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ABSTRACT
The kidney is a complex organ that performs essential functions such as blood filtration and fluid 
homeostasis, among others. Recent years have heralded significant advancements in our knowl-
edge of the mechanisms that control kidney formation. Here, we provide an overview of vertebrate 
renal development with a focus on nephrogenesis, the process of generating the epithelialized 
functional units of the kidney. These steps begin with intermediate mesoderm specification and 
proceed all the way to the terminally differentiated nephron cell, with many detailed stages in 
between. The establishment of nephron architecture with proper cellular barriers is vital through-
out these processes. Continuously striving to gain further insights into nephrogenesis can ulti-
mately lead to a better understanding and potential treatments for developmental maladies such 
as Congenital Anomalies of the Kidney and Urinary Tract (CAKUT).
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Introduction: emergence of the kidney from the 
intermediate mesoderm

Vertebrate development entails the formation of 
three germ layers, the ectoderm, mesoderm, and 
endoderm, which provide cellular blueprints for 
embryonic organogenesis. Ectoderm gives rise to 
the central nervous system and skin cells, and endo-
derm derivatives encompass cells that line the 
respiratory and digestive tracts. The mesoderm, or 
middle layer, produces cells that are most abundant 
in the human body constituting skeletal muscle, 
cartilage, heart, gonads, and blood, among other 
tissue types.1 This review will focus on a member 
of the mesoderm lineage: the kidney. Much of our 
understanding about kidney development stems 
from rodent models, but also has benefited from 
studies in other vertebrates such as fish, frogs, and 
birds.2The inception of mesoderm development 
begins with the differentiation of pluripotent epi-
blast cells into a transient ‘primitive streak’ zone.-
1Position along the anterior-posterior embryonic 
axis and other instructive signals regulate the regio-
nalization of paraxial, intermediate, and lateral 
plate mesoderm.3

The urogenital system derives from the afore-
mentioned intermediate mesoderm (IM), which is 

a narrow section of tissue situated between the 
paraxial and the lateral plate mesoderm. Early 
developmental studies are hampered by the limited 
number of molecular markers that label the emer-
ging IM population. The first IM indicators to 
appear during embryogenesis are LIM-type 
homeobox (Lhx1) and the zinc-finger DNA- 
binding protein odd-skipped related (Osr1).4–7 

The expression domains of these two factors inter-
sect indicating the prospective IM and lateral plate 
mesoderm fields, as Osr1 is expressed across the 
entire length of the expanding somite tissue. 
Specific markers solely expressed in the IM do not 
turn on until about the 4–8 somite stage. The acti-
vation of Pax2 and Pax8 within a narrow band early 
in the IM is speculated to signify that the LPM and 
IM have assumed separate lineage trajectories. 
Complementary to these early expression pattern 
observations, functional assays in mice have 
demonstrated Lhx1, Osr1, Pax2, and Pax8 are all 
critical regulators of IM specification.4,6,8–10 For 
example, mice lacking either Lhx1 or Pax2/Pax8 
fail to form the nephric duct, which is a pair of 
tubes required for assembly of the urinary 
system.7,11 Interestingly, experiments in chick 
embryos indicate that the competence to respond 
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to these IM patterning factors is conferred by reti-
noic acid (RA) and Hox gene expression.12

It is important to think about developing organ-
isms in a three-dimensional context. This is espe-
cially true for understanding kidney ontogeny, as 
various signal gradients are radiating through the 
animal in a morphogenic fashion. For example, 
developmental studies performed in chick embryos 
found that bone morphogenic protein (BMP) sig-
naling affects IM cell fate in a concentration- 
dependent manner.5,13,14 A variety of studies have 
revealed RA and activin signaling gradients pro-
mote IM marker expression during ontogeny in 
various vertebrate species.15–21 Originally, the addi-
tion of these factors to culture systems including 
animal caps, embryoid bodies, and embryonic stem 
cells supplemented growth and cellular differentia-
tion of kidney fates. A decade later, similar experi-
ments have been refined to generate IM from 
induced pluripotent stem cells to generate kidney 
organoids.22

