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mRNA vaccines against cancer have advantages in safety, improved therapeutic efficacy,
and large-scale production. Therefore, our purpose is to identify immune biomarkers and
to analyze immune status for developing mRNA vaccines and selecting appropriate
patients for vaccination. We downloaded clinical information and RNA-seq data of 494
LUAD patients from TCGA. LUAD mutational information was hierarchically clustered by
NMF package (Version 0.23.0). DeconstructSigs package (Version 1.8.0) and NMF
consistency clustering were used to identify mutation signatures. Maftools package
(Version 2.6.05) was used to select LUAD-related immune biomarkers. TIMER was
used to discuss the correlation between genetic mutations and cellular components.
Unsupervised clustering Pam method was used to identify LUAD immune subtypes. Log-
rank test and univariate/multivariate cox regression were used to predict the prognosis of
immune subtypes. Dimensionality reduction analysis was dedicated to the description of
LUAD immune landscape. LUAD patients are classified into four signatures: T >C,
APOBEC mutation, age, and tobacco. Then, GPRIN1, MYRF, PLXNB2, SLC9A4,
TRIM29, UBA6, and XDH are potential LUAD-related immune biomarker candidates to
activate the immune response. Next, we clustered five LUAD-related immune subtypes
(IS1–IS5) by prognostic prediction. IS3 showed prolonged survival. The reliability of our
five immune subtypes was validated by Thorsson’s results. IS2 and IS4 patients had high
tumor mutation burden and large number of somatic mutations. Besides, we identified
that immune subtypes of cold immunity (patients with IS2 and IS4) are ideal mRNA
vaccination recipients. Finally, LUAD immune landscape revealed immune cells and
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prognostic conditions, which provides important information to select patients for
vaccination. GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are potential
LUAD-related immune biomarker candidates to activate the immune response. Patients
with IS2 and IS4 might potentially be immunization-sensitive patients for vaccination.
Keywords: mRNA vaccine, lung adenocarcinoma, immune subtype, tumor mutation burden, immune landscape,
immunogenic cell death, immune checkpoint, immune biomarker
INTRODUCTION

Lung adenocarcinoma (LUAD) is a leading cause of death
worldwide with over 1 million deaths annually and accounts
for approximately 40% of lung cancers (1, 2). LUAD progresses
quickly with the existence of micro-metastatic foci, high tumor
recurrence rate, and increased tumor metastasis rate. When the
cancerous lesions are small, the blood vessels and lymph nodes
might be invaded. Numerous patients have no opportunity of
surgery in stages IIIB and IV (3). Therefore, a systematic
treatment is essential for cancer control. Another obstacle is
low chemotherapy/radiotherapy sensitivity and drug resistance
of targeted therapy resulting from a second gene mutation.
Cancer immunotherapy is a breakthrough in the 21st century.
Programmed cell death-1 (PD-1), programmed cell death-1
ligand (PD-L1), and cytotoxic T-lymphocyte-associated antigen
4 (CTLA-4) therapies are effective in some patients with
melanoma or non-small-cell lung cancer (4–6). Therapeutic
vaccines activate the T cell to recognize cancerous neoantigens,
initiating an immune response for individualized vaccination (7).
Therefore, LUAD requires combined therapy and we should classify
the LUAD population with different molecular characteristics (8).

During the epidemic of Corona Virus Disease 2019 (COVID-
19), mRNA vaccines have evolved as a novel therapeutic method to
fight against cancer and infectious diseases (7, 9). The superiorities
in safety, efficacy, and the industrial production enables mRNA
vaccines to be a promising therapeutic tool for individualized
treatment (10). Immunologically, the immunogenicity of mRNAs
is reduced by modifying nucleotides chemically, optimizing mRNA
with GC-rich sequence and adding poly (A) tails (11–13).
Biologically, mRNA exists in the cytosolic plasma, instead of
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integrating into genomic DNA in the nucleus. The stability of
mRNA in the cytosolic plasma is realized by sequence optimization
and carriers (lipid, polymer, peptide, particle, and cationic
nanoemulsion) (10, 14–16). A good illustration of mRNA-vaccine
efficacy is that RNActive (CureVac AG) vaccine platform activated
T cell immunity and exerted good tolerability and immunogenicity
in a Phase Ib study for patients with non-small cell lung cancer (17).
Moreover, the mRNA-related cost/benefit ratio are low, because of
large-scale production and rapid development. If we hope
developing individualization-oriented therapy for LUAD, mRNA
vaccines can be designed to encode pathological antigens that
elicited effective immune responses. There are two ongoing
clinical trials (NCT03908671 and NCT02688686) that applied
suppressor of cytokine signaling (SOCS) 1-, MUC1-, and
survivin-encoding mRNAs to treat non-small cell lung cancer.

However, other kinds of tumor vaccines (tumor cell vaccines,
DNA vaccines, peptide vaccines, and dendritic cell vaccines) have
some limitations. First, the development of tumor cell vaccines is
refrained by poor clinical efficacy (18). Second, vaccinated DNA
would enter the nucleus to participate in the transformation of
genomic DNA (19, 20). Third, peptide vaccines involve MHC-
restricted short peptides which means that these peptides are
restricted to selected antigens and epitopes (21). Finally, for
dendritic cell vaccines, not all dendritic cells are matured. The
production of dendritic cells is time-consuming (22). A common
disadvantage of these four vaccines is that peptide genetic analysis
for individualized treatment would delay treatment and that the
analysis is impossible for inoperable tumors (23).

