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1  |  INTRODUC TION

Malignant transformation is a manifestation of changes in gene 
expression that promote various cancer hallmark traits, including 
sustained proliferation, resistance to cell death, and activation of in-
vasion and metastasis. As genomic alterations play an essential role 
in oncogenesis, understanding alterations in gene expression and 
genome regulation in cancer cells is essential for the development 

of improved diagnosis and therapeutics. The identity of various cell 
types, each of which has essentially the same genome, is determined 
by cell type- specific transcriptional programs. Master transcription 
factors (master TFs) have predominant roles in cell type- specific 
transcriptional programs, by activating cell type- specific enhancers 
near cell type- specific genes in many cases. Advances in genome- 
wide epigenome analysis, including ChIP- seq, have unveiled that 
many of the cell type- specific enhancers are cooperatively activated 
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Abstract
Understanding the characteristics of cancer cells is essential for the development of 
improved diagnosis and therapeutics. From a gene regulation perspective, the super- 
enhancer concept has been introduced to systematically understand the molecular 
mechanisms underlying the identities of various cell types and has been extended 
to the analysis of cancer cells and cancer genome alterations. In addition, several 
characteristic features of super- enhancers have led to the recognition of the link be-
tween gene regulation and biomolecular condensates, which is often mediated by 
liquid- liquid phase separation. Several lines of evidence have suggested molecular and 
biophysical principles and their alterations in cancer cells, which are particularly as-
sociated with gene regulation and cell signaling (“ transcriptional” and “signaling” con-
densates). These findings collectively suggest that the modification of biomolecular 
condensates represents an important mechanism by which cancer cells acquire vari-
ous cancer hallmark traits and establish functional innovation for cancer initiation and 
progression. The condensate model also provides the molecular basis of the vulner-
ability of cancer cells to transcriptional perturbation and further suggests the possibil-
ity of therapeutic targeting of condensates. This review summarizes recent findings 
regarding the relationships between super- enhancers and biomolecular condensate 
models, multiple scenarios of condensate alterations in cancers, and the potential of 
the condensate model for therapeutic development.
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by master TFs and Mediator and other transcriptional regulators, 
and exist as clusters in the genome, leading to the coining of the 
term “super- enhancer.”1 These approaches are also extended to 
the cancer cells and facilitate the understanding of cancer genome 
alterations.2

Several characteristic features of super- enhancers have led to 
the recognition of the link between gene regulation and biomolec-
ular condensates, which is often mediated by liquid- liquid phase 
separation.3 In addition, some studies have suggested that some 
cancer cells bear alterations in the biophysical properties of bio-
molecular condensates that are particularly associated with cell sig-
naling and gene regulation. These findings collectively suggest that 
the modification of biomolecular condensates represents the ma-
chinery by which cancer cells acquire various cancer hallmark traits 
and establish functional innovation to facilitate cancer initiation 
and progression. This review summarizes recent findings regarding 
the relationships between super- enhancers and the biomolecular 
condensate model, multiple scenarios of condensate alterations in 
cancers, and the potential of the condensate model for therapeutic 
development. The nuclei include various types of condensates, in-
cluding heterochromatin condensates; however, this review mainly 
focuses on transcriptional condensates.

2  |  SUPER- ENHANCERS AND C ANCER 
BIOLOGY

Cell type- specific transcriptional programs are organized by the 
activation of ~104- 105 cell type- specific enhancers in one cell type. 

These active enhancers can be visualized using high- throughput 
techniques, including ChIP- seq, which detects the genome- wide 
patterns of histone modifications, such as H3K27ac, and the bind-
ing patterns of master TFs and other transcriptional regulators such 
as the Mediator complex and p300/CBP. In mouse embryonic stem 
cells (mESCs), reduction in Mediator expression disrupts the expres-
sion of ESC- specific genes and silences master TFs including Oct4.4 
Consistent with this, several hundreds of large clusters of enhanc-
ers are densely bound by master TFs and Mediator and are found 
near genes that play prominent roles in ESC biology. The discovery 
of these cell type- specific enhancer clusters led to the proposal of 
the super- enhancer concept in 2013.1 Super- enhancers are currently 
defined by the following algorithm: stitching consecutive enhancers 
marked by Mediator, H3K27ac, or TFs with certain distance cut- offs 
(5- 12.5 kb), quantifying the ChIP- seq signals over the stitched en-
hancer domains, and then separating super- enhancers from typical 
enhancers according to the signal strength with a geometrically de-
fined cut- off (Figure 1A). H3K27ac ChIP- seq has been widely used 
for the convenient identification of super- enhancers in various cell 
types, including cancer cells. In typical cases, super- enhancers are 
bound by cell type- specific master TFs and are formed nearby mas-
ter TFs, thereby indicating a positive feedback loop to establish cell 
identity and explaining the vulnerability of cell identity for perturba-
tion of master TFs.

