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The draft genome of Xylaria sp. isolate MSU_SB201401, causal
agent of taproot decline of soybean in the southern U.S., is pre-
sented here. The genome assembly was 56.7 Mb in size with an
L50 of 246. A total of 10,880 putative protein-encoding genes were
predicted, including 647 genes encoding carbohydrate-active
enzymes and 1053 genes encoding secreted proteins. This is the
first draft genome of a plant-pathogenic Xylaria sp. associated with
soybean. The draft genome of Xylaria sp. isolate MSU_SB201401
will provide an important resource for future experiments to
determine the molecular basis of pathogenesis.
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ubject area
 Biology

ore specific
subject area
Plant Pathology, Mycology, Genomics
ype of data
 Genomic sequence, gene prediction and annotation of Xylaria sp. isolate
MSU_SB201401
ow data was
acquired
Whole genome was sequenced with an Ion Torrent PGM
ata format
 Draft genome assembly and gene annotation

xperimental
factors
The fungus was cultured on yeast extract peptone dextrose medium at room
temperature, and DNA was extracted with a modified CTAB protocol
xperimental
features
The genome was assembled with SPAdes version 3.6 and annotated with
MAKER version 2.31.6
ata source
location
Isolate MSU_SB201401 was collected from diseased soybean roots in Louisiana,
USA; genome sequencing was performed at the University of Arkansas, USA
ata accessibility
 The whole genome shotgun project of Xylaria sp. isolate MSU_SB201401 has
been deposited at DDBJ/ENA/GenBank under the accession number
NPFG00000000; the version described in this paper is version NPFG01000000
Value of the data

� The first draft genome of Xylaria sp. isolate MSU_SB201401, a causal agent of taproot decline on
soybean, is presented.

� Mechanisms of pathogenesis in the genus Xylaria are poorly understood.
� The draft genome will accelerate functional genomics research and help to understand the

molecular basis of pathogenicity.
1. Data

The genus Xylaria (Xylariales, Xylariaceae) is the largest genus in the family Xylariaceae. The genus
is mostly comprised of saprophytes associated with dead organic matter and endophytes commonly
associated with crops like soybean and barley [1]. Morphological features of the genus include large
stromatal tissue containing multiple perithecia, cylindrical asci, and dark ascospores with a germ slit
[2]. Interestingly, few species of Xylaria have been reported as pathogens [3]. Plant-pathogenic species
of Xylaria include Xylaria mali, the causal agent of root rot of apple in the southern and midwestern
United States [4], and Xylaria arbuscula associated with quick decline ofMacadamia trees [5]. Recently,
a taxonomically unresolved member of Xylaria was reported as the causal organism for taproot
decline of soybean in the southern U.S., especially along the Mississippi River Valley [6]. Initial
phylogenetic analyses of the isolate with four nuclear loci placed the isolate within the Xylaria
arbuscula species aggregate [6]. Soybean plants affected by taproot decline often exhibit interveinal
chlorosis in the leaves of the lower canopy during vegetative growth stages, which increases in
severity as plants mature through reproductive stages of growth and can be observed in the upper
canopy during advanced reproductive growth stages (4R6). Taproots and lateral roots display a
blackened appearance, with stroma of the fungus frequently visible upon examination. The disease
causes premature plant death in severe cases [6].

Taproot decline is the first report of a soybean disease caused by a species of Xylaria. However, this
was not the first reported observation of this particular fungal genus associated with soybean. Iso-
lation of an unknown species of Xylaria from soybean seed that had originated in Ethiopia was
previously reported [7], but that isolate was not confirmed to be a pathogen of soybean. To accelerate
taxonomic resolution, determination of molecular mechanisms underlying pathogenesis, functional
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genomics research, and the development of molecular detection assays for the pathogen, the genome
of Xylaria sp. isolate MSU_SB201401 associated with taproot decline was sequenced and assembled.
DNA sequencing with the Ion Torrent PGM platform generated 7,099,268 reads with a mean read
length of 281 bp and a total of 2 Gb of data. The resulting genome assembly of Xylaria
sp. MSU_SB201401 contained 56.9 Mb, which was notably larger than the 42.8 Mb genome of Xylaria
hypoxylon (http://genome.jgi.doe.gov/Xylhyp1/Xylhyp1.home.html) and the 40.9 Mb genome of
Xylaria sp. JS573 (GenBank accession JWIU00000000.1). The genome assembly of Xylaria
sp. MSU_SB201401 consisted of 6629 contigs (4743 longer than 1 kb), with an N50 of 56 kb, and an
L50 of 246. The longest contig spanned 423,920 bp. The GC content of the genomewas predicted to be
43.3%. Approximately 14.3% of the genome assembly was comprised of repetitive elements. Trans-
posable elements comprised 7.8% of the genome assembly, with the retrotransposon family
TY1_Copia being the most prevalent (6.2% of the genome assembly). A total of 10,881 genes were
predicted (average length¼1694 bp), encoding proteins with an average length of 496 amino acids.
BUSCO analyses of the predicted genes showed 94.7% completeness with 0.3% duplication, 4.0%
fragmentation, and 1.3% of genes missing. Of the 10,881 predicted proteins, 10,678 (98%) had at least
one homologous sequence in the NCBI nr database (e-valueo1e-5). Blast2GO attributed a GO term
for 9076 (83%) of the proteins, and 6674 (61%) were functionally annotated. A total of 647
genes encoding carbohydrate-active enzymes (CAZymes) were identified, which included 279
glycoside hydrolases (GHs), 91 glycosyltransferases (GTs), 17 polysaccharide lyases (PLs), 109
carbohydrate esterases (CEs), and 137 auxiliary activities (AAs). Additionally, the genome of Xylaria
sp. MSU_SB201401 was predicted to contain 1053 genes encoding secreted proteins, which included
314 CAZymes, and 96 proteases.