Currently, no LUAD immune biomarkers have been
identified, owing to tumor heterogeneity and different tumor
microenvironment. It is essential to select LUAD population for
vaccination. Therefore, our purpose is to identify LUAD immune
biomarkers for developing mRNA vaccines and to validate
immune status (immune subtypes and landscape) for
determining the vaccination population. The procedure of our
study is illustrated in Supplementary Figure 1.
MATERIALS AND METHODS

Data Collection and Pre-Processing
We downloaded clinical information and RNA-seq data of 494
LUAD patients from the Cancer Genome Atlas (TCGA) (https://
www.cancer.gov/tcga) by the Genomic Data Commons (GDC)
platform. Samples lacking clinical information and genes with
zero Fregments Per Kilobase per Million (FPKM) in 50% of
samples were excluded. For further analysis, data standardization
November 2021 | Volume 12 | Article 755401
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was realized by FPKM-Transcripts Per Million (TPM) transition.
Furthermore, 2,212 immune-related genes were collected from
gene sets, including antigen processing and presentation, BCR
signaling pathway, chemokines and chemokine receptors,
cytokines and cytokine receptors, interleukins, natural killer
cell cytotoxicity, TCR signaling pathway, TNF family members,
TGF-b family members, and other immune related gene sets.

The Analysis of LUAD Mutation Signature
and LUAD-Related Immune Biomarkers
Alexandrov et al. described that the mutational processes of human
cancer can be downloaded from the website (http://cancer.sanger.ac.
uk/cosmic/signatures) (24). We accessed TCGAbiolinks to download
567 LUAD specimens in TCGA database. Their mutational
information was hierarchically clustered by using a R package
(non-negative Matrix Factorization, NMF) which was based on 96
trinucleotide mutation spectra (25). The optimal R value identified
fourmajor mutation features of LUAD (Supplementary Figure 3). A
R package called “mutational patterns” (Version 3.0.1) was used to
show the mutation landscape of all samples.

We evaluated weight scores for eachmutation signature in each
sample by setting 6% as cut-off value (26) in deconstructSigs
package (Version 1.8.0) (27). Besides, we set three as the optimal
k value, according to the diagnostic diagram of mutation signature
(Figure 1A). Consistently, the basis map (Figure 1B) and heatmap
(Figure 1C) show that weight scores of signature 1, signature 4,
and signature 13 were higher than others in the clustering groups
3, 1, and 2 respectively. These two figures also show that three is
the optimal k value. Based on this, mutation-signature scores
classified the queues into different clusters to identify driving
mutation signatures by NMF consistency clustering.

Subsequently, we used Survminer package (Version 0.4.9) to
calculate threshold values of signature weight scores. According to
these threshold values, signature weight scores were divided into
high group and low group. We performed survival analysis of the
two groups. Limma package (Version 3.46.0) was used to calculate
differential genes. Those differential genes with |log2FC| values > 1
and with false discovery rate (FDR) < 0.05 were selected for
subsequent analysis. Considered as statistically significant is
p <0.05 in the survival curves. Prognostic factors that predicted
poor survival were potential LUAD-related immune biomarkers.
Finally, we calculated the mutation frequency of these potential
LUAD-related immune biomarkers by maftools package (28). If
the mutation frequency of those potential LUAD-related immune
biomarkers is greater than 2%, these biomarkers would be finally
recognized as LUAD-related immune biomarkers.

TIMER Analysis
We applied Tumor Immune Estimation Resource (TIMER)
(https://cistrome.shinyapps.io/timer/) to the investigation of
the interactions between tumor immune-infiltrating cells and
potential immune biomarkers for LUAD by the module for gene
expression. TIMER provides an interface for dynamic analysis
and visualization of the interaction (29). We conducted purity
adjustment for Spearman’s correlation analysis. Defined as
significant difference is p <0.05.
Frontiers in Immunology | www.frontiersin.org 3
Identification of Immune Subtypes
Based on the consensus clustering of 2,212 immune genes in
LUAD patients, we used the unsupervised clustering Pammethod
by applying the ConsensuClusterPlus R package (Version 1.54.0)
(30). To guarantee the classification stability, the method was
repeated 1,000 times. Also, cluster sets varied from 2 to 10. We
defined the optimal partition by identifying the consensus matrix
and corresponding cumulative distribution function.
Subsequently, we conducted 1,000 bootstraps in the discovery
cohort and defined the optional partition by identifying the
consensus matrix and corresponding cumulative distribution
function. By setting the same parameters, we validated the
immune subtypes in TCGA cohort. Finally, we calculated
Pearson correlation and intra-group proportion in the centroids
of gene module scores to qualify the immune-subtype consistency
of the discovery and validation cohorts.

Prognostic Analysis of Immune Subtypes
To calculate the prognostic values of immune subtypes, we drew
Kaplan–Meier survival curves to calculate the differences of
patients’ OS. We defined stage as covariates and regarded
survival probability as endpoints. Next, we used ssGSEA to
calculate enrichment scores of immune cells. Additionally, we
performed Wilcox test to measure the differences of immune cell
infiltration among immune subtypes. Single-sample gene set
enrichment analysis (ssGSEA) indicated the enrichment scores
of immune-filtrating cells which stand for the upregulation and
downregulation of genes in one sample.

