed as mean
± standard deviation.

3. Results
3.1. Participants’ Characteristics

The subjects’ characteristics are detailed in Table 2. Participants in the two groups had
similar height and age, with no significant differences (p > 0.05; Table 2). However, body
weight in the NW group was lower than in the OW group (ηp2 = 0.79, SP > 99%, p < 0.05)
and the BMI of the NW group was lower than the OW group (ηp2 = 0.87, SP > 100%,
p < 0.05; Table 2).

Table 2. Subjects’ characteristics.

Variable

NW Group
(n = 10)

OW Group
(n = 10)

Mean ± SD Value Ranges
(MIN/MAX) Mean ± SD Value Ranges

(MIN/MAX)

Age (yr) 10.3 ± 0.94 6/12 9.75 ± 1.03 6/12
Height (m) 149.7 ± 4.8 123/152 147.7 ± 8.1 125/154
Weight (kg) 41.22 ± 5.55 * 25/46 57.87 ± 6.35 40/58
Body mass index (kg/m2) 18.32 ± 1.70 * 17/20 26.44 ± 0.57 24/26

NW—normal weight, untrained group; OW—overweight group. Values are means ± standard deviation.
* p < 0.05 when comparing NW group and OW group.

3.2. Oxygen Uptake Parameters

All oxygen uptake parameters are presented in Table 3. The time constant of VO2
kinetics during the PTE was significantly shorter in NW than in OW children (ηp2 = 0.86,
SP > 100%, p < 0.05). VO2 peak was significantly higher in NW than OW children (ηp2 = 0.98,
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SP > 100%, p < 0.05). VO2 max was significantly lower in NW than OW children (ηp2 = 0.65,
SP > 97%, p < 0.05).

Table 3. Parameters of walking exercise among 6–12 years old NW and OW children.

NW Group OW Group p

τ1, s 21.73 ± 1.57 33.46 ± 2.9 s 0.00 *
VO2peak, mL/kg/min 49.23 ± 5.75 37.82 ± 3.47 0.00 *
VO2max, L/min 1.61 ± 0.41 2.18 ± 0.18 0.00 *
HRmax, b/min 195.66 ± 11.93 192.83 ± 9.02 0.66
VEmax, L/min 56.2 ± 8.14 69.22 ± 1.57 0.00 *
VTmax, L 1.30 ± 0.2 1.63 ± 0.23 0.05 *
BFmax, 1/min 44.44 ± 5.48 43.55 ± 5.97 0.29
RER 14.64 ± 1.47 12.57 ± 2.65 0.55
Max test power, W 1.08 ± 0.08 1.03 ± 0.09 0.73

τ1—time constant of VO2 kinetics, HR—heart rate, VE—ventilation in minute, BF—frequency of breathing,
VT—volume of ventilation, RER—respiratory exchange ratio; NW—normal weight group; OW—overweight
group. Values are means ± standard deviation. * p < 0.05 when comparing NW group and OW group.

The NW group had a lower VT max and VE max (ηp2 = 0.79, SP > 99%, p < 0.05; and
ηp2 = 0.79, SP > 99%, p < 0.05, respectively) than the OW group (Table 3).

Other oxygen uptake parameters (HRmax, BFmax, RER, and Maximal test power) did
not differ significantly between the NW and OW groups (p > 0.05; Table 3).

3.3. Cognitive Function Evaluation

Cognitive test results were significantly different between the NW and OW groups
(Table 4) in the Go/No-Go test (ηp2 = 0.72, SP > 100% p < 0.05), CSL test (ηp2 = 0.61,
SP > 99%, p < 0.05), and PRO test (ηp2 = 0.72, SP > 100%, p < 0.05). There was no significant
difference between the groups in the 2CRT test (p > 0.05).

Table 4. Cognitive tests results between NW and OW 6–12 years old children.

NW Group OW Group p

Go/No-Go,% 93.67 ± 2 90.27 ± 1.83 0.00 *
CSL,% 93.75 ± 3.16 88.95 ± 4.45 0.01 *
2CRT,% 94.4 ± 1.54 93.65% ± 1.5 0.21
PRO,% 93.6 ± 1.7 89 ± 3.7 0.00 *

CSL—Code Substitution–Learning test; 2CRT—2 Choice Reaction test; PRO—Simple Reaction test. NW—normal
weight group; OW—overweight group. Values are means ± standard deviation. * p < 0.05 when comparing NW
group and OW group.

There were significant, positive, and strong correlations between the Simple Reaction
test and VO2 peak (r = 0.704; p < 0.05), between the Simple Reaction test and VO2 max
(r = 0.669; p < 0.05), and between the Simple Reaction test and the time constant (r = 0.766;
p < 0.05).

Table 5 shows correlation between oxygen uptake kinetics, VO2 peak, and cognitive
function tests in NW and OW groups.

Table 5. Correlation between oxygen uptake kinetics, VO2 peak, and cognitive function test results.