Whereas clusters of enhancers can be identified by various ap-
proaches and referred to in various terms including “locus control 
regions” (LCRs), “super- enhancer” is popularly used to systemati-
cally classify the cell type- specific enhancer regions.5 We previ-
ously reported an integrative meta- analysis of the connectivity 

F I G U R E  1  Super- enhancer, miRNA regulation, and cancer biology. A, Definition of super- enhancers. B, Impacts of super- enhancers on 
miRNA expression and function. Super- enhancers drive a small subset of cell type- specific miRNAs that are highly abundant in the relevant 
cell types and mediate potent target gene repression. C, Cancer hallmark traits and SE- miRNAs with SE loss or gain in cancer cells. B and C 
are modified from our previous report6
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between super- enhancers and microRNAs (miRNAs) and verified 
the super- enhancer concept.6 In addition to TFs, the expression 
and function of miRNAs are highly cell type specific. Our integra-
tive analyses of super– enhancer- associated miRNAs (SE- RNAs) 
revealed that the super- enhancer categorization successfully 
characterizes a small subset of miRNAs that dominates the miRNA 
expression pool and target gene repression in various cell types 
(Figure 1B), and identifies many cell type- specific miRNAs, whose 
deletion causes developmental abnormalities in the relevant cell 
types.6

Super- enhancers play multifaceted roles in disease biology. First, 
disease- associated genetic variants, detected by Genome- Wide 
Association Studies (GWAS), are frequently observed within super- 
enhancers of disease- relevant cell types.2 Second, in cancer cells, 
super- enhancers are frequently generated near various oncogenes 
and other genes important for various aspects of cancer biology.2 
The tight connection with cancer- associated genes is also the case 
for cancer- associated miRNAs.6 Systematic analysis of SE- miRNAs 
in various cancer cell lines has shown that miRNAs with gain or 
loss of nearby super- enhancers tend to have oncogenic or tumor- 
suppressive roles, respectively.6 The target genes of such miRNAs 
with super- enhancer alterations are associated with various aspects 
of cancer hallmark traits (Figure 1C).6 In addition, we have previously 
shown that miRNAs with super- enhancer gain tended to show an 
association with worse prognosis.6 These results collectively sug-
gest that alterations in super- enhancer activity contribute to the 
phenotypes of cancer cells through the modulation of both cancer- 
associated genes and miRNAs. In addition to these scenarios, we re-
cently showed that gain- of- function mutation in the seed sequences 
of miRNA- 140, driven by chondrocyte- specific super- enhancers, 
causes autosomal dominant human skeletal dysplasia (“spondy-
loepiphyseal dysplasia MIR140 type Nishimura”), extending the roles 
of super- enhancers in human diseases.7,8 Although the association 
between super- enhancers and long non- coding RNAs (lncRNAs) in 
cell identity control has not been explored in depth, certain super– 
enhancer- driven lncRNAs (SE- lncRNAs) have been implicated in 
cancer pathogenesis.9- 16 Multifaceted functional crosstalk between 
super- enhancers and lncRNAs, including cis and trans gene or super- 
enhancer regulation by lncRNAs, has been also suggested.9,13,17,18

3  |  SUPER- ENHANCERS AND C ANCER 
GENOME ALTER ATIONS

The abnormal formation of super- enhancers in cancer cells involves 
multiple mechanisms. Certain well known examples of genome ab-
normalities, such as translocation and focal amplification, can be cur-
rently viewed as misdirection and misformation of super- enhancers, 
respectively.2 For example, MYC, a well known oncogene, is ac-
tivated through diverse super– enhancer- associated mechanisms 
in various cancer types. In lymphoma and myeloma, chromosomal 
translocation involving the immunoglobulin locus and MYC locus 
juxtaposes immunoglobulin super- enhancers to MYC and induces 

constitutive expression.2 A similar scenario, also called as enhancer 
hijacking, works in solid tumors, including neuroblastomas.19