The Description of Immune Landscape
To understand the distribution of immune subtypes in LUAD
patients, we conducted dimensionality reduction analysis with
the reduce dimension function of monocle package (Version
2.18.0) with a Gaussian distribution (31). We set two as the
maximum number of components (31) and used the
discriminative dimensionality reduction with trees. The final
description of immune landscape was presented with cell
trajectory of which cells were colored to indicate different
immune subtypes.
RESULTS

Mutation Patterns of LUAD and the
Identification of LUAD-Related
Immune Biomarkers
Screening out LUAD-specific immune biomarkers relies on the
understanding of LUADmutation patterns (32). Supplementary
Figure 2 depicted the mutation pattern for each of the LUAD
patients by identifying mutation numbers of 96 trinucleotide
changes. LUAD patients are classified into four signatures: T >C,
APOBEC mutation, age, and tobacco. Overall, the most common
base identified in the 567 LUAD sample of TCGA was C >T. In a
group with T >C signature, the common base mutations are C
>G, C >T, T >C, and T >G. As for signatures of APOBEC
mutation and age, C >T is the only common base change in
November 2021 | Volume 12 | Article 755401
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signatures of APOBEC mutation and age. For the tobacco
signature, C >A is the most frequent base change. Figure 2B
showed the activity of four signatures among 567 LUAD.
Tobacco occupies the most proportion of four signatures.

To identify driving mutation signatures, we set cophenetic
correlation coefficient value as three (Figure 1A). By setting 6%
as cut-off value (Figure 1B), twelve signatures were included in
the module. Patients can be clustered into three subgroups based
on the weight scores of these 12 signatures in the identification of
driving mutation signatures by NMF consistency clustering.
Signature 1, signature 4, and signature 13 are driving mutation
signatures, because their weight scores were higher than others in
the clustering groups 3, 1, and 2 respectively (Figure 1C). To
further analyze the prognostic value of three signatures, we
divided their signature scores into two subgroups (high group
and low group), high score and low score groups which was
based on the individually optimum cut-off value. High groups in
signature 1 and signature 4 both indicated better survival
probability than the corresponding low group (p = 0.012 and
p = 0.01), while there was no survival difference in signature 13
(p = 0.12) (Figures 1D–F). Finally, we chose signature 1 and
signature 4 to select differentially expressed genes (DEGs).
Figure 1G depicted upregulated and downregulated DEGs of
signature 1 and Figure 1H depicted upregulated and
downregulated DEGs of signature 4. A total of 102 DEGs were
Frontiers in Immunology | www.frontiersin.org 4
used to screen out LUAD-related immune biomarkers. There
were thirty-nine DEGs in signature 1 and eighty-two DEGs in
signature 4 (Figure 1I).

The Validation of LUAD-Related Immune
Biomarkers by Predicting Prognosis and
Immune-Infiltrating Cells
The LUAD-related immune biomarkers used for predicting
prognosis were identified to be potential immune biomarkers
from the above 102 genes. In Figures 2A–H, patients who
overexpressed and had mutations in Forkhead box protein E1
(FOXE1), G protein regulated inducer of neuriteoutgrowth 1
(GPRIN1), myelin regulatory factor (MYRF), plexin B2
(PLXNB2), solute carrier family 9 member A4 (SLC9A4),
tripartite motif-containing 29 protein (TRIM29), ubiquitin-like
modifier-activating enzyme 6 (UBA6), and xanthine
dehydrogenase (XDH) showed poor survival probability and
were correlated with poor prognosis. Collectively, these eight
gene candidates were identified to be significant for LUAD
progression. Furthermore, we applied maftools package to
screen out biomarker-related genes whose mutation frequency
is over 2%. They were SLC9A4, UBA6, PLXNB2, TRIM29,
MYRF, XDH, GPRIN1, and FOXE1 (Figure 2I). However,
FOXE1 mutation was not detected. These genes are candidates
for target genes. Furthermore, tumor purity determines the
A

B
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E F

G

I

H

C

FIGURE 1 | The identification of LUAD-related immune biomarkers. (A) The diagnostic diagram of mutation signature for setting cophenetic correlation coefficient
value as three. (B) The evaluation of weight scores for each mutation signature in each sample by setting 6% as cut-off value. (C) The identification of driving
mutation signatures. (D–F) Kaplan–Meier curves of signature 1 (D), signature 4 (E), and signature 13 (F). (G, H) The selection of differentially expressed genes in
signature 1 (G) and signature 4 (H). (I) There were thirty-nine DEGs in signature 1 and eighty-two DEGs in signature 4.
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detection of somatic mutation and the pattern of gene
expression. Based on this confounding factor, we checked
purity adjustment option (29, 33). After purity adjustment, up-
regulation of GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29,
UBA6, and XDH positively correlated with the infiltration of
CD4+ T cells, neutrophils, and dendritic cells (DCs). PLXNB2
and UBA6 showed positive correlation with CD8+ T cells.
Besides, GPRIN1 and PLXNB2 were positively correlated with
B cells. As for macrophages, except patients with high GPRIN1
and TRIM29, the rest five kinds of patients had high levels
(Figures 3A–G). These results suggested that these LUAD-
associated immune biomarkers were presented by antigen-
presenting cells (macrophages and DCs) to activate T cells and
B cells for initiating the immune response. Therefore, GPRIN1,
MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH are
potential LUAD-related immune biomarker candidates to
activate the immune response.