Although Xylaria spp. commonly exist as wood decomposers or endophytes, there are limited
reports of pathogenic species within the genus. Thus, mechanisms underlying pathogenesis
among species of Xylaria are largely unknown. In the context of fundamental research, the genome
assembly of Xylaria sp. isolate MSU_SB201401 presented herein will advance the discovery of
molecular mechanisms underlying taproot decline of soybean and accelerate taxonomic resolution
of the causal organism. In an applied context, the draft genome assembly of Xylaria sp. isolate
MSU_SB201401 will facilitate the development of rapid detection assays for the pathogen in plant and
environmental samples. Together, these efforts will ultimately help provide important management
tools for taproot decline of soybean.
2. Experimental design, materials and methods

2.1. Genomic DNA extraction and sequencing

Three mycelial plugs (3–5 mm2 each) from Xylaria sp. isolate MSU_SB201401 grown on V8 juice
agar medium were transferred into yeast extract peptone dextrose medium [8] amended with
100 μg ml−1 carbenicillin (Research Products International, Mt. Prospect, IL, USA) and incubated at
room temperature with constant shaking at 100 rpm for 5 days. Fungal tissue was collected by
centrifugation at 4000 rpm for 5 min and ground with liquid nitrogen. Genomic DNAwas extracted as
previously described [9]. The quality and quantity of the genomic DNA were assessed by agarose gel
electrophoresis and spectrophotometric analysis, respectively. A 400 bp library was prepared from
genomic DNA with the NEBNext Fast DNA Fragmentation and Library Preparation Kit (New England
Biolabs, Ipswich, NE, USA) following the manufacturer's instructions. Library quality was evaluated
with Agilent Tapestation D1000 tape (Agilent Technologies, Santa Clara, CA, USA). Whole genome
sequencing was performed at the University of Arkansas, Fayetteville, AR, USA, with an Ion Torrent
Personal Genome Machine (PGM) (Thermo Fisher Scientific, Waltham, MA, USA) and a 318 V2 chip
kit.

http://genome.jgi.doe.gov/Xylhyp1/Xylhyp1.home.html
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2.2. Genome assembly and annotation

The genome was assembled with SPAdes version 3.6 [10] with default parameters for Ion Torrent
reads. Protein-encoding genes were predicted with the MAKER pipeline version 2.31.6 [11], with
support from ab initio predictors SNAP version 2006-07-28 [12] and Augustus version 3.0.2 [13].
Proteins from Xylaria hypoxylon OSC 100004 and Hypoxylon sp. CO27-5 (accessed from http://genome.
jgi.doe.gov/programs/fungi/index.jsf) and Daldinia sp. EC12 (GenBank accession MDGZ00000000.1)
were also used to support gene prediction, by providing protein homology evidence. Gene com-
pleteness of the draft assembly was assessed with Benchmarking Universal Single-Copy Orthologs
(BUSCO) software version 2 [14] based on the Ascomycota dataset. The predicted protein sequences
were used as queries in a local BLAST search (BLAST version 2.2.31) against the NCBI nr database
(update 02/2016). For functional annotation, BLAST search results were analyzed with Blast2GO
version 4.1 [15]. CAZymes were identified with dbCAN version 5.0 [16]. Proteins predicted to contain a
signal peptide by both SignalP version 4.1 [17] and TargetP version 1.1 [18] were categorized as
secreted proteins. Proteases were identified by homology (BLAST) searches against the MEROPS
database version 11.0 [19] with a maximum e-value of 1e-5.
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