In addition, MYC is activated by focal amplification of super- 
enhancers located near the 3′ end of the MYC gene in various 
cancer types, including lung adenocarcinoma, endometrial carci-
noma, acute lymphoid leukemia (ALL), and acute myeloid leukemia 
(AML).20- 22 This is mediated by cell type- specific amplification of 
super- enhancers and chromatin loop re- wiring. Genomic integration 
of oncogenic viral DNAs, such as human papillomavirus (HPV) and 
Epstein- Barr virus (EBV), can also provide a resource for ectopic (su-
per- )enhancer formation and peculiar chromatin looping to activate 
oncogenes.23,24

Non- coding mutations are also attributable to the dysregulation 
of super- enhancers in certain cancer types. In ~5% of T- cell acute 
lymphoblastic leukemias (T- ALL), small insertions (2- 18 base pairs), 
located ~7.5 kb upstream of the TAL1 transcription start site, create 
the recognition sites for the MYB oncoprotein, resulting in an ecto-
pic formation of a super- enhancer through cooperative binding of 
other TFs and the activation of TAL1 transcription.25 This provides 
a representative model to study how non- coding mutations induce 
the formation of ectopic super- enhancers. Although the functional 
significance of enhancer mutations remains obscure, in contrast with 
the frequent mutations in the promoters of cancer- associated genes 
(eg, TERT),26 recent studies have gradually expanded knowledge on 
cancer- associated mutations in enhancers, including recurrent muta-
tions of PAX5 enhancer regions in chronic lymphocytic leukemia,27 
mutations of ESR1 enhancers in breast cancer,28 and mutations of 
FOXA1 enhancers in prostate cancer.29 Other scenarios for misdi-
rection of super- enhancer activities include mutations in CTCF bind-
ing sites and intrachromosomal deletion.30 Furthermore, alterations 
in super- enhancer programs can be driven by mechanisms other 
than genomic mutations/structural variations, such as dysregulation 
of transcriptional factors.

4  |  SUPER- ENHANCERS AND THE 
TR ANSCRIPTIONAL CONDENSATE MODEL

Multiple membraneless organelles that form in eukaryotic cells are 
thought to be important for compartmentalization of various bio-
chemical reactions within cells.31 As stimulated by a study in 2009 
that demonstrated liquid- liquid phase separation (LLPS) as the driv-
ing force of the formation of germline P granules in Caenorhabditis el-
egans,32 LLPS has been intensively studied as an emerging regulator 
of membraneless organelles assembly and various cellular processes, 
including cellular signaling, gene regulation, and autophagy. Such 
membraneless compartments are collectively called biomolecular 
condensates.31 Although the molecular mechanisms of biomolecular 
condensate formation remain obscure in many cases and are context 
dependent, multivalent but individually weak interactions between 
condensate components, such as protein, RNA, and DNA, are key to 
determining the phase separation threshold, ie, the solubility limit 
of the molecule, through modulation of entropy- driven effects, and 
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promoting biomolecular phase separation.31 Proteins contribute to 
multivalent interactions by having multiple modular interaction do-
mains or disordered domains, called “intrinsically disordered regions 
(IDR)” or “low- complexity (LC) domains,” which are frequently ob-
served for cellular signaling mediators such as N- WASP and RNA- 
binding and DNA- binding proteins such as FUS, respectively. RNA 
and DNA molecules with multiple regions that interact with other 
DNA and RNA molecules or proteins, also empower condensate 
formation.