The Identification of LUAD-Related
Immune Subtypes
The therapeutic effect of mRNA vaccination relies on innate
immunity and adaptive immunity. However, some of the cancer
patients’ immune system is impaired. Therefore, the immune
status of cancer patients is a crucial factor to assess the
therapeutic efficacy. We analyzed the expression levels of 2,212
immune genes to build a consensus matrix. The classifier model
Frontiers in Immunology | www.frontiersin.org 5
is the most stable when we set k as 5 (34). Hence, we clustered
five LUAD-related immune subtypes (IS) (Figures 4A, B) and
named every subtype as 1–5 (Figure 4C). Compared with
patients in IS1, IS2, IS4, and IS5, patients in IS3 showed
prolonged survival probability (Figure 4D). Furthermore, five
LUAD-related immune subtypes clustered LUAD stages. All
immune subtypes contain a large proportion of stage 1 patients
which occupied 48–62% in every immune subtype (Figure 4E).
Therefore, LUAD-related immune subtypes show potential
superiority in predicting prognosis, compared with prevalent
tumor staging.

The Correlation of LUAD-Related Immune
Subtypes and Mutation
High tumor mutation burden (TMB) and increased number of
somatic mutations are associated with anti-cancer effects.
Theoretically, higher TMB promotes the production of
neoantigens, facilitating immune recognition and cancerous
killing (35). Based on the theory, we analyzed the TMB and
the number of somatic mutations in patients from the mutation
dataset of TCGA. Figure 5A indicated that patients with IS2 and
IS4 have higher TMB, compared with other immune subtypes.
Consistent results were observed in the number of mutant genes
(Figure 5B). IS2 and IS4 comprised the largest number of
somatic mutations. Moreover, patients in IS2 and IS4 harbored
more proportion of mutation status than other patients
A B D

E F G

I

H

C

FIGURE 2 | The validation of LUAD-related immune biomarkers by predicting prognosis. (A–H) Kaplan–Meier curves of LUAD patients who have mutations in
FOXE1 (A), GPRIN1 (B), MYRF, (C), PLXNB2 (D), SLC9A4 (E), TRIM29 (F), UBA6 (G), and XDH (H). (I) Potential tumor biomarker-related gene (494 samples) with
high mutation in LUAD.
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(Figure 5C). Together, these findings suggested that LUAD-
related immune subtypes could predict TMB, the number of
somatic mutations.

The Correlation of LUAD-Related Immune
Subtypes and Immune Modulators
The polymorphism of genes encoding immune modulators is
associated with therapeutic effects (36). As an indicator of
immune response, some immune modulators attached great
importance to cancer therapy, such as immune checkpoint
(ICP) (37) and immunogenic cell death (ICD) (38). Therefore,
we analyzed the expression levels of ICP-related and ICD-related
modulatory genes in TCGA database. Forty-five ICP-related
genes was detected and forty-one genes were differentially
expressed among five immune subtypes. Kruskal–Wallis test
was used to detect differences of gene expression among five
Frontiers in Immunology | www.frontiersin.org 6
independent ISs. For the genes with p <0.05, the gene expression
was significantly different among the five ISs. ADORA2A, BTLA,
BTNL2, CD160, CD200, CD200R1, CD244, CD27, CD28, CD40,
CD40LG, CD44, CD48, CTLA4, HHLA2, ICOS, ICOSLG, IDO1,
IDO2, LAG3, LAIR1, LGAL59, PDCD1, TIGIT, TNFRSF12,
TNFRSF8, TNFRSF9, TNFSF14, and TNFSF18 were all
overexpressed in LUAD with IS3 (Figure 6A). As for ICD-
related modulatory genes, twenty-six genes were detected and
twenty-two genes were differentially expressed among five ISs by
Kruskal–Wallis test. ANXA1, CXCL10, EIF2AK1, EIF2AK2,
EIF2AK3, FPR1, HGF, HMGB1, IFNAR1, IFNAR2, LRP1,
MET, P2RY7, PANX1, TLR3, and TLR4 were all upregulated
in LUAD with IS1 (Figure 6B). Therefore, LUAD-related
immune subtypes represent the expression levels of immune
modulators, which are representative biomarkers of therapeutic
effects of mRNA vaccines.
A
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FIGURE 3 | The validation of LUAD-related immune biomarkers by predicting immune-infiltrating cells. The correlation between gene expression of GPRIN1 (A), MYRF
(B), PLXNB2 (C), SLC9A4 (D), TRIM29 (E), UBA6 (F), XDH (G), and the infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and DCs in LUAD.
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The Feature of Immune Cells in Different
Immune Subtypes
Vaccine response is predicted by immune status. Therefore, we
analyzed different kinds of immune cells in five immune
subtypes by calculating the enrichment scores of 23 signature
Frontiers in Immunology | www.frontiersin.org 7
genes (39) with ssGSEA. Five clusters of immune cells can be
grouped into two parts, according to similar immune-cell scores
(Figure 6C). One is composed of IS1 and IS3 and the other
contains IS2 and IS4. The integral distribution of IS1 and IS3 was
opposite to that of IS2 and IS4. Compared with patients with IS2
A