Following IM specification, the progression of 
vertebrate renal development involves the stepwise 
generation and degeneration of several kidney 
forms: the pronephros, mesonephros, and metane-
phros. Each kidney iteration develops along the 
anterior-posterior embryonic axis, where each sub-
sequent version becomes more structurally com-
plex than the previous structure. The pronephros 
emerges first, and while it is vestigial/nonfunctional 
in mammals, it is functional in other vertebrates 
such as fish and frogs.23 The mesonephros is further 
developed and partially functional in mammals, 
while serving as the final kidney form in amphi-
bians and fish.24 However, the fully formed and 
functional version of this vital organ in mammals 
is the metanephros, which develops through 
branching morphogenesis events that result in an 
arborized structure essential for fluid homeostasis. 
Importantly, all three vertebrate kidney forms share 
the overall structure of the kidney’s functional unit: 
the nephron. Broadly, the nephron is composed of 
a blood filter, a segmented tubule, and a collecting 
duct system to shuttle urine to the bladder.

Mesenchyme induction

The focal point of the remaining sections of this 
review will cover mechanisms driving the 

development of nephrons, since these are unifying 
structures across vertebrate kidney forms. While our 
primary focus will be centered on recent insights on 
mechanisms in mammals, we will also highlight 
some conserved genetic regulators revealed from 
studies in other vertebrates.

The mammalian metanephros contains two well- 
characterized renal progenitor populations: the meta-
nephric mesenchyme (MM) and the ureteric bud 
(UB) (Figure 1). The UB derives from the nephric 
duct and gives rise to the collecting duct system, and 
the MM is the source of all nephron lineages and 
contains vascular, stromal, and nephron progenitor 
cells (NPC). The UB initiates nephron induction by 
invading the MM and undergoes progressive branch-
ing after receiving reciprocal signals from the MM. 
Occurring simultaneously, UB signals cause the MM 
to condense around the ureteric tips forming 
a structure termed the cap mesenchyme (CM), 
which retains the Six2+ Cited1+ NPC population. 
The NPCs border the ureteric epithelium and other 
cell populations are more distant from this site. 
Recent lineage-tracing studies have begun to appreci-
ate how position, movement, and spatial exposure to 
differentiation cues can determine self-renewal or 
differentiation status within NPC pools. For example, 
a subset of Wnt4-expressing cells was discovered to 
migrate back to nephron progenitor zone and exhibit 
plasticity regarding nephron commitment25

In addition to physical location, the reciprocal 
crosstalk between the CM and UB is essential for 
nephron formation. The ability to form several 
thousand to over one million nephrons in mamma-
lian kidneys requires maintaining both a delicate 
balance of self-renewing NPCs whilst making 
a sufficient endowment of differentiating nephrons 
to support renal function. The Six2+ Cited1+ CM 
possesses the ability to self-renew and sustain 
ample progenitor cells capable of making the cor-
rect number of nephrons. Molecular signals from 
the UB are responsible for NPC self-renewal or 
nephron commitment. Factors that are required 
for maintenance of the progenitor pool include: 
WT1, SALL1, FGFR1/2, FGF8, WNT11, FGF9, 
and WNT9B.25–38 Without the proper signals the 
kidney exhausts the NPC pool, which in turn yields 
insufficient nephron number and can lead to kid-
ney agenesis or predisposition to chronic kidney 
disease.
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The spatial location of NPCs is becoming increas-
ingly appreciated as a major determinant of cell-fate 
decisions. Previously, it was well-accepted that the 
least committed NPCs were located at the top of the 
CM, and the most committed NPCs were positioned 
beneath the ureteric tip and undergo nephron induc-
tion and renal vesicle formation.39 It was thought that 
the derivation of nephron cells from NPCs was 
a linear progression from the Six2+ Cited1+ self- 
renewing population, to the Six2+ primed cellular 
state, and finally the committed state demarcated by 
Wnt4.39–43 However, results from a recent study that 