As for gene regulation, multivalent interactions and phase 
transition capacities of the FET (FUS/EWS/TAF15) RNA- binding 
protein family and other RNA- binding proteins were highlighted in 
2012 by identifying their capability to form hydrogels consisting of 
amyloid- like fibers in vitro.33,34 Subsequently, it has been shown 
that hydrogels of LC domains of FET proteins incorporate the re-
petitive C- terminal domain (CTD) of RNA polymerase II (RNA Pol II) 
in a reversible manner sensitive to CTD phosphorylation and that 
binding between hydrogel polymers and CTD domains correlates 
with the strength of transcriptional activation by LC domains of 
FET proteins.35 The link between multivalent FUS interactions and 
Pol II CTD recruitment was later extended in the setting of in vitro 
phase- separated dynamic FUS droplets (also called as granules),36 
indicating a general property observed beyond protein inclusions 
and hydrogels. Such in vitro droplet models have been widely used 
in the condensate field to date.36

Together with these findings, several functional studies of en-
hancers have laid the groundwork to connect super- enhancers and 
biomolecular condensates. In several studies, but not all, genetic 
deletion of constituent enhancers within a super- enhancer has 
been shown to decrease the activity of the other super- enhancer 
constituents and reduce the associated gene expression, which 
suggests interdependency and high cooperation between super- 
enhancer constituents (Figure 2).37,38 We further reported that 

super- enhancers can be characterized by a pervasive interaction 
with the miRNA processing machineries, DGCR8 and Drosha, and 
that super- enhancer constituents act cooperatively and facilitate 
the recruitment of DGCR8 and Drosha and pri- miRNA processing 
of cell type- specific miRNAs.6 In addition, chromatin contact map-
ping methods indicate that the clusters of enhancers within super- 
enhancers are in close physical contact with one another and with 
the promoter region of the gene they activate.39 Based on these 
results, particularly the multiple layers of cooperation between in-
teracting factors and multiple super- enhancer constituents, the for-
mation of biomolecular condensates was proposed in 2017 as the 
operating principle of super- enhancers (Figure 2).3 In addition to the 
previously proposed “transcription factory,” several terms, including 
“transcriptional condensate,” “transcription hub,” and “MegaTrans 
complex” have been used to describe such transcription- associated 
multimolecular assemblies.40- 42 This condensate model embraces 
the observation of large clusters of RNA Pol II in living mammalian 
cells by super- resolution imaging,43 and helps, at least partially, to 
explain the super- sensitivity of super- enhancers to transcriptional 
perturbation, such as inhibition of master TFs and other regulators 
(Mediator and BRD4), the capacity of an enhancer to simultaneously 
activate multiple genes in cis and in trans, and the patterns of tran-
scription bursts of strong vs. weak enhancers (Figure 2).1,44- 46

Several lines of research, including characterization of LLPS ca-
pacity of IDRs in Mediator and BRD4, and imaging of Pol II, Mediator, 
and BRD4, have provided supporting evidence for this model 
(Figure 2).42,47,48 However, several aspects are currently unclear, 
including the extent to which LLPS contributes to the in vivo dy-
namics of super– enhancer- associated factors, the fraction of super- 
enhancers vs. typical enhancers that are associated with condensate 
formation, and how the mechanisms differ between in vitro and in 
vivo. Despite these important questions, multivalency appears to 
be a solid feature of interaction modes of transcriptional regulators, 

F I G U R E  2  The transcriptional BRD4 condensate model: a link between super- enhancer and phase separation
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as DNA- binding and RNA- binding proteins tend to contain long 
IDRs relative to other proteins.49- 51 In humans, the large subunit of 
RNA Pol II contains 52 repeats of a heptapeptide sequence at its 
CTD, which have LLPS capacity sensitive to CTD phosphorylation, 
and select interacting partners, such as Mediator and splicing fac-
tors, depending on the phosphorylation status.52,53 Mediator and 
BRD4 have IDRs at the C- terminus that undergo phase separation 
in vitro.47 For TFs, they typically have both DNA- binding domains 
(DBD) crucial for genome interactions and activation domains (AD), 
which are typically disordered and have phase separation capacity.51 
Therefore, the combination of sequence- specific strong interac-
tion via the DBD and IDR- mediated multivalent weak interactions 
is thought to define condensate formation in a context- dependent 
manner that is dependent on the modification of components such 
as phosphorylation of Pol II CTDs.51 Super- enhancers facilitate con-
densate assembly through a high density of TF binding motifs across 
the local genomic regions.54