B

D

E

C

FIGURE 4 | The identification of LUAD-related ISs. (A) Cumulative distribution function curves. (B) Delta area of immune-related genes. (C) Consensus matrix
heatmap for sample clustering. (D) Kaplan–Meier curves of LUAD patients in different ISs. (E) Distribution of LUAD IS1-IS5 in four stages (Stages I–IV).
A B

C

FIGURE 5 | The correlation of LUAD-related ISs and mutation. (A) TMB in five ISISs. (B) The number of somatic mutations in five ISISs. (C) The distribution of
nineteen highly mutated genes in five ISISs of LUAD.
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and IS4, aDC, B cells, CD8+ T cells, cytotoxic cells, DCs,
eosinophils, iDCs, macrophages, NK cells, pDCs, T cells, T
helper cells, Tcm, Tem, TFH, Th1 cells, and Treg cells were all
significant abundant in patients with IS1 and IS3. In patients
with IS2 and IS4, only Th2 cells were enriched (Figure 6D).
Hence, IS1 and IS3 stand for hot immunity, while IS2 and
IS4 stand for cold immunity. Hot immunity represents an
increased immune cell infiltration, which is interpreted as an
inflamed microenvironment (40). Inflammation is positively
correlated with tumor progression and immunosuppressive
microenvironment (41). Similarly, cold immunity means
decreased immune cell infiltration. Our findings indicated that
patients with IS2 and IS4 were suitable for mRNA vaccination.
mRNA vaccines have the potential to generate immune-
infiltrating cells in patients with IS2 and IS4.

Thorsson et al. have identified five immune subtypes of
LUAD (C1–C4 and C6) (42). To validate the reliability of our
five immune subtypes, we comprehensively analyzed the
relationship of C1–C6 and IS1–IS5. IS1, IS2, IS3, and IS5 both
Frontiers in Immunology | www.frontiersin.org 8
encompassed C2 and C3 for at least 19 and 38% respectively. IS3
contains all the five immune subtypes and overlapped with C3
for 62% (Figure 6E). Thorsson et al. reported that C3 had the
best prognosis. The prognostic conditions of C1 and C2 is
inferior to that of C3. C4 and C6 had the worst clinical
outcomes (42). Our previous results proved that patients in IS3
showed prolonged OS (Figure 4D). Due to 62% of C3 in IS3 and
22% of C2 in IS3, patients with IS3 tend to have good clinical
outcomes. In sum, our findings validated the reliability of our five
immune subtypes, which was explained by Thorsson’s results.

Finally, we characterized the feature of immune cells in
different immune subtypes by analyzing 56 previously detected
molecular signatures. Significantly identified were 33 out of 56
immune-related signatures. In Figure 6F, IS1 scored high in
leukocyte fraction, stromal fraction, intratumor heterogeneity,
macrophage regulation, lymphocyte infiltration signature score,
IFN-g response, TGF-b response, fraction altered, BCR Shannon,
TCR Shannon, Th1 cells, dendritic cells resting, macrophages
M0, macrophages M1, mast cells resting, T cells CD4 memory
A

B

D E

F

C

FIGURE 6 | The correlation between LUAD-related ISs and immune modulators and the feature of immune cells in different ISs. (A) Differentially expressed ICP genes in
different LUAD ISs. (B) Differentially expressed ICD genes in different LUAD ISs. Kruskal–Wallis test with *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001. ns presents no
difference. (C) Differential enrichment scores of immune cell signatures among five ISs in TCGA cohorts. (D) Differential enrichment scores of ten prognosis-related
immune cell signatures. (E) The distribution of five pan-cancer ISs in five LUAD-related ISs. (F) Differential enrichment scores of twenty-four immune signatures.
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resting, T cells regulatory Tregs, mast cell, dendritic cells, and
macrophages. However, IS1 scored low in lymphocytes. Hence,
IS1 was an active immune-related phenotype with an enrichment
of positively regulated immune cells. When it comes to IS3, IS3
scored high in macrophage regulation, lymphocyte infiltration
signature score, IFN-g response, TCR Shannon, Th1 cells, and
macrophages. As for IS4, low scores of macrophage regulation,
lymphocyte infiltration signature score, BCR Shannon, TCR
Shannon, Th17 cells, B cells naïve, macrophage M2, mast cells
resting, plasma cells, T cells CD4 memory resting, mast cells, and
macrophages stands for cold immunity. Hence, these cells in IS4
formed an immunosuppressive tumor microenvironment and
indicating cold immunity. Also, IS2 showed moderate infiltration
with increased stromal fraction and active TGF-b response,
which is an immunosuppressive phenotype.

Collectively, different immune subtypes encompassed the
characteristics of molecules and immune cells and showed
corresponding immune status. Therefore, patients with IS2 and
IS4 (cold immunity) are ideal vaccination recipients.