employed lineage tracing and computational model-
ing support an alternative hypothesis.25 found that 
NPCs moved randomly around the cap mesenchyme. 
The authors found that an NPCs can initiate Wnt4 
expression, previously believed to indicate ‘nephron 
commitment,’ migrate back to the progenitor domain, 
and regain a self-renewing progenitor status.25 The 
authors hypothesize that random cell movements 
influenced by ureteric epithelium result in differing 
signals that then determine the fate of the NPCs.

A particularly important transitional step during 
nephrogenesis is when CM cells form a pre-tubular 

Figure 1. Summary schematic of key nephrogenesis steps. Nephrogenesis steps beginning with ureteric epithelium invading 
mesenchyme (A, left) and mesenchyme condensing to form the cap mesenchyme (A, right) containing nephron progenitor cells 
(NPCs). Cap mesenchyme transitions to the renal vesicle (RV) (B, left) and transitions from mesenchymal to epithelized as it continues 
through the comma-shaped body (CSB) (B, right) and S-shaped body (SSB) (C, left) before ultimately resulting in a complete nephron 
(C, right). The inset depicts a terminally differentiated thick ascending limb cell with example solute transporters (ROMK, NKCC2) and 
tight junction proteins. Table with summaries of key steps and examples for each step from the text (bottom).
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aggregate (PTA) beneath the ureteric tip. One of the 
most well-known factors that signals within MM to 
commence the differentiation process is Wnt9b. 
The re-expression of Osr1 and Six2 have been 
documented to halt PTA formation.6,44,45 Six2 
activity within the CM is believed to antagonize 
the function of Wnt9b by affecting the stabilization 
of β-catenin.34,42,43,45–49 Thus, it is essential for 
PTAs to downregulate Six2 while the Wnt9b/ 
Wnt4 signaling axis prompts a mesenchymal to 
epithelial transition (MET) and renal vesicle (RV) 
polarization.

Nephron epithelization and growth

Renal vesicle (RV) formation is the beginning of 
many important changes that result in nephron for-
mation (Figure 1). The RV undergoes MET and 
becomes polarized as it transitions into more devel-
oped stages: the comma-shaped body (CSB) and the 
S-shaped body (SSB). The origins of epithelization 
are dependent on UB WNT9B signals to initiate 
WNT4 expression in the PTA.42 This expression 
leads to β-catenin stabilization and polarity estab-
lishment within the RV.43 Overall MET consists of 
changing from mesenchymal cell adhesion mole-
cules NCAM, Cdh11, Cdh2, and Cdh4 to a more 
epithelized status expressing Cdh6, Cdh1, and ZO1, 
among others.50–56

Cellular polarity is defined as specific proteins 
localizing to particular regions of the cell boundary 
denoting certain areas as apical, basal, and lateral. 
Cellular polarity is particularly important for kidney 
development as it coincides with lumen formation in 
the maturing nephron.57 The process of apicobasal 
polarity establishment relies on afadin as without it, 
kidney tubule cells fail to form correct Par and nectin 
complexes and do not recruit R-cadherin.57 Another 
factor found to be necessary for polarity in the devel-
oping nephron is the Rho GTPase Cdc42. Knock-out 
studies found severe defects in polarity and lumen 
formation.58 Eventually, the RV lengthens and con-
nects to the UB to form the collecting system.59,60 

This is now the continuous lumen of the nephron. 
Nephron lumen formation is largely conserved as 
results from these studies align with findings from 
a zebrafish lumen formation study focusing on atypi-
cal protein kinase C (aPKC).61 Using the various 
model organisms available will be beneficial to 

continue to understand the process of lumen forma-
tion. As we currently understand it, the establishment 
of apical and basolateral polarity is necessary as col-
lectively the cells need to form the lumen on the apical 
side of RV cells. As previously mentioned, there are 
a number of molecular cues that dictate proper polar-
ity and thus lumen formation. One of the main con-
cepts to keep in mind is that there are cell–cell 
interactions as well as cell-matrix interactions taking 
place, which have been covered in detail in another 
review.62 Moving forward, a better understanding of 
these interactions and the molecular cues initiating 
them is needed.