5  |  ALTER ATION IN TR ANSCRIPTIONAL 
CONDENSATES IN C ANCER

The pathological significance of altered regulation of biomolecular 
condensates has recently attracted much attention in parallel with 
advances in condensate biology. The association with neurodegen-
erative disorders is well studied, as IDR mutations in FUS in patients 
with amyotrophic lateral sclerosis (ALS) abrogate the balance be-
tween dynamic liquid- like compartments and solid aggregates and 
accelerates aberrant phase separation.55 Furthermore, recent stud-
ies have highlighted the link between aberrant condensate dynamics 
and cancer pathogenesis. In this section, we summarize examples of 
cancer- associated alterations in transcription and nuclear conden-
sates (Table 1 and Figure 3). Other condensates related to cytoplas-
mic cellular signaling and proteostasis are discussed in the following 
section (Table 1).

As DNA- binding and RNA- binding proteins frequently contain 
IDRs, chimeric fusion TFs caused by chromosomal translocation alter 
the dynamics of condensate formation capacity and transcriptional 
activity. In the well known FET protein- related translocation, IDRs of 
the FET RNA- binding protein family are fused to a variety of different 
DBDs of translocation partners, yielding various chimeric TFs, such 
as EWS- FLI, EWS- ERG, and FUS- ERG, in Ewing sarcoma.56 EWS- 
FLI TFs recruit the BRG1/BRM- associated factor (BAF) chromatin 
remodeling complex to the tumor- specific enhancers in a manner 
dependent on the tyrosine residues of EWS IDRs and form conden-
sates at the GGAA repeat- containing microsatellites (Figure 3).40,57,58 
Analogously, recent studies have shown that NUP98- involving TF 
chimeras, recurrently detected in pediatric AML, engage similar 
mechanisms.59,60 In these cases, phenylalanine and glycine- rich 
IDRs of NUP98, which is intrinsically a part of nuclear pore complex, 
are fused to various proteins involved in transcriptional regulation 
and epigenetics, including HOXA9, KDM5A, NSD1, DDX10, and 
PSIP1. Upon fusion, these diverse chimeric proteins form nuclear 

condensates in an IDR- dependent manner, interact with various 
transcriptional regulators, and induce aberrant chromatin looping 
and leukemogenic gene expression programs (Figure 3).59,60 In both 
cases, that is, FET and NUP98 fusion, IDRs potentiate target gene 
activation, possibly through increased chromatin binding and/or 
retention.57,60 Consistent with the super- enhancer and condensate 
model, a high density of DNA- binding motifs (GGAA repeats for FET 
chimeras and super- enhancer- like signatures for NUP98 chimeras, 
respectively) not only ensures the specificity of target genes, but 
also aids in perturbation of their spatiotemporal precise regulation, 
finally leading to oncogenesis.58,60 Furthermore, given that various 
NUP98 chimeras share interacting partners and that artificial IDRs 
can recapitulate the fusion phenotypes, diverse IDRs may have re-
dundant functions to hijack pre- existing transcriptional machineries, 
perturb transcriptional programs, and exert neomorphic activities.

Alteration in transcriptional condensates can be induced by 
dysregulation of the expression levels of transcriptional and RNA 
processing regulators. YAP and TAZ, which are frequently upreg-
ulated in cancers, form condensates and promote gene expression 
(Figure 3).61,62 The condensates of TAZ were observed as discrete 
nuclear puncta in breast cancer tissue samples.62 As splicing fac-
tors are well known to form condensates, a recent analysis showed 
that a regulator of transcription and RNA splicing, AKAP95, which 
is frequently overexpressed across a large range of human can-
cers, forms nuclear condensates, supports cancer cell growth, and 
suppresses oncogene- induced senescence in an IDR- dependent 
manner (Figure 3).63 In addition, a recent report suggested that 
YTHDC1, a reader protein of N6- methyladenosine (m6A), under-
goes LLPS and forms nuclear condensates together with m6A and 
that nuclear YTHDC1- m6A condensates are abundant in AML cells 
relative to normal blood cells and support the cell survival of AML 
cells by protecting m6A mRNAs including MYC from RNA degra-
dation (Figure 3).64 Mutations in ASXL1 histone modifier have also 
been linked to regulation of paraspeckle formation in hematopoietic 
cells.65 Current research has mainly focused on TF binding and tran-
scription initiation and a future challenge will be to examine how 
the condensates are associated with transcription cycles and how 
they are altered in cancers. Although the functional role of nuclear 
condensates in cancer cells remains to be elucidated, cancer may be 
associated with the alteration in various other nuclear condensates. 
These scenarios include alterations in morphology, size, and number 
of nucleoli in cancer; alteration in DNA damage- associated conden-
sates, which involve 53BP1, PARP1, and FET proteins; alteration of 
promyelocytic leukemia (PML) bodies, whose components can be 
targeted by PML- RARA fusions; and phase separation and aggrega-
tion properties of wild- type and mutant p53 (Figure 3).66- 68