The Immune Landscape of LUAD
Torealize the individualized therapy, immune landscape is essential
to describe the immune components of LUAD patients. We
described the immune landscape of LUAD by analyzing patients’
expression levels of immune genes (Figure 7A). The horizontal
ordinate was negatively correlated with Treg and positively
correlated with NK CD56bright cells. The longitudinal coordinate
was negatively associated with B cells, CD8 T cells and cytotoxic
cells (Figure 7C). S2, S3, and S4 separated apart in the bivariate
distribution. Points of S1 and S5 scattered throughout the bivariate
area, suggesting that there is heterogenicity within the immune
subtypes (Figure 7B).Moreover, we divided S2, S3, and S4 into two
subgroups (A and B), respectively. Some immune cells of the two
subgroups in a certain immune subtype were significantly different
fromeachother.Figure 7Ddepicted that IS2Bhad less amount ofB
cells, CD8+ T cells, cytotoxic cells, DC, iDC, macrophage, pDC, T
cells, TFH, Th1 cells, Th7 cells and Treg, compared with IS2A. In
Figure7E, IS3Ascored lower inaDC,Bcells,CD8+Tcells, cytotoxic
cells, DC, iDC, macrophage, neutrophils, NK CD56bright cells, NK
CD56dim cells, pDC, T cells, T helper cells, Tcm, Tem, Tgd, Th1
cells, Th17cells, andTreg. Similarwith IS2B, IS4Bhave lower scores
of CD8+ T cells, cytotoxic cells, pDC, T cells, Tcm, TFH, Th1 cells,
and Treg (Figure 7F). Hence,mRNAvaccine is effective in patients
with IS2B, IS3A, and IS5B. Furthermore, we classified each point
according to their extreme bivariate distributional position and
selected groups 1, 3, and 5 for survival analysis. Group 3 showed the
best survival probability (Figures 7G, H).

In this section, we used immune subtypes to describe the
landscape of LUAD. LUAD immune landscape revealed immune
cells and prognostic conditions, which provides important
information to select patients for individualized therapy.

The Analysis of LUAD Immune-Gene
Co-Expression Networks and
LUAD-Related Hub Genes
We clustered samples by WGCNA (Supplementary Figure 4A)
and created LUAD immune-gene co-expression networks
Frontiers in Immunology | www.frontiersin.org 9
by setting four as a threshold for scale-free network
(Supplementary Figure 4B). Followed by the convert of an
adjacency matrix from the representation matrix, the adjacency
was further converted to a topological matrix. Hierarchy
clustering was carried out using thirty genes for each network.
Then, we extracted cluster eigengenes and integrated similar
clusters into one cluster whose height was 0.25, deep split was 4,
and minimum module size is 30. Next, we identified nine LUAD
immune-gene co-expression modules of 2,212 immune genes
(Supplementary Figure 4C). Supplementary Figure 4D showed
eight clustered co-expression modules with different colors.
Finally, we analyzed the differential distribution of five immune
subtypes among eight modules and five immune subtypes in
eight modules were differentially distributed (Figure 8A). IS3
had high eigengenes in MEblack and MEred.

Furthermore, to identify LUAD-related hub genes, we
predicted that yellow and black modules were associated with
LUAD prognosis (Figure 8B). The yellow module related to T
cell activation and positively correlated with the horizontal
component (PCA1) of immune landscape positively
(Figures 8C, E). Likewise, the black module had correlation
with G protein-coupled receptor signaling pathway and
negatively correlated with PCA1 (Figures 8D, F). Next, we
analyzed the prognosis-related genes in the yellow module and
the black one, respectively. Survival curves of the yellow module
indicated that the group with low scores was associated with
increased survival probability, due to the negative correlation of
PCA1 and Treg (Figure 8G). In contrast, Survival curves of the
black module suggested better survival probability in the group
with high scores (Figure 8H). It commonly accepted that the
inhibition of immune-suppressive cells (Treg) results in the
therapeutic efficacy of vaccines. Given the potential of mRNA
vaccines in activating immune responses, mRNA vaccines are
suitable for low-group-score patients that were clustered into the
yellow module and the black one. LUAD-related hub genes were
IFNK, MATR3, ATP8B4, ANGPTL7, IFIT1B, PVRIG (yellow
module), GRP, and CHGA (black module).
DISCUSSION