Tests P.corr, t1, s p
P.corr,

VO2peak,
ml_kg_min

p

NW OW

P.corr, t1, s p
P.corr,

VO2peak,
ml_kg_min

p P.corr,
t1, s p

P.corr,
VO2peak,

ml_kg_min
p

CSL −0.403 0.05 * 0.592 0.00 * −0.752 0.00 0.602 0.03 * −0.109 0.74 −0.403 0.22
Go/No/Go −0.561 0.00 * 0.415 0.04 * 0.264 0.40 −0.106 0.74 0.201 0.55 −0.086 0.80
2CRT −0.686 0.00 * 0.504 0.01 * −0.165 0.60 0.644 0.02 * 0.190 0.57 −0.155 0.64
PRO −0.767 0.00 * 0.444 0.03 * −0.321 0.30 0.629 0.02 * −0.314 0.34 −0.459 0.15

t1—oxygen uptake kinetic, CSL—Code Substitution–Learning test, 2CRT—2Choise Reaction test. PRO—simple
reaction time test, P.corr—Pearson correlation, and * p < 0.05.
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4. Discussion

Our results indicate that OW children demonstrate lower aerobic capacity and CF
parameters than healthy-weight children.

The main measure for assessing aerobic power is the VO2 peak, which also reflects
endurance capacity. We found a significant difference in VO2 peak between NW and OW
children. The OW children demonstrated a lower VO2 peak than NW children during the
PTE test. We presume that OW children got tired, lost motivation, and stopped the test
because of leg pain before they reached maximal oxygen uptake. Similar research findings
were described by Melendez-Ortega and coworkers [31], who stated that it is challenging
to assess VO2 parameters in OW children because of their faster rate of tiredness, increased
pain sensation, and other effects. The capacity for exercise depends on a lot of factors,
but one of the most important is the delivery of O2 to working muscles to satisfy their
metabolic requirements [32]. Physically active children demonstrate better endurance than
OW children. Furthermore, a faster involvement of energy transportation from aerobic
metabolism in working muscle and decreased receptivity to muscular fatigue mean that
young children can be considered metabolically similar to highly trained sportspeople [33].
However, according to our findings, the higher levels of adiposity among OW children
mean the contribution of energy delivery is lower in working muscles.

Obesity and OW may also have an impact on the respiratory system via different
mechanisms, including a direct effect of fat in the chest wall to cause structural changes
and decrease the volume of the lungs, especially the expiratory reserve volume [34]. Fur-
thermore, because adipose tissue is the largest endocrine organ in the body, when its
temperature increases, progressive metabolic changes occur [35]. Endothelial dysfunction,
a lower mitochondrial density, and oxygen transfer volume might also be reasons for a
lower VO2. Initially, obesity can have a negative but not critical effect on full lung volume
and residual volume, whereas subsequently, the increased body mass decreases exhalation
reserve volume and functional residual volume [34]. These findings demonstrate ongoing
risks for OW children and adolescents.

In addition to having a large effect on physical health, OW and obesity may also
have an impact on children’s psychosocial health. These children can suffer from de-
pression and low self-respect, and these psychosocial outcomes also affect academic
performance [19,20,36].

Neuroimaging studies investigating the relationship between OW and obesity and
gray matter report that reward-related regions of the brain in OW/obese children and
youths and their healthy-weight peers are different [37].

Groot et al. [38] claim that obese and nonobese children display different brain struc-
tures and CFs, and that this may have an impact on appetitive traits. A larger volume of the
pallidum has been detected in obese children than in healthy-weight peers. These results
support our findings and confirm that cognitive dysfunction may be associated with the
pallidum, which plays an important role in cognition. Furthermore, because the prefrontal
cortex is important for executive function, regulates limbic reward regions, and is involved
in the inhibition of impulsive behaviors [39], this may explain why obese or OW children
demonstrate poorer CF than their non-OW peers.

Our findings demonstrate that OW children demonstrate poorer CF compared with
NW children. It took longer for the OW children to complete the cognitive tests, and
they made more mistakes in the tests than NW children. CF tests measure choice reaction
time, working memory, memory, and motor speed. All these functions, especially working
memory and memory, influence learning results. The results of this study supplement
our previous research and indicate that OW children demonstrate poorer CFs and lower
aerobic capacity in all age groups, including young children (6–12 years) and youths
(16–19 years) [27]. Our findings are also in line with a report by Datar and colleagues [20]
that OW children demonstrate poorer academic achievements. It is known that OW or
obese adults display poorer global CFs than NW individuals, and our findings demonstrate
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that CF in young OW children is worse than in NW children. Early obesity or OW also
affects future learning results [28].

This study had some limitations. Our study is limited by the relatively small sample
size (n = 30), which is common in studies where participants are asked to come to the
laboratory several times and performing in the study requires maximum effort. It cost a
big withdrawal from the study, as in our case. We studies associations between FC and
weight status. It would be beneficial to analyze the impact of such factors as education
level, socioeconomical status of parents, nutrition, sleep duration and others for CF, as well.
Findings are controversial in the field of CF and AF and overweight and obesity; future
studies, especially longitudinal, are needed.

Nonetheless, the present study also has some strengths. Short memory, long memory,
and academic achievements are mostly studied assessing CF. We used ANAM4 test battery
to assess CF parts, as choice reaction time, scanning, visual tracking, and attention, response
inhibition, and visual-motor response timing. The results of our study emphasize that
being overweight and obese affect CF and AF at a young age. In addition, it was the first
study in Lithuania on this topic with young children.

5. Conclusions

In conclusion, OW boys displayed a slower time constant of oxygen uptake, lower VO2
peak, and poorer CF compared to normal weight boys. Weight status had an impact on the
CF and AF in boys aged 6–12 years. Further studies with bigger sample sizes are required.
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