6  |  ALTER ATION IN SIGNALING AND 
OTHER CONDENSATES IN C ANCER

Biomolecular condensates also play important roles in cellular 
signaling cascades.31 Well known examples include T- cell receptor 
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signaling clusters and the assembly of nephrin receptors and the 
downstream effectors, including NCK and N- WASP. Typically, such 
signaling condensates are formed at or near the cell membrane and 
are thought to be important for the full activation of signaling path-
ways, their spatiotemporal control, and ensuring signaling specific-
ity. Recent studies have highlighted that known cancer- associated 
signaling pathways are altered by cancer- associated mutations. 
Chimeric kinases, such as EML4- ALK and CCDC6- RET in lung cancer, 

have recently been shown to form membraneless cytoplasmic pro-
tein granules, although EML4- ALK granules are not simple liquid 
droplets and have solid- like properties.69 Importantly, these patho-
genic condensates locally concentrate the RAS activating complex 
GRB2/SOS1 and activate RAS in a lipid membrane- independent 
manner (Figure 4).69 Another study has shown that the type I regu-
latory subunit of protein kinase A (PKA), RIα, underwent LLPS to 
form RIα bodies harboring high levels of cAMP and PKA activity, 

Protein Cancer type Cellular process Reference

FET fusion Ewing sarcoma Transcription 40,57,58

NUP98 fusion Pediatric AML Transcription 59,60

YAP, TAZ Breast cancer Transcription 61,62

AKAP95 Breast cancer Transcription, RNA 
splicing

63

YTHDC1 AML RNA modification 64

ASXL1 Myeloid neoplasm Epigenetic regulation 65

EML4- ALK Lung cancer Cellular signaling 69

CCDC6- RET Lung cancer Cellular signaling 69

DnaJB1- PKAcat Fibrolamellar hepatocellular 
carcinoma

Cellular signaling 70

DACT1 Breast cancer, prostate cancer Cellular signaling 71

SPOP Solid tumors (prostate cancer) Protein homeostasis 72

KEAP1, NRF2 Multiple cancer types (lung 
cancer)

Protein homeostasis, 
metabolism

73

KRAS Multiple cancer types 
(pancreatic cancer)

Stress granule 74

YB- 1 Sarcoma Stress granule 75

DDX3X Multiple cancer types 
(medulloblastoma)

Stress granule 76

TA B L E  1  Summary of target proteins 
for cancer- associated alterations in 
biomolecular condensates

F I G U R E  3  Alterations in transcriptional condensates and other condensates in the nuclei of cancer cells
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spatially sequester cAMP, and constrain cAMP/PKA signaling for 
tumor suppression.70 However, such tumor- suppressive effects 
of RIα LLPS are abrogated by loss- of- function of RIα and DnaJB1- 
PKAcat (the PKA catalytic subunit) fusion oncogene in fibrolamellar 
hepatocellular carcinoma, leading to increased cell proliferation and 
anchorage- independent growth (Figure 4).70 These studies collec-
tively suggested a link between condensate- based dysregulation of 
RAS and cAMP/PKA signaling and cancer. A recent study also re-
ported that TGF- β- induced DACT1 forms cytoplasmic condensates 
to inhibit Wnt signaling and promotes bone metastasis in breast 
and prostate cancer (Figure 4).71 Given that many cellular signaling 
cascades activate specific transcriptional programs, the crosstalk 
between alterations in “signaling condensates” and “transcriptional 
condensates” may be a key feature of cancer cells.