Our study is the first identification of immune biomarkers and
immune subtypes of LUAD. We depicted the mutation pattern of
LUAD, identified LUAD-related immune biomarkers and immune
subtypes and analyzed the correlation of LUAD-related immune
subtypes and mutation. Besides, we further analyzed the correlation
of LUAD-related immune subtypes and immune modulators,
discovered the feature of immune cells in different immune
subtypes, depicted the immune landscape of LUAD and finally
identified LUAD immune-gene co-expression networks and
LUAD-related hub genes. GPRIN1, MYRF, PLXNB2, SLC9A4,
TRIM29, UBA6, and XDH are all mRNA vaccine candidates.
They positively correlated with poor survival probability and the
filtration of CD4+ T cells, CD8+ T cells, B cells, macrophages, and
DCs. Therefore, these LUAD-associated immune biomarkers were
presented by antigen-presenting cells (macrophages and DCs) to
activate T cells for initiating the immune response. Accumulated
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FIGURE 7 | The immune landscape of LUAD. (A) Dimensionality reduction analysis of LUAD patients. Each point stands for a patient with a certain IS. The
horizontal axis represents PCA1 and the vertical axis represents PCA2. (B) Immune landscape of the subgroups of LUAD-related ISs. (C) The correlation heatmap of
PCA1 and PCA2 with 23 immune cell signatures. (D–F) Differential enrichment scores of twenty-three immune cell signatures in the IS3 (D), IS4 (E), and IS5 (F).
*p < 0.05, **p < 0.01, ***p < 0.001. (G) Immune landscape of samples from three extreme bivariate distributional positions (groups 1, 4, and 5). (H) Kaplan–Meier
curves of LUAD patients in three extreme bivariate distributional positions.
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FIGURE 8 | The analysis of LUAD-related hub genes. (A) Differential distribution of five LUAD-related ISs in each module. (B) Forest maps of survival analysis of
eight LUAD modules. ***p < 0.001, ****p < 0.001. ns presents no difference. (B, C) Enrichment map of biological processes in the yellow module (C). The dot size
stands for the number of events. The color intensity stands for the enrichment level. The correlation between the yellow module and PCA1 component in immune
landscape (D). (E, F) Enrichment map of biological processes in the black module (E). The dot size stands for the number of enrichment genes. The color intensity
stands for the enrichment level. The correlation between the black module and PCA1 component in immune landscape (F). (G) Kaplan–Meier curves of the yellow
module with low group scores and high group scores. (H) Kaplan–Meier curves of the black module with low group scores and high group scores.
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evidence has confirmed their potential in inhibiting tumor growth.
Firstly, GPRIN1 is overexpressed in lung cancer cells. Detarya et al.
inhibited GPRIN1 expression in A549 cell lines, observing
attenuated biological process and mesenchymal transition (EMT)-
related phenotypes (43). Secondly, MYPF (MYRF) is an upregulated
ER membrane-associated transcription factor in pancreatic ductal
adenocarcinomas. Well-differentiated secretory cancer cells contain
a large quantity of MYRF, while MYRF is absent in poorly
differentiated quasi-mesenchymal cells. Mechanically, MYRF
participates in the expression of genes encoding highly
glycosylated, cysteine-rich secretory proteins, which is regulated
by HNF1B. The role of MYRF is to prevent ER stress. To validate
the ER-stress prevention of MYRF, Milan et al. discovered ER stress,
inhibited proliferation and inability to form spheroids in vitro in
MYRF-deficient pancreatic ductal adenocarcinoma cells. In vivo, the
cells formed a less proliferating tumor (44). Then, PLXNB2 is highly
expressed on B cells from germinal center (GC). It recruits GC
follicular T helper cells and optimize antibody responses. By
removing PLXNB2 from the DC, interactions of T cells and B
cells, and plasma cell production/affinity maturation were impaired
(45). Lin et al. found that circPLXNB2 (a circular RNA) and
PLXNB2 mRNAs were high in patients with acute myeloid
leukemia (AML). Those patients had poor OS and disease-free
survival (PFS), which is consistent with our study. They also
indicated that PLXNB2 promoted proliferation and migration and
that suppressed apoptosis both in vivo and in vitro (46). Next,
SLC9A4 is also known as sodium–hydrogen exchanger (NHE) 4
protein. SLC9A4 is reported to exist in T84 human colon cancer
cell, which occupied 43% of pH recovery after an acid intervention
(47). Besides, TRIM29 promoted EMT-mediated invasion and
metastasis of colorectal cancer by activating Wnt/b-catenin
signaling pathway (48). Similar research indicated that TRIM29
overexpression facilitated the proliferation of bladder cancer cells by
the activation of NF-kB (49). Zhou et al. analyzed the relationship
between TRIM29 and b-catenin in patients with non-small-cell lung
cancer, discovering that TRIM29 was overexpressed in
adenocarcinoma of non-small-cell lung cancer (50). Furthermore,
UBA6 is ubiquitin-activating enzyme which cooperated with hybrid
ubiquitin-conjugating enzyme/ubiquitin ligase (BIRC6) to limit
LC3B for autophagy (51). A relevant study investigated UBA6-
specific E2 conjugating enzyme 1 (USE1). The results showed that
mutations in USE1 resulted in lung tumorigenesis by prolonging the
half-life of the protein (52). We believe that USE1-associated UBA6
might be a participator in the prognosis of LUAD patients. Finally,
the balance of oxidase and xanthine dehydrogenase (XDH)
determines the tumor growth. Xu et al. discovered that xanthine
oxidase-mediated oxidative stress promotes the apoptosis of tumor
cells (53). In other words, XDH might favor tumor growth. XDH
were identified as a target of oncogenic steroid receptor coactivator-
3 (SRC-3) (54). Targeting XDH would be a suppressive strategy to
treat LUAD.