Additional aspects of nephron growth include pla-
nar cell polarity, mechanical stretch, cell migration 
and proliferation. It is important to understand that 
many of the events discussed in this review are occur-
ring simultaneously. For example, the events in this 
section are taking place while transcription factors 
direct regionalization of nephron tubules, which will 
be discussed in the following section. Continuing to 
think of nephrogenesis in a three-dimensional con-
text, planar cell polarity (PCP) is necessary for proper 
kidney development. PCP is collective tissue polarity 
or, polarity as it functions perpendicular to the cellular 
apical-basal polarity. There are numerous examples of 
the role PCP plays in developmental biology as it 
controls convergent extension and oriented cell 
division.63 One elegant example is found as research 
discovered the PCP-dependent convergent extension 
resulting in kidney tubule formation.64 Additionally, 
PCP controls oriented-cell division, another process 
that has been linked to kidney tubule elongation.65 

While the core PCP components are known to be 
needed for proper tissue development, other factors 
and their downstream consequences are being 
discovered.65–70 One known factor that regulates kid-
ney PCP is Wnt9b acting via Rho-kinase.71–73 This is 
an area of intense research as dramatically increased 
proliferation can result in disease states such as poly-
cystic kidney disease (PKD).62 Hippo signaling has 
been linked closely with PKD cell proliferation via fat4 
a negative regulator of hippo signaling providing one 
avenue for potential molecular exploration.74–77 As 
we continue to learn about PCP and the other effects 
involved downstream, we can gain better insight to 
disease states. Specifically, cell proliferation and its 
relationship with PCP requires a better understanding 
as it pertains to kidney development.
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Interestingly, in zebrafish, there is a concentrated 
cell proliferation event in the distal portion of the 
pronephros as cells migrate rostrally to provide the 
increased cell number necessary for the proximal 
tubule to undergo coiling morphogenesis.78 This 
nicely supports a study that found distal prolifera-
tion of the RV occurs to join the UB as previously 
mentioned to make the collecting duct system.59 

Further, collective cell migration occurs in devel-
oping and regenerating zebrafish nephrons.78–81 

Combining these data with recent studies illustrat-
ing the unique cellular movement during mamma-
lian kidney development,25 future studies could be 
focused on cellular migratory events and their role 
in nephron development.

Nephron regionalization

As the RV continues to develop, its transitions into 
the CSB and SSB where regionalization becomes an 
important concept as this will be vital for a properly 
segmented, terminally differentiated nephron 
(Figure 1). Though studies suggest proximo-distal 
regionalization can be seen in the RV it is especially 
evident in the later stages of nephrogenesis.59,82,83 

This is an area of research that has greatly bene-
fitted from the many advantages of the Xenopus 
and zebrafish model organisms as complements to 
the single-cell RNA sequencing (scRNA seq) in 
murine and human kidneys.84–89 During this time 
of RV elongation into CSB and SSB a number of 
signals dictate proximal and distal cell fates. Here, 
we will discuss some of these signaling factors, but 
not an exhaustive list.