Phase separation is also linked to protein homeostasis (“proteo-
stasis”). In addition to neurodegenerative disorders, cancers appear 
to be associated with the regulation of condensate- mediated pro-
teostasis. SPOP, a substrate adaptor of the cullin3- RING ubiquitin 
ligase, forms liquid nuclear bodies together with its substrates, such 
as Death Domain- Associated Protein (DAXX), and normally sup-
presses the substrate levels (Figure 3).72 The tumor suppressor roles 
of SPOP are perturbed by frequent mutations in solid cancers, par-
ticularly in prostate cancer, with increased levels of proto- oncogenic 
substrates.72 The pathogenic effects of SPOP mutations can be 
partly explained by its interference in LLPS and colocalization with 
its substrates.72 In addition, loss- of- function mutations in the KEAP1 
tumor suppressor gene stabilize the NRF2 transcription factor, lead-
ing to alterations in cellular metabolism and adaptation to oxidative 
stress.73 A recent study showed that KEAP1 mutants (ANCHOR mu-
tants) form p62- dependent condensates with NRF2 and probably 
cause impaired degradation of NRF2.73

Other condensates potentially associated with cancer biology 
are stress granules. Although the mechanisms of their alterations, 
especially alterations in LLPS, remain unclear, several oncogenic 
events, such as KRAS mutations, YB- 1 upregulation, and DDX3X mu-
tations, are reportedly associated with alterations in stress granules 
and translation (Figure 4).74- 76 Although the effects on translation 
may vary and be context dependent, these events appear to en-
hance stress granule assembly in general.74- 76

7  |  THER APEUTIC TARGETING OF 
BIOMOLECUL AR CONDENSATES

Transcription of super– enhancer- associated genes highly depends 
on transcriptional regulators such as Mediator and BRD4 and is 
preferentially downregulated upon transcriptional perturbation 
by the BET- bromodomain inhibitor JQ1 and CDK7 inhibitor THZ1 
compared with that of typical enhancer- associated genes.44,77 
Therefore, the super- enhancer and transcriptional condensate mod-
els reinforce the rationale of targeting “transcription addiction” and 
“transcriptional dependency” and partly explain the molecular basis 
of super- sensitivity of certain cancer cell types to transcriptional 
perturbation.78 However, given that normal cells also utilize super- 
enhancer transcriptional programs, the reasons why cancer cells are 
super- sensitive to perturbation and the means to target “transcrip-
tional dependency” specifically should be further explored.

A recent study showed that small- molecule cancer therapeu-
tics, such as cisplatin, mitoxantrone, and tamoxifen, become con-
centrated in specific protein condensates, independent of the drug 
target.79 These findings may be extrapolated to understand the 
connection between the dynamics of condensates in cancer cells 

F I G U R E  4  Alterations in signaling condensates and other cytoplasmic condensates in cancer cells
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and anti- cancer drug activities and resistance.79 In addition, as a 
condensate- hardening drug has been recently shown to block the 
replication of human respiratory syncytial virus in vivo,80 the phar-
maceutical design for direct targeting of condensate dynamics may 
be promising for cancer therapeutics.

8  |  CONCLUSION

In the present review, we summarize recent findings regarding the 
relationships between super- enhancers and cancer biology, the 
relationships between super- enhancers and biomolecular conden-
sate models, and multiple scenarios of condensate alterations in 
cancers. These findings collectively suggest that the modification 
of biomolecular condensates represents the machinery by which 
cancer cells acquire various cancer hallmark traits and establish 
functional innovation for cancer initiation and progression. From 
an evolutionary standpoint, multivalent weak interactions can be 
recognized as a means by which life systems develop new pathways 
with few and probably less lethal gene mutations.81 Accumulating 
evidence in cancer research, particularly that related to transcrip-
tion and signaling condensates, appears to be consistent with this 
view. If so, the next important question would be to delineate the 
shared and context- dependent molecular grammars of how redun-
dancy and weak cooperation, a key feature of condensates and 
IDRs, contribute to new phenotypes in cancer, and to construct 
frameworks for modeling, validating, and therapeutically targeting 
the functions of altered cancer- associated condensates. Together 
with an in- depth understanding of the biophysical dynamics of 
biomolecular condensates, understanding the diversity of IDRs 
in human diseases and cancers may provide further insights into 
these key issues.
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