Certain population of LUAD responds effectively to mRNA
vaccines. We classified the immune status of LUAD patients into
five immune subtypes, hoping to select suitable population for
vaccination. Different immune subtypes have different cellular/
molecular characteristics and clinical outcomes. For more detail,
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patients in IS3 both showed prolonged clinical outcomes in TCGA
database. Such a result implies that LUAD-related immune
subtypes show potential superiority in predicting prognosis,
compared with prevalent tumor staging. Another value of our
study is that immune subtypes are a representative of therapeutic
reactivity and efficacy. Patients with IS2 and IS4 have the highest
TMB and the largest number of somatic mutations, which means
that they have robustly responsive reaction to mRNA vaccines.
ICP-related genes were overexpressed in LUAD with IS3,
indicating an immunosuppressive tumor microenvironment. For
those patients, robust immune responses are difficult to be induced
by mRNA vaccines. Differently, the upregulated ICD-related
modulatory genes are a positive indicator of therapeutic effects
of mRNA vaccines in LUAD with IS1. Furthermore, the third
value of our study is the development of individualized therapy by
depicting the immune landscape of LUAD. Individual difference
originates from the complicated immune landscape. By analyzing
immune cells and prognostic conditions of each patient, we would
select patients for individualized therapy. Finally, LUAD-related
hub genes (IFNK, MATR3, ATP8B4, ANGPTL7, IFIT1B, and
PVRIG) in the yellow module and those (GRP and CHGA) in the
black module are positively and negatively correlated with PCA1
of immune landscape, respectively. Patients harboring these
elevated genes are responsive to mRNA vaccines. Low-group-
score patients in the yellow module and the black one are
promising LUAD-mRNA-vaccine candidates.

Effective vaccination response is reflected by immune status.
Therefore, we identified the exact immune cells in five immune
subtypes. Patients with IS1 and IS3 had more aDC, B cells, CD8+
T cells, cytotoxic cells, DCs, eosinophils, iDCs, macrophages, NK
cells, pDCs, T cells, T helper cells, Tcm, Tem, TFH, Th1 cells, and
Treg cells, compared with patients with IS2 and IS4. Patients
with IS2 and IS4 included more Th2 than those with IS1 and IS3.
Hence, IS1 and IS3 stand for hot immunity, while IS2 and IS4
stand for cold immunity. These immune signatures correspond
to their molecular features. For example, IS2 showed moderate
infiltration with increased stromal fraction and active TGF-b
response. IS4 scored low in macrophage regulation, lymphocyte
infiltration signature score, BCR Shannon, TCR Shannon, Th17
cells, B cells naïve, macrophage M2, mast cells resting, plasma
cells, T cells CD4 memory resting, mast cells, and macrophages.
Cells in IS2 and IS4 formed an immunosuppressive tumor
microenvironment. To increase the therapeutic reactiveness for
innate immunity and adaptive immunity, mRNA vaccines is an
ideal candidate to produce immunity-activating immune
biomarkers. Moreover, the combined therapy of ICP blockage/
ICD-related modulators and mRNA vaccines would strengthen
the therapeutic effects by increasing the immune-infiltrating
cells. These patients might work for the combined therapy of
ICP blockage/ICD-related modulators and mRNA vaccines.

Thorsson et al. classified LUAD into C1–C4 and C6. C3 had
the best prognosis, while C4 and C6 had the worst clinical
outcomes. In our study, we classified LUAD into IS1–IS5
subtypes. IS1 overlapped with C2 and C3, IS2 with C2 and C3,
IS3 with C2 and C3, IS4 with C2 and C3 and IS5 with C3. These
two classification methods act in accordance with each other,
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because we have validated good clinical outcomes in patients
with IS3. Patients with IS1, IS2, and IS4 showed similar clinical
outcomes. Their OS were inferior to the OS of patients with IS3.
Therefore, our LUAD-related immune subtypes show potential
superiority in predicting prognosis, compared with prevalent
tumor staging.

Although we classified the immune status of the LUAD
patients into immune subtypes for the determination of
patients’ mRNA vaccine sensitivity, the limitation of our study
should be noticed. mRNA sequence is a determinant fact to
maintain mRNA stability, eliminate mRNA immunogenicity and
exert effective immune responses (10). However, our study did
not provide the sequence of potential LUAD-related immune
biomarkers. The provided LUAD-related biomarker genes might
contain multiple subunit biomarkers which are all possible to
exert robust immunity. Future studies would focus on the mRNA
sequence design of those LUAD-related immune biomarkers.
CONCLUSIONS

GPRIN1, MYRF, PLXNB2, SLC9A4, TRIM29, UBA6, and XDH
are potential LUAD-related immune biomarker candidates to
activate the immune response. Patients with IS2 and IS4 might
potentially be immunization-sensitive patients for vaccination.
Our study validated mRNA-vaccine immune biomarker
candidates for LUAD and selected appropriate patient cohorts
corresponding to immune subtypes and predicting prognosis.
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Supplementary Figure 1 | Flow diagram of the data processing, analysis, and
validation. We downloaded clinical information and RNA-seq data of 494 LUAD
patients from Cancer Genome Atlas (TCGA), followed by the identification of
potential immune biomarkers, the analysis of five LUAD-related ISs and immune hub
genes of PAAD. Created with BioRender.com

Supplementary Figure 2 | The mutation pattern of LUAD patients. (A) The
identification of mutation numbers of 96 trinucleotide changes. We used NMF to
analyze the mutation signatures of LUAD by clustering patients’ mutation
information. These mutation signatures are T>C, APOBEC mutation, age and
tobacco. (B) The number of four mutation signatures and their proportions are
analyzed according to LUAD patients’ information from TCGA cohort.

Supplementary Figure 3 | The diagnostic diagram of mutation pattern for setting
cophenetic correlation coefficient value as four.

Supplementary Figure 4 | The analysis of LUAD immune-gene co-expression
networks. (A) A sample clustering. (B) LUAD immune-gene co-expression
networks by setting four as a threshold for scale-free network. (C)Dendrogram of all
differentially expressed genes. (D) Gene numbers in each module.
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