While the RV is usually subdivided into proxi-
mal and distal domains, the SSB gains a medial (or 
intermediate) region. Expression of unique factors 
in combination with loss of function experiments 
have determined much of what we understand to 
be segmentation of the nephron during develop-
ment. Recently, mostly due to the advances in 
scRNA seq, there has been an approach at under-
standing the role timing and location play in com-
bination with gene expression for the development 
of individual nephron cells.25,90

Beginning with the proximal portion of the SSB, 
Wilm’s Tumor 1 (Wt1) continues its proximal expres-
sion observed in the RV, and this expression continues 
into mature podocytes.91,92 Next, there have been 

a number of studies to better understand the role 
Notch signaling plays in proximal segmentation. 
Losing components of Notch signaling results in loss 
of proximal segments. These changes appear first dur-
ing the SSB stage, coinciding with expression of Notch 
signaling components.83,93–96 Interesting evidence has 
shown that members of the Iroquois (Irx) transcrip-
tion factor family play roles in the medial SSB devel-
opment. Studies in Xenopus and zebrafish have shown 
that loss of Irx genes have consequences for the devel-
opment of intermediate segments of the nephron.97–99 

The transcription factor Hnf1b is expressed in mouse 
SSB and disruption of its expression has drastic phe-
notypes in Xenopus and zebrafish. Xenopus deficient 
in hnf1b do not properly form proximal or intermedi-
ate sections of the nephron,100 while zebrafish defi-
cient in hnf1b do not form any nephron segments.101 

The previously mentioned transcription factor Lhx1 is 
needed for proper distal formation.102 Additionally, 
downstream of Lhx1 the POU-domain containing 
transcription factor POU3F3 (also called Brn1) is 
needed for distal tubule and Loop of Henle 
formation.103

Recently, there have been several large-scale efforts 
to catalog factors that are expressed during nephron 
segmentation, such as scRNA sequencing of mice and 
human kidneys. These data repositories provide 
a wealth of information that will be useful to design 
future genetic studies. Additionally, genetic studies 
such as forward and chemical screens using other 
vertebrate models have generated new insights about 
mechanisms that control nephron segmentation in 
different species.86 One premiere system has been 
the zebrafish embryonic kidney, or pronephros, 
where a growing list of genes and signaling pathways 
has been identified.104–114 Recent evidence from 
human kidneys strongly suggests potential conserva-
tion in gene expression and function with their zebra-
fish counterpart.104,115 Combining the large data sets 
of mice and human scRNA sequencing with the rela-
tive ease of loss of function studies in zebrafish could 
streamline an evolutionarily conserved pipeline of 
essential factors for nephrogenesis.

Nephron terminal differentiation

By the time the nephron is fully developed, it will 
contain a number of unique cell-types that each need 
to have the appropriate gene expression to complete 
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their vital functions (Figure 1). The nephron begins 
with the blood filter, or renal corpuscle encompassing 
the glomerulus and Bowman’s capsule. This contains 
a number of cell types including capillaries, mesan-
gium, podocytes, and parietal cells. Next, the tubule 
contains the proximal convoluted tubule, proximal 
straight tubule, the Loop of Henle (including descend-
ing limb, thin ascending limb, thick ascending limb), 
distal convoluted tubule, and connecting tubule. The 
proximal tubule functions in absorption and secretion 
in an effort to regulate pH of the filtrate. Largely, the 
Loop of Henle functions to concentrate the filtrate by 
reabsorbing water. The distal tubule ensures proper 
ion transport occurs to fine-tune the filtrate by regu-
lating potassium, sodium, and calcium levels. Each 
unique segment is needed to maintain blood home-
ostasis by completing these functions. Nephron cells 
must acquire a number of features to be generally 
considered terminally differentiated, including proper 
epithelization, cilia formation, and expression of func-
tional proteins such as tight junctions and solute 
transporters.

We have previously discussed nephron epitheli-
zation during the RV to SSB stages so in this section 
we will focus on the remaining steps of terminal 
differentiation beginning with cilia. Cilia are hair- 
like structures projecting from the apical surface of 
cells that have essential roles in various organs 
including signal transduction.110 Cilia play 
a unique role in kidney development and function 
as ciliogenesis is an essential step as kidney tubule 
cells differentiate while also playing a role in signal-
ing to properly form the kidney. The earliest 
observed cilia formation is at the RV stage as the 
developing nephron undergoes MET, establishes 
apical-basal polarity, and begins to form a lumen.116 

Cilia length are largely dynamic as they respond to 
stimuli to carry out their tasks. Cilium length 
increases as nephrons mature, this is speculated to 
indicate that they may be playing important roles 
that are currently not understood.110,116 Without 
proper cilia form and/or function disease states, 
termed ciliopathies, occur. One of the most com-
mon ciliopathies is polycystic kidney disease which 
is the result of mutations in cilia localized proteins 
such as polycystin-1 and −2.110,117 This is an area of 
nephrogenesis that is also greatly complemented by 
the advantages of zebrafish and Xenopus as model 
organisms. Several studies have found cilia-related 

genes affecting kidney development including Wnt/ 
PCP genes, hnf1b, and PKD2, among others.118–120 

One potential interesting avenue of future research 
could focus on multiciliated cells, or cells with 
multiple cilia projecting from the cell surface that 
function in fluid propulsion in zebrafish and 
Xenopus. Though currently not believed to be pre-
sent in normal adult healthy kidneys, there have 
been reports of multiciliated cells present in kid-
neys during certain disease states.121

Tight junction proteins can be found along the 
entire nephron structure from the slit diaphragm in 
the glomerulus and along the tubule in various 
segments.122–124 The function of the numerous 
tight junction proteins differs depending on the spa-
tial expression, but overall tight junctions provide 
a controlled blockade to paracellular transfers of 
water and ions.122 Overall, tight junctions comprise 
proteins including occludins, claudins, and junc-
tional adhesion molecules.123,125–127 These proteins 
vary in the function and thus their expression along 
the nephron. Tight junction proteins are conserved 
across vertebrate species, further illustrating their 
importance to the general role of the kidney.124

Another suite of proteins essential to nephron 
function are the solute transporters found along the 
nephron tubule. To ensure they are able to modify the 
filtrate, each segment will express a suite of genes that 
act specific to their location along the tubule. Many of 
these genes that specify segments are solute transpor-
ters. Interestingly, many of these segment-specific 
genes are largely conserved from, zebrafish, 
Xenopus, rodents, and humans.2,21,86,99,128 This 
enables a robust host of opportunities to study seg-
mentation and terminal differentiation of the 
nephron. Several factors previously discussed, includ-
ing Hnf1b, are needed to reach epithelial status while 
others have been identified to push the epithelial fate 
to terminal differentiation of the unique segment cell 
types.101,129 A number of specific examples can be 
tracked across species, such as the decrease in the 
distal solute transporter NCCT or Slc12a3 in mice 
and zebrafish deficient in ppargc1a.106,130 One recent 
study from our laboratory identified the transcription 
factor AP-2 (tfap2a) as the key determinant in the 
terminal differentiation of the zebrafish distal early 
segment, analogous to the mammalian thick ascend-
ing limb.104 In the absence of Tfap2a, the nephron 
cells were found to reach an epithelialized point of 
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development in which they were primed to be distal 
tubule cells but failed to express the solute transporter 
suite of genes necessary for proper function of this 
particular segment.104 Further, tight regulation of 
Tfap2a expression was found to be essential, and 
controlled by the paralogs potassium channel tetra-
merization domain containing 15a and 15b (kctd15a, 
15b).105 Interestingly, a study found similar localiza-
tions of TFAP2A and KCTD15 expression during 
human nephrogenesis suggesting possible conserved 
roles in development.115,131,132

Conclusions and future directions

While there have been substantial advances in 
understanding the molecular mechanisms dictating 
the intricate events resulting in kidney development, 
there remain a number of challenges. Clinically, 
patients resort to dialysis or transplantation when 
faced with kidney ailments. Neither of these treat-
ments are particularly reassuring to the many people 
facing kidney dysfunction. Two areas of research 
that are blossoming and resulting in the hope of 
newer treatments are single-cell RNA sequencing 
and organoids. Both fields are advancing quickly 
and can be combined with high throughput loss of 
function studies to continue to identify necessary 
genes to enhance kidney development and